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ARTICLE INFO ABSTRACT

The insurance industry is exploring the use of machine learning (ML) models to
leverage the huge volume of customer data for of-the-moment business
decisions. It is, however, extremely sensitive information. From a design per-
spective, data attribute utility should be carefully balanced with privacy
guarantees, particularly when sensitive customer data is involved. Privacy risks
can be mitigated by using techniques that reduce and control the amount of
sensitive information exposed during the training and use of ML models. A wide
spectrum of privacy-preserving machine learning solutions has been developed.
They are based on a comprehensive view of data protection-impact
assessments under privacy laws and reg- ulations, subsequently consolidating the
specific requirements for both personal identifiable information (PII) and
personal health identifiable (PHI) information. For sufficiently large datasets,
fair ML solutions with differential privacy-DPIA compliance can be obtained
without compromising model performance. Notably, certain ML tasks, such as
risk scoring and underwriting, can be accomplished with very close-to-the-source
data while preserving DP-compliance for protected attributes. Risk scoring and
underwriting processes are performed under the control of one institution, while
fraud detection and claims management procedures apply an anomaly-detection-
based architecture. For sensitive attributes such as health data, disparity in
training data volume can be solved by transferring knowledge through privacy-
preserving federated learning. Sensitive attributes with low entropy are avoided
at prediction time to mitigate the associated disclosure risk. For such features,
privacy and risk evaluation techniques such as k-anonymity and {-diversity are
embedded into the data-governance step, ensuring that the data support
radarized and risk-aware disclosures when exposed to third parties.

Index Terms—Privacy-Preserving Machine Learning (PPML),Federated
Learning,Differential Privacy,Secure Multi-Party Computation
(SMPC),Insurance Data Analytics,Sensitive Customer Data Protection,Data
Anonymization and  Encryption,Regulatory = Compliance = (GDPR /
HIPAA),Explainable Artificial Intelligence (XAI) in Insurance,Trustworthy and
Ethical Al Systems.

I. INTRODUCTION

Balancing the conflicting requirements of privacy regu- lations and quality-driven data-hungry machine-
learning ap- proaches presents a difficult challenge in insurance systems. Real-world experience shows that
debt collection systems’ decision procedures enjoy an insurable risk. While preventing the ecosystem’s
participation is less costly, the monitoring commitment to detect fraud remains a standard market as-
sumption. Privacy-preserving machine-learning models ad- dress risk scoring, fraud detection, and claims
management, enabling sensitive information sharing within privacy-sensitive channels. Privacy-preserving
ML refers to the development and application of machine-learning techniques that allow the sharing and
utilization of sensitive information and personal identifiable information (PII) without violating privacy
regula- tions, such as the General Data Protection Regulation (GDPR) or local implementations of the Health
Insurance Portability and Accountability Act. Privacy regulations generally identify two main categories of
sensitive data: (1) personal health information (PHI), such as health status or health claims for individuals,
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and (2) credit data information obtained through financial institutions, e.g., identification of credit card
payment events, classified as a previous bad debt event. Agencies or institutions are usually rewarded for
collecting samples describing such events. Nevertheless, real-world systems face participation risks despite
those rewards.
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Fig. 1. Overview of Data Privacy in Machine Learning

A. Context and Motivation

The growing concern for privacy in the digital age has resulted in stricter regulations governing the
processing of personal data, many of which are applicable to the insurance industry. These laws not only
constrain the storage, retention, and sharing of sensitive customer data (for example, personally identifiable
information (PII) and personally health informa- tion (PHI)), but also demand that entities deploying
automated decision systems must mitigate algorithmic discrimination. However, these obligations introduce
friction with common practices in the analysis of sensitive customer data in the insurance industry.
Specifically, these constraints hinder the construction of large data sets to train powerful machine learning
models, the synergistic sharing of data among collab- orating insurers to benefit all parties, and the use of
modeling approaches that favour the attainment of high utility metrics over low risks of privacy loss.
Nevertheless, the principles of data protection can also serve as a guide toward superior technical solutions.
The risks associated with the lack of privacy-preserving measures are driving new approaches in machine
learning that help to deliver more privacy-aware products, services, and decisions. Privacy-preserving
machine learning refers to a collection of techniques aimed at protecting sensitive attributes during the
training and execution phases of algorithms within the context of data-driven models potentially involving
sensitive customer data.

B. Scope and Definitions

The Insurance market is highly data-driven, covering a considerable area of business across the globe.
Predictive models based on Machine Learning (ML) help insurers in fact- based decision making and assist in
managing risks. However, for most applications, sensitive customer data containing Per- sonally Identifiable
Information (PII), e.g., names, addresses, phone numbers, email ids, etc., or Protected Health Informa- tion
(PHI), e.g., health records, are used. Data-driven insurance systems must balance the utility of information
against the seriousness of unintended disclosures and, therefore, Privacy- Preserving Machine Learning
Models (PPMLM) are neces- sary to prevent misuse of sensitive customer data. A model or technique is
Privacy-Preserving (PP) if it minimizes the disclosure risk against the data utility requirements of a given
business application. Disclosure risk can be measured using several mathematical metrics, e.g., k-anonymity,
l-diversity, t- closeness, differential privacy budgets, etc. It is possible to use these metrics in tandem with
business-specific Response Variability Measures (RVM) to determine an acceptable level of risk. PPMLM aim
to achieve adequately low disclosure risk so that the decision makers can choose to ignore the risk element
when using the information for business decisions. Data Protection Impact Assessments (DPIA) must also be
conducted to assess whether Machine Learning models yield sensitive features such as gender, race, age, etc.

II. REGULATORY AND ETHICAL CONSIDERATIONS

To protect sensitive label information, data protection laws have emerged or evolved in several regions.
They require that appropriate trade-offs between model performance and transparency be established
based on data types and subjects. Insurance datasets often contain the sensitive attributes that can be
adjusted by using other variables. Using these features while concealing the sensitive or identity information
can enhance the model’s transparency. Hence, fairness, accountability, and transparency (FAT) are essential
in AI/ML applications. Privacy, fairness, accountability, and transparency should be taken into serious
consideration throughout the entire ML lifecycle (from data collection and preparation to model
development and deployment) to comply
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epsilon accuracy
0.2 0.647
0.5 0.683
1 0.735
2 0.813
4 0.899
S 0.956
16 0.969

TABLE I DP PRIVACY—-UTILITY FRONTIER

with regulations such as the European Union’s GDPR. Doing a data protection impact assessment (DPIA)
is needed by law when the data-processing operation is likely to result in a high risk to the rights and
freedoms of natural persons. The FAT framework can also be supplemented by audits that cover
explainability and interpretability of model behavior. These aspects are critical for ensuring liberated
machine data privacy. AI models that are perceived as biased, sexist, or racist are more likely to be disliked
for these reasons and face calls for bans. Such factors can negatively affect the business. Hence, ensuring
fairness and considering the influence of sensitive attributes on the decision-making process is becoming
ever more crucial, if not lawfully mandated.

Equation o1: Differential Privacy (DP) — definitions & mechanisms
PrIM (D) €S] <esPr[M(D) eS] + 6 ®

€ (“privacy budget”) controls multiplicative leakage; & is a small failure probability
Arandomized mechanism M : D — R is (¢, §)-DP if for all adjacent datasets D, D'
(differ by one individual) and all measurable S € R: Pr[M (D) € S] < esPr[M (D) € S]+ 6
€ (“privacy budget”) controls multiplicative leakage; 6 is a small failure probability

A. Data Protection Laws and Compliance

The generic privacy-preserving ML concept maps to these requirements through different techniques and
models for handling sensitive data within an insurance use-case. Risk scoring, underwriting, fraud detection,
and claims management are key insurance scenarios that involve personal data. Such scenarios become useful
through new techniques like federated learning, cross-silo-portable federated learning, homomorphic
encryption, secure multi-party computation, and differential privacy. Inspecting data-protection
requirements through the lens of fairness, accountability, and transparency shows that any essential
predictive model must comply with legal and ethical principles. Above all, it should enable individuals to be
magically included in the group of persons holding predictive models or classifiers capable of inferring
sensitive attributes such as the risk of death. At present, this requirement is not yet achievable, but it remains
a direction for future deployment. Organizations should indeed be able to provide individuals with evidence
concerning the possibilities of data usage and follow the principle of justifiable use. Predictive models could
even be explained in easy-to-understand language, showing how the model drives the flow of the data and
why a specific decision was reached.

B. Fairness, Accountability, and Transparency

The GDPR’s Article 9 prohibits processing of special cate- gories of personal data, including PII and PHI,
unless specific conditions are fulfilled. Although many ML models could be legally deployed after passing
a Data Protection Impact Assessment (DPIA), executing these models may nonetheless violate other
fundamental rights unless they are supervised by humans. Equally applying these principles to capital
markets, the European Commission recently proposed new artificial intelligence (AI) regulations. Advertised
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as ensuring fairness, accountability, and transparency, the actors affected by these regulations expect
explanations that allow for a transfer of trust. Trust enables insurers to access otherwise inaccessible
personal data when pricing P3 offers. This ethical use of P3 data requires adequately modelling Protected
Attributes such as age or sex. Such Fair ML must consider Disparate Impact as well as accuracy across
Protected Attributes. Within the overall design of machine learning (ML) models, an appropriate Data
Governance Framework is hence the first prerequisite to ensure Fair ML. The separation of insurance
systems into independent silos does not prevent the joint training of models for Risk Scoring, Underwriting,
and Claims Management. On the contrary, it allows collaboration across institutional boundaries.
Information asymmetries are a prerequisite for low-cost corruption or low-cost fraud. Announcing the fraud
detection during a carnival week could for example microtarget perpetrators if Claims Management covers the
costs of the model retraining. However, during the risk-scoring and under- writing process, carriers receive
highquality offers in staged processes that use Only what is Needed. However, proper pricing only occurs
when risk informations can be shared across carriers. Thus, a proper design of the ML system for Risk
Scoring and Underwriting contains two Data Governance layers. The first one removes identifiers and
reduces the risk of re-identification as explained by Data Minimization. The Negative Policy assesses
information loss. When performance degradation is tolerable, a second Data Governance layer explicitly
governs shared P3 Data in a Federated Learning architecture.

III. PRIVACY-PRESERVING TECHNIQUES IN ML

Maintaining Intelligence in a Machine Learning Context While Data Minimization or Sensitive Data
Increase Utility is often at the Core of Planning Phase 2 Data Processing, System Developers should Keep in
Mind, or Look Up, the Abstract and Introduction. Privacy-preserving machine learn- ing is a technical design
that enables modeling with privacy- preserving input while retaining high predictive performance. Two broad
categories of privacy-preserving machine learning are federated learning, which allows for modelling while
minimizing data-sharing data volume, and secure computa- tion, which creates equivalences between trained
models and corresponding plaintext-trained models without sharing the private/training data. Within
federated learning in areas where stronger utility is needed, template external collaboration can also
occur, across non-collaborating organisation-specific data stores. Models deployed in a collaborative but
external way cannot learn from or predict on the sensitive personal data. Feature flows governing privacy-
preserving machine learning methods are also useful in the context of privacy- invading-model creation or
use, enabling independent addition of privacy-preserving considerations to such parts. Federated Learning &
Cross-Institution Collaboration When models are planned for model- or input-sharing purposes—
particularly models that also use data from data subjects who are classed as children—data minimization on
the model is mapped to k-anonymity. When data on sensitive attributes are collected but combination
leaves the records unique, that attribute is a candidate for use in the model but not in sharing or learning.
In areas where subjects are somewhat willing to share information, practical limits on these data but not on
the model in a risk-, flow- or underwriter-scoring application life cycle, model predictions (target variable)
and sensitive attributes can minimisation on data subjects who will supply these data when probed, create a
double gamble for the data subjects named in that model’s prediction.

A. Federated Learning and Cross-Institution Collaboration

Federation is beneficial when organizations with sensitive data can form an informal alliance, whether
periodically or over a more extended period. To improve the granularity or range of a scoring model, for
instance, an insurance company might agree to build a model with another company that has access to a
different set of customers. No additional customer information should be sent to either organization, but
only model updates are disclosed. Risk features such as controllable attributes, event features, or industry
exposure can be expected to remain constant over the life of the policy.
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Fig. 3. Techniques in Privacy-Preserving Machine Learning

Uncontrollable event features—an emerging fraud trend before a large claim—is a signal that could rupture
the federation at the time the information was captured and hurt the disclosure risk more than usual. Other



Keerthi Amistapuram / Kuey, 29(4), 10965 5954

parties might have the same objectives and, more importantly, redundant information that feeds the model
but are less reliable. A third party attempts to detect colluding fraud networks but cannotdetect, identify,
or understand. Non-federated features related to those fraud networks could be useful for the third party and
the other two organizations but represent an added risk for the information subjects. The models can be
trained more robustly, but the computation must be executed with the weakest link in mind, such as through
secure multi-party computation.

B. Secure Computation and Homomorphic Encryption

Secure computation, including secure multi-party computa- tion and homomorphic encryption, enables
mutually distrustful parties to jointly compute desired functions over their inputs without revealing the
inputs themselves or any additional in- formation. While a variety of functionalities can be represented in
normal form for secure computation, the overhead of this approach is too high to apply to the insurance
setting where a common sensitive attribute, such as the primary beneficiary status, is sufficient for a trusted
third-party setup. A security- preserving service provider hosting an insurance database from multiple
institutions can leverage this capability. Institute A can use the sensitive attributes of Institute A clients
and/or Institute B clients available to Institute A to build a risk score predictive model against fraudsters who
aim to falsely claim insurance benefits. Complex models and ensembles can be

Disparate Impact - Before vs Alter Mitigatior istrative)

Fig. 4. Disparate Impaét — Before vs After Mitigation (Illustrative)
IV.DATA GOVERNANCE AND FEATURE ENGINEERING

Privacy-preserving design needs to align with regulatory and ethical policies. The Data Protection Impact
Assessment is a helpful tool. Reducing the use of PII limits disclosure risk and the degree of privacy
protection needed. Pinkers, and Timothy, Santillan, and Starck provide guidance on how to mitigate the
risk of sensitive attributes, and Cornelius and Nai also offer insights on non-sensitive attributes. These
strategies should be considered when planning risk-scoring, underwriting, and fraud detection models.
Privacy Data Minimization requires designs to restrict the use of PII data to the smallest quantity possible.
Data Minimization should also aim to use identifiers with the least disclosure risk and the lowest frequency
of presence in the dataset. Sensitive Data Anonymization aims to remove sensitive information from the
training data. Sensitive attributes might have a substantial impact on the performance of smart contracts
that process claims or evaluate fraud. For example, Health Indicators, Age Groups, and Claim History
Category could strongly influence those models. When employing these sensitive attributes, careful
consideration of the effects and a discussion about the omitted signal should be included.

Equation 02: Sensitivity and mechanisms

For a function f : D — Rk with {;-sensitivity employed, as the primary goal is to increase the score. Despite
connection-preserving homomorphic encryption being able to calculate any arbitrary polynomial function at
the cost of theA, f = max

D~D’

the Laplace mechanism

F(D) - (DI, =

communication complexity, under-sampling can be applied appropriately to keep the communication
overhead reasonable. Another approach would be to utilize a symmetric attribute as the index for a
trusted third-party system in a cloud- based deployment. For example, an encryption key for the attribute
pair (age, claim) that divides the whole data size into several sets can be generated so that these sets are
functionally separate from each other. Even under the real-world cloud risk of bi-cryptographic secret
discovery, this design can withstand the inside-outside attack model to a certain level.
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For #,-sensitivity A,f, the Gaussian mechanism with noise o = €21n(1.25/6) achieves (¢, §)-DP.

A. Data Minimization and Anonymization

Although data protection laws do not prescribe an ex- haustive list of appropriate feature variables for
modeling applications, compliance with data minimization requirements dictates that the likelihood of
indirect identification should be actively reduced in any deployed model. Generalized models aimed at risk
scoring or claims management warrant stronger data anonymization than models for scrutiny of individual
claims decisions. Nevertheless, the predictive signal present in standard identification attributes should be
retained wherever possible, with increasing levels of generalization applied as risk-unaware management
requires a summary of the data distribution for a cohort. The modeling application therefore goes beyond
mere utility and transforms into a form that is less dependent on specific data distributions of sensitive
attributes, a transition that is particularly important for claims decisions and crucial for any form of fairness-
aware modeling in a data-minimizing regime. In conventional risk scoring or underwriting models, insurance
firms routinely use features associated with the sensitive attributes of persons represented in the data that
may be deemed undesirable to any use- case in which the sensitive attributes are properly suppressed.
Attributes such as age, health indications and previous claims record are considered strong indicators in
pricing policies or detection of fraudulent activities. Such considerations also extend to the specialized use-
cases of Fraud Detection and Management. However, it is also acknowledged in these spe- cialized use-cases
that exposed sensitive attributes cannot be fully suppressed and used for fair risk scoring for persons that are
explicitly represented in the modeling cohort.

TABLE II K-ANONYMITY VS APPROX. RE-ID RISK
kK

k 211ppr0x reidentification risk
2 0.5

3 0.333

5 0.2

10 0.1

20 0.05

50 0.02

100 0.01

B. Sensitive Attribute Handling

Minimizing the amount of data being processed during any workflow is often one of the primary aspects
of data preservation in model development. However, some attributes bear direct personal information and
should be removed or moved towards a more suitable implementation. Special categories in the GDPR
such as “sensitive personal data” or “health data” require more attention than others since their
presence increases the need for disclosure of trained or predicted models and expose them to higher
scrutiny. In other contexts, the presence of records that unavoidably belong to a single individual should
be dealt with using higher 6-differential privacy parameters, stricter k-anonymity definitions, or higher o-
relational anonymity. The insurance sector is no exception. For example, modelling a risk score

for an insurance application using a confirmed age—an almost unique identifier in very small segments—or
health indicators increases the chances of »model inversion« attacks. Therefore, proper risk mitigation is
required. Nonetheless, both parties involved in the scoring process—the data supplier and data consumer—
must adopt a balanced approach when it comes to the sensitive attribute category. For instance, the
adoption of O privacy towards health indicators would be an effective risk-compliance solution for
insurers, while impacting the profitability of insurers with very few customers that match an insurance
policy condition directly linked to the expiration of the insurance.

£
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J

Fig. 5. Model Architectures for Insurance Use-Cases
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V. MODEL ARCHITECTURES FOR INSURANCE USE-CASES

Data-driven solutions for risk scoring, underwriting, fraud detection, claims management, and customer
service are now commonplace within the insurance sector. The models, how- ever, possess a single point of
failure with respect to customer privacy, as external entities can possess sensitive identifiers or even very
detailed information that can then be used to exploit weaknesses. Under potential future regulations, such a
disclosure may also lead to useful information being leaked from a model’s output or explainability methods.
In a risk- scoring or underwriting task, sensitive customer attributes (e.g., health indicators, age, previous
claims) are used to make predictions. Modelling must therefore be conducted in a way that minimizes
the risk of leakage. If the model is trained on sensitive customer data, k-anonymity must be achieved. If a
customer data point is protected through homo- morphic encryption or secure computation, a higher level of
k-anonymity and/or a check for differential privacy must be conducted, although a single data point will be
replaced by two datapoints sharing the same sensitive information. To further reduce the risk of any sensitive
identifiers leaking through explainability methods, privacy-preserving integrated gradients can be computed
on the encrypted model outputs. For any post-hoc model, differential privacy must also be checked.

A. Risk Scoring and Underwriting

Approaches to risk scoring and underwriting can retain their predictive power while addressing privacy
concerns. As a general principle, identifiers should be reduced even when they are not explicitly protected.
Such characteristics as name, zip code, nationality, and date of birth often have little bearing on risk but can
dramatically ease re-identification. Other sensitive columns—those for which the insurance company’s ability
to know but not disclose would be desirable—should be modeled in such a manner that they do not
necessarily form part of the data asymmetrically shared across institutions. When FL and horizontal
collaboration are not viable, fraud detec- tion frequently can use anonymized or highly K-anonymized
attributes; in this context, a genotypified or ancestral-age file may underline — through ML techniques —
a label- distributed and thus coarsely privacy-preserving typology. Re- duced details on claims history,
implemented as ML-distilled integrated-level distributions, also can add informative value without revealing
crucial re-identification anchors.

B. Fraud Detection and Claims Management

Machine learning plays a key role in combating fraud in insurance systems. While the advantages of
superior data and better models are clear, most institutions still focus on developing internal solutions,
which creates an opportunity for fraudsters to exploit. Combining resources allows the development of
better solutions, both to model the normal behaviour of clients and also to identify abnormal transactions
that could indicate fraud. A good example of fraud detection that could be developed by multiple institutions
that will benefit from each other’s data is fraud detection in claims management, an area where private
information, such as health-related information, must be carefully handled. Claims management is the
process of evaluating whether a claim is legit and estimating the final amount to pay. Detecting fraud in a
large number of claims is not easy, but clients usually follow the law in most claims, creating a better
understanding of how claims should work. The model checks if the claim is following the pattern expected
for open claims. When a claim does not respect the profile of all claims with the same attributes, it indicates
that there could be something wrong with it, and it is then sent for a detailed review. A feasible solution for a
scenario like this could be the development of a collaborative model that detects anomalies across all claims
from different institutions. As health-related attributes are highly sensitive information, homomorphic
encryption must be implemented in the model. The institutions send their claims through an additively
homomorphic encryption scheme to the secrecy provider, which has no other information to decrypt the
claims. The secrecy provider then performs the necessary computations to validate the services and decrypts
the output with its secret key. Only the decrypted result is sent back to the institutions. If anything (support
services, episode cost, diagnosis, or treatment) is classified as anomalous, the institution triggers human
analysis for that claim.

VI. CONCLUSION

Natural language processing (NLP) has undergone rapid development in recent years, owing to the
availability of vast amounts of textual information and advances in deep learning methods. First-order logic
with quantifiers provides a convenient representation of a large range of applications in NLP and is
expressively equivalent to second-order logic, albeit with a different modelling approach. Various problems
of inference or decision-making can be mapped onto first-order
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logical forms. Research on classes of first-order formulae appears important to NLP research. Such classes
include Horn formulae, classes associated with the well-known description logics of knowledge
representation, framework perspectives in defence of Web ontologies, and formulae generated by a
modal logic associated with belief modelling. In dealing with an informative and open-ended range of
questions, an oriented connectionism approach seems especially promising for natural language
understanding, addressing the neglected aspect of understanding in the learning-unlearning dichotomy often
invoked in artificial intelligence. Future advances in first-order, and its descendants, logical theory will
improve their development of methods for NLP, and intelligent systems exploring such methods will
hopefully continue to have the benefits of important properties often ignored in deep learning. A variety
of other emerging advances in knowledge-based NLP processing are also of a prospective nature. The
structural language grammar of Wilks has been developed and increasingly applied in recent years. As with
the networks proposed by Rosenblatt and by McCulloch-Pitts, the Barker network has also inspired interest
in its conceptual foundation and offers a theoretical link with natural language word order and with other
forms of information modelling such as Beckett’s structured languages.

Equation 03: HE-based scoring (claims/fraud))
With additively homomorphic scheme E for model vector w and feature vector x

E(wTx) =j =1 B dE(Wwjxj) 3)

A. Future Trends

Amid heightened public awareness of exploitable personal data and complex regulatory requirements, recent
years have seen increasing interest in technical solutions that mitigate the risk of sensitive data
exposure while allowing its use for valuable analyses. Utilization of models built on privacy- preserving
techniques, suitable for the insurance context, can help realize this goal. The designed systems strive to
protect privacy while optimizing for multiple objectives.

round training_loss
0 1.2353

5 1.067

10 0.9541

15 0.8696

20 0.7652

25 0.6228

30 0.5858

35 0.4972

40 0.4394

TABLE III FEDAVG CONVERGENCE (TRAINING LOSS BY ROUND)

The identified techniques are used together with data governance strategies that minimize the risk of
disclosing sensitive data while maximizing the analysis signal. A DPIA informs the definition of a minimum
dataset, the idea of working only on anonymized data and the generation of secondary attributes that provide
better risk signals. The first privacy-preserving solutions for risk scoring, underwriting, fraud detection,
claims manage- ment, and complaints analyses cover the basic insurance use cases that can be modeled with
sensitive customer data, focusing on privacy-respecting model architectures. Future work is required to
develop more complex use cases, refine the already identified use-case solutions further, and deploy them in a
productive system. An industry-ready privacy-preserving insurance model acting primarily as a data
processing engine could leverage both the inbound and outbound data flows of insurers to serve multiple
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business units at the same time, generating secondary attributes while providing risk scores for different
areas.
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