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ARTICLE INFO ABSTRACT 
 The ever-growing need for seamless data transmission in wireless networks 

indicates a significant requirement for efficient congestion control mechanisms. 
Conventional congestion control approaches suffer major drawbacks due to low 
responsiveness, primarily owing to the inherently dynamic and unpredictable 
environment of wireless networks. Static parameters characterize these 
traditional methods, making them unable to adapt to real-time network dynamics, 
and hence their performances turn out to be suboptimal. In this regard, presented 
are non-traditional approaches from innovation in the Bacterial Foraging 
Optimizer (BFO) model that synergizes the ensemble classification method with 
aid from Multilayer Perceptron (MLP) and Logistic Regression (LR), and Q-
Learning for path optimization. The BFO, influenced by the foraging behavior of 
Escherichia coli bacteria, dynamically determines distinct paths within a network, 
effectively bypassing congested routes. The bioinspired algorithm, by mechanisms 
of chemotaxis, reproduction, and elimination-dispersal, efficaciously scours 
through the search space and effectively finds good network paths, surpassing 
static routing approaches. Meanwhile, the ensemble classification strategy 
comprising MLP and LR predicts network congestion by considering a range of 
features, such as path length, traffic load, and historical congestion data samples. 
This integrated approach strengthens congestion prediction accuracy as a result 
of integrating the strengths of individual classifiers and mitigating their respective 
weaknesses. On top of that, the implementation of Q-Learning for real-time path 
optimization is another major innovation, where an optimal path is selected based 
on continuously feeding back from the network. This strategy will ensure that the 
suggested model shall remain responsive to variations in the network, which is a 
dynamic environment. With the synergy of all the involved methods, holistic 
approaches toward the management of congestion have been expressed, 
considering the multi-faceted challenges from detection to cure. This model not 
only demonstrates superior adaptability and scalability, pertinent for large-scale 
wireless networks, but also boasts computational efficiency conducive to real-time 
applications. This implementation shall bring out great improvements in network 
performance indices like packet delivery ratio, end-to-end delay, and throughput 
and thus provide an opportunity to surpass conventional static congestion control 
mechanisms. The impact of this paper ranges from academic contributions to 
practical implications in the area of wireless communication. In that case, this 
research will provide a strong framework for reliable and efficient operation of 
wireless networks, provided that demands from modern digital communication 
systems persist. In this way, this paradigm shift of congestion control strategies 
reflects a landmark in the evolution of management of wireless networks.  
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1. Introduction 
 
The proliferation of wireless networks and the exponential growth in data traffic have underscored the critical 
need for efficient congestion control mechanisms. In wireless network environments, congestion occurs when 
the demand for resources exceeds the available capacity, leading to packet loss, increased latency, and degraded 
overall network performance. Traditional congestion control methods, while effective in stable and predictable 
settings, often fall short in the dynamic and complex landscape of wireless networks. These environments are 
characterized by fluctuating network conditions, variable link qualities, and diverse traffic patterns, presenting 
unique challenges that demand innovative solutions.  
Existing congestion control strategies predominantly rely on static parameters and predefined thresholds, 
which lack the flexibility and adaptability required in the ever-changing context of wireless communications. 
Moreover, these conventional approaches do not adequately address the multi-faceted nature of wireless 
networks, where factors such as node mobility, signal interference, and varying traffic loads play significant 
roles. As a result, there is a pressing need for a more dynamic, responsive, and intelligent approach to 
congestion control in wireless networks.  
In light of these challenges, this paper introduces a novel congestion control model designed to navigate the 
complexities of wireless network environments effectively. The proposed model integrates three advanced 
methodologies: the Bacterial Foraging Optimizer (BFO), Ensemble Classification using Multilayer Perceptron 
(MLP) and Logistic Regression (LR), and Q-Learning for path optimization. Each of these techniques brings a 
unique set of capabilities and advantages to the congestion control problem.  
The Bacterial Foraging Optimizer is inspired by the natural foraging behaviors of E. coli bacteria, mimicking 
their chemotactic movements to locate and move towards nutrient-rich areas. In the context of congestion 
control, BFO adapts this bio-inspired mechanism to dynamically explore and identify alternative paths in the 
network, thus avoiding congested routes. This approach not only enhances the flexibility and adaptability of 
the congestion control strategy but also contributes to a more balanced distribution of network traffic.  
Complementing the path-finding capabilities of BFO, Ensemble Classification combines the strengths of 
Multilayer Perceptron and Logistic Regression classifiers to accurately identify congested network paths. By 
leveraging a diverse set of input features and historical congestion data, this method improves the reliability 
and accuracy of congestion predictions, enabling proactive congestion management.  
Finally, Q-Learning, a reinforcement learning technique, is employed to optimize path selection in real-time 
based on continuous feedback from the network. This method allows the system to learn from past experiences 
and adapt its decision-making process, ensuring optimal path selection even under varying network conditions.  
The integration of BFO, Ensemble Classification, and Q-Learning into a unified congestion control model 
represents a significant advancement in the field. By addressing the limitations of traditional methods and 
harnessing the strengths of each integrated technique, the proposed model offers a robust, adaptable, and 
efficient solution for congestion control in wireless networks. This paper delves into the design, 
implementation, and performance evaluation of this novel approach, showcasing its potential to revolutionize 
congestion management in the dynamic landscape of wireless communications& scenarios.  
 
Motivation & Contribution:  
The surge in the deployment of wireless networks and the corresponding increase in data traffic necessitate 
innovative solutions to manage network congestion effectively. The motivation behind this research stems from 
the intrinsic limitations inherent in traditional congestion control mechanisms when applied to the dynamic 
and unpredictable environments of wireless networks. Traditional approaches, predominantly static and 
reactive in nature, are ill-equipped to handle the variability and uncertainties characteristic of these networks. 
This inadequacy becomes increasingly evident as users demand higher data rates and seamless connectivity, 
highlighting a significant gap in the existing network management frameworks.  
The dynamic nature of wireless environments, characterized by fluctuating traffic patterns, variable node 
densities, and evolving network topologies, calls for a paradigm shift towards more adaptive, intelligent, and 
robust congestion control strategies. The motivation for this work is underpinned by the pressing need to 
transcend traditional methodologies, moving towards approaches that can dynamically adapt to changing 
network conditions, predict potential congestions before they become critical, and devise optimal paths for 
data transmission in real-time scenarios.  
Building on this motivation, this paper contributes to the field of wireless network management through the 
design and implementation of a novel congestion control model. This model harnesses the collective strengths 
of three advanced methodologies: Bacterial Foraging Optimizer (BFO), Ensemble Classification using 
Multilayer Perceptron (MLP) and Logistic Regression (LR), and Q-Learning for path optimization. The 
convergence of these methodologies within a unified framework embodies the main contributions of this 
research:  
• Adaptive Path Selection: The integration of BFO enables the model to mimic natural foraging behaviors, 

allowing for dynamic and adaptive path selection. This approach not only aids in alleviating current 
congestions but also proactively prevents potential bottlenecks, thereby maintaining optimal network flow.  
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• Enhanced Prediction Accuracy: By employing ensemble classification techniques that combine MLP 
and LR, the model significantly improves the accuracy of congestion predictions. This contribution is pivotal 
in transitioning from reactive to proactive congestion management, enabling the network to anticipate and 
mitigate congestion before it impacts the user experience.  

• Real-Time Path Optimization: The application of Q-Learning for path optimization introduces a real-
time decision-making component into the model. This allows for the continuous adaptation of routing 
decisions based on evolving network conditions, optimizing data transmission paths dynamically and 
ensuring high levels of network performance.  

• Comprehensive Evaluation: The paper presents a comprehensive evaluation of the proposed model, 
employing a range of performance metrics to validate its effectiveness and superiority over existing 
congestion control approaches. This evaluation not only demonstrates the practical applicability of the 
model but also provides a benchmark for future research in the field.  

• Theoretical and Practical Implications: The research bridges the gap between theoretical algorithms 
and practical network management, offering insights into the implementation of bio-inspired, machine 
learning, and reinforcement learning techniques in real-world network scenarios.  

 
In summary, the motivation behind this research is rooted in the need for more sophisticated, adaptable, and 
intelligent congestion control strategies in wireless networks. The contributions of this work lie in the 
development of a novel model that integrates cutting-edge techniques to address the multifaceted challenges 
of congestion control, setting a new standard for network performance and management.  
 
1. In-depth review of existing Models used for enhancing congestion control in network 
scenarios  
The exploration of congestion control in wireless networks has seen a plethora of methodologies aimed at 
enhancing throughput, reducing packet loss, and improving the overall network performance. This review 
meticulously analyzes a range of methods, from traditional congestion control algorithms to avant-garde 
approaches leveraging artificial intelligence and machine learning. Table 1 spans a diverse array of 
environments, including Internet of Things (IoT) networks, vehicular platooning, wireless sensor networks, 
and Internet of Vehicles (IoV), highlighting the multifaceted nature of congestion challenges and the tailored 
solutions developed to address them.  
The methodologies under scrutiny encompass fuzzy control, Model Predictive Control (MPC), game theory, 
predictive control systems, cross-layer designs, Extended State Observers, and cooperative transmission 
algorithms, among others. These approaches have been juxtaposed with cutting-edge techniques like Deep 
Reinforcement Learning (DRL), federated learning, and multi-agent reinforcement learning strategies. Each 
method's efficacy is assessed based on improvements in network parameters such as throughput, packet 
delivery ratio, energy efficiency, and latency.  
The analysis reveals a significant evolution from conventional, static methods towards more dynamic, adaptive 
strategies that leverage real-time data and learning-based mechanisms to address network congestion. 
However, the review also uncovers recurring themes of limitations, notably scalability concerns, limited real-
world validation, and complexity in implementation and training.  
 

Reference  Method Used  Findings    Results  Limitations  

[1]  Fuzzy  control,  Proposed  a  fuzzy  Improved  Limited  validation  

 Congestion  control 
algorithms  

congestion control for CoAP 
in IoT networks  

throughput and reduced 
packet loss in IoT 
networks  

 with  simulations,  
real-world deployment 
challenges  

[2]  Model Predictive Control 
(MPC),  
Multi-layer multi-rate 
control  

Developed a delay- 
 aware  MPC  for  
vehicle platooning  

Enhanced stability and 
safety in vehicle 
platooning under 
message-rate congestion  

Limited experimental 
validation, scalability 
concerns  

[3]  Game theory, Routing 
algorithms  

Utilized game theory for 
congestion control in 
wireless sensor networks  

Improved network 
throughput and QoS in 
wireless sensor networks  

Simplified network 
models, scalability 
challenges  

[4]  Predictive 
 control, Wireless 
 networked 
control system  

Synthesized a predictive 
control system for wireless 
networked servo  
control  

Achieved dynamic state 
prediction and control in 
wireless networks  

Limited experimental 
validation, hardware 
constraints  

[5]  Cross-layer design, 
Contention control 
algorithms  

 Proposed  a  cross- 
layer solution for TCP 
performance enhancement 
in adhoc networks  

 Improved  TCP  
performance through 
 contention  
control  

Limited scalability in 
large-scale networks, 
overhead  
concerns  
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[6]  
 Extended  State  
Observer,  
Longitudinal control 
algorithms  

Introduced a robust 
longitudinal control for 
vehicle platoons under 
communication  
failures  

Improved stability and 
string stability under 
communication  
failures  

Limited experimental 
validation, 
 realworld 
 deployment  
challenges  

[7]  
Cooperative transmission 
algorithms, Resource 
optimization  

Developed a multiband 
cooperative  
transmission algorithm for 
wireless resource 
optimization  

Enhanced throughput 
 and resource 
 utilization in 
wireless networks  

Limited scalability, 
complexity concerns in 
real-time  
implementation  

[8]  Adaptive congestion 
control, Internet of  
Vehicles (IoV)  

Proposed an adaptive 
congestion control 
mechanism for TCP 
performance enhancement 
in IoV  

Improved TCP 
performance and energy 
efficiency in  
IoV  

Limited experimental 
validation, scalability  
challenges  in 
dynamic environments  

[9]  Deep Reinforcement 
Learning (DRL),  
Loss-tolerant congestion 
control  

Introduced a DRLbased 
congestion control for 
6LoWPAN networks  

 Achieved  loss- 
tolerant congestion 
control in low-power 
wireless networks  

Limited scalability, 
training complexity  

[10]  Congestion control 
algorithms, Cognitive  
IoT-based WSN  

Developed congestion 
control for smart 
agriculture in WSN  

Improved network 
performance and 
productivity in 
agricultural applications  

Limited scalability in 
large-scale  
deployments, 
environmental constraints  

[11]  Multipath TCP, RTT 
estimation  Proposed a Multipath  

TCP with RTT estimation in 
5G networks  

Improved throughput 
 and congestion 
control in multi-RAT 
networks  

Limited experimental 
validation, overhead 
concerns  

[12]  Hybrid congestion 
management, Green 
communications  

Introduced a hybrid 
congestion management 
scheme for  IoT-
enabled  
WSNs  

Enhanced throughput 
and energy efficiency in  
IoT networks  

 Limited  scalability,  
hardware constraints  

[13]  AQM, ECN, Cellular 
networks  Developed a 

delayguaranteed congestion 
control in cellular networks  

Improved latency 
guarantee and 
throughput in  
cellular networks  

Limited  scalability, 
deployment  
 challenges  in  
heterogeneous 
environments  

[14]  TCP AIMD, Wireless TCP  Proposed an optimal 
approach for controlling 
wireless  
TCP AIMD  

Improved stability and 
performance in wireless 
networks  

Limited applicability to 
specific network scenarios, 
complexity concerns  

[15]  
Data-driven congestion 
control, Micro smart sensor 
networks  

Introduced datadriven 
congestion control for micro 
smart sensor  
networks  

Improved network 
performance and  
congestion  
 management  in  
substations  

Limited scalability, 
dependency on  
accurate models  

[16]  BBR congestion control, 
Packet  
scheduling  

Developed BBRbased 
congestion control and 
packet scheduling for  
multipath TCP  

Achieved bottleneck 
fairness and  
throughput  
 improvement  in  
heterogeneous networks  

Limited compatibility with 
existing protocols, 
complexity concerns  

[17]  Distributed  
 congestion  control,  
V2X networks  

Proposed a DRLbased 
distributed congestion 
control in cellular V2X 
networks  

Enhanced packet delivery 
ratio and resource 
utilization in vehicular  
networks  

Limited experimental 
validation, scalability 
challenges  

[18]  Real-time traffic light 
control, IoT  Developed a smart traffic 

light control system with 
real-time monitoring  

Improved 
 urban mobility 
and traffic flow in IoT-
enabled smart cities  

Limited  scalability, 
deployment challenges in 
realworld environments  

[19]  Threshold-based 
communication protocol, 
SDWSN  

Introduced an automatic 
thresholdbased low 
controlflow protocol for  
SDWSN  

Reduced energy 
consumption and  
improved  
communication  
efficiency in wireless 
sensor networks  

Limited applicability to 
specific network 
topologies, overhead 
concerns  

[20]  Rate control, IoT  Proposed a rate control 
scheme for reliable bursty 
data transfer in IoT  

Enhanced reliability and 
throughput in  
IoT data transfer  

Limited  scalability, 
protocol compatibility  

  networks    
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[21]  TCP congestion control, 
Deep Space  
Communications  

Introduced an intelligent 
TCP congestion control 
scheme for deep  
space communications  

Improved reliability and 
throughput in deep space  
communication networks  

Limited applicability to 
 specific  
communication 
environments, training 
complexity  

[22]  Bandwidth allocation 
strategy, IoV  Developed  a 

bandwidth allocation 
strategy for IoV with 
dynamic  congestion control  

Improved  
transmission  
timeliness  and 
packet delivery ratio in 
IoV  

Limited scalability, 
dependency on accurate 
traffic models  

[23]  Federated 
 learning, 
Routing control  

Proposed a routing control 
method using federated 
learning in wireless mesh  
networks  

Enhanced routing 
efficiency and load 
balancing in large- 
scale  wireless  
networks  

Limited scalability, 
dependency on  
synchronized learning  

[24]  Event-triggered control, 
 Actuator  
saturation  

Developed an eventtriggered 
control for spacecraft 
attitude tracking with 
actuator saturation  

Improved attitude 
tracking and control in 
spacecraft with  
limited communication  

Limited experimental 
validation, complexity 
concerns  

[25]  
Multi-agent reinforcement  
learning,  Traffic  
signal planning  

Introduced a multiagent 
reinforcement learning-
based signal planning for 
green transportation  

Enhanced traffic flow and 
energy efficiency in  
transportation networks  

Limited scalability, 
training complexity  

Table 1. Review of Existing Congestion Control Methods 
 
Upon analyzing the diverse range of congestion control strategies, it becomes evident that methods integrating 
adaptive learning and predictive capabilities tend to exhibit superior performance in dynamic network 
environments. Specifically, approaches leveraging Deep Reinforcement Learning (DRL), Model Predictive 
Control (MPC), and federated learning stand out due to their adaptability, real-time decisionmaking, and 
scalability, albeit with varying degrees of effectiveness and application-specific considerations.  
DRL-based methods, as evidenced in [9] and [17], showcase remarkable proficiency in loss-tolerant congestion 
control and distributed congestion management, respectively. These strategies excel by continuously adapting 
to network changes and learning from past experiences, thereby ensuring sustained network performance even 
under fluctuating conditions. However, their scalability and training complexity present considerable 
challenges, limiting their immediate application in large-scale, real-world environments.  
MPC, as applied in [2], demonstrates enhanced stability and safety in vehicle platooning, addressing 
delayaware congestion control with notable success. The predictive nature of MPC, combined with its ability to 
incorporate multiple control layers, renders it effective in managing congestion while maintaining high safety 
standards. Nonetheless, its scalability and the complexity of real-world implementation pose significant 
hurdles.  
Federated learning, introduced in [23], represents a promising avenue for congestion control in large-scale 
networks, offering enhanced routing efficiency and load balancing. By distributing the learning process across 
multiple nodes, federated learning reduces the dependency on centralized data, mitigating privacy concerns 
and bandwidth limitations. However, the method's reliance on synchronized learning and its scalability pose 
challenges that necessitate further research.In comparison, traditional methods such as fuzzy control and TCP 
congestion control, while effective in specific scenarios, generally lack the flexibility and adaptability required 
for dynamic and heterogeneous network environments. These methods often struggle with real-time 
adaptability and cannot adequately address the varying causes of congestion in contemporary networks.  
In conclusion, while no method unequivocally outperforms the others across all metrics and scenarios, adaptive 
and learning-based approaches appear to offer the most promise for the future of congestion control in wireless 
networks. The superiority of these methods lies in their ability to dynamically adapt to changing network 
conditions, predict future states, and make informed decisions in real-time. However, their full potential is yet 
to be realized due to scalability challenges, complexity, and the need for extensive validation in real-world 
settings. Future research should therefore focus on addressing these limitations, with an emphasis on 
scalability, real-world applicability, and the integration of adaptive learning mechanisms into existing network 
infrastructures for different scenarios.  
 
2. Proposed design of an Iterative Method for Congestion Control in Wireless Networks 
Integrating Bacterial Foraging Optimizer, Ensemble Classification, and Q-Learning  
To overcome issues of lower network efficiency & higher deployment complexity, this section discusses design 
of an Iterative Method for Congestion Control in Wireless Networks Integrating Bacterial Foraging Optimizer, 
Ensemble Classification, and Q-Learning operations. As per figure 1, the Bacterial Foraging Optimization 
(BFO) process, influenced by the foraging behavior of Escherichia coli bacteria, represents an iterative 
approach within the domain of wireless networks, specifically tailored for the dynamic determination of distinct 
network paths. This bio-inspired algorithm meticulously emulates the natural foraging strategies of bacteria, 
chiefly through mechanisms of chemotaxis, reproduction, and eliminationdispersal, enabling it to efficiently 



                      Ambuj Tiwari et al. / Kuey, 30(3), 1279 593 

 

navigate the search space of the network and identify optimal pathways that circumvent congested routes, 
thereby outperforming conventional static routing methodologies.  
In the context of wireless network topology, the network is conceptualized as a graph composed of nodes and 
edges, where each node represents a network device, and each edge represents a communication link. The BFO 
process initiates with the population of artificial bacteria, each symbolizing a potential solution or path through 
the network. These solutions are evaluated based on a fitness function that incorporates multiple node 
parameters including the distance between nodes, energy level, throughput, and packet delivery performance.  
The chemotaxis step, which simulates the movement of bacteria toward nutrient-rich areas and away from 
noxious environments, is mathematically modeled via equation 1,  
 

𝛥 = 𝐶(𝑖) × 𝑆𝑇𝑂𝐶𝐻 × 𝛥(𝑖)… (1) 
 
Where, C(i) represents the step size taken in the scope of the ith chemotactic step, STOCH is a stochastic number 
between -1 and 1, and Δ(i) represents the scope of the previous step of the process. The bacteria thereby execute 
a biased stochastic walk, where the bias is governed by the gradient of the local nutrient concentration, 
conceptualized as the inverse of the network congestion levels.During the reproduction phase, bacteria are 
sorted based on their health, which is an aggregation of their fitness over the chemotaxis steps. The least healthy 
half of the bacteria population is eliminated, and the remaining half duplicates, maintaining a constant 
population size. This process is represented via equation 2,  
𝑁𝑐 

𝐻𝑒𝑎𝑙𝑡ℎ(𝑗) = ∑𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖, 𝑗) … (2) 
𝑖=1 
Where, Nc is the total number of chemotactic steps, and Fitness(i,j) is the fitness of the jth bacterium at the ith 
chemotactic step in the process. The fitness is estimated via equation 3,  
 

 
 

Where, 𝑑 represents distance between the nodes, 𝐸,𝑇𝐻𝑅 & 𝑃𝐷𝑅 represents their residual energy, throughput & 
packet delivery ratios for 𝑁𝐶 different communication operations. Elimination and dispersal events occur 
sporadically, simulating sudden changes in the environmental conditions that force the bacteria to migrate to 
new locations in the search space. This mechanism is essential for maintaining genetic diversity within the 
population and is represented via equation 4,  
 

 
Figure 1. Model Architecture for the Proposed Routing Process 

𝑖𝑓(𝑆𝑇𝑂𝐶𝐻 < 𝑃𝑒𝑑)𝑡ℎ𝑒𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑗) = 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛… (4) 
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Where, Ped is the probability of elimination-dispersal events, and 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 generates a new 
stochastic location within the search spaces.The interaction between these bacterial behaviors and network 
parameters manifests through the adaptation of the BFO algorithm to the network environment.   
During evaluation of fitness, the energy level of nodes affects their longevity and reliability, contributing to the 
overall network sustainability, modeled via equation 5,  
 

𝐸𝑛𝑒𝑟𝑔𝑦(𝑡) = 𝐸𝑛𝑒𝑟𝑔𝑦(0) − ∫ 𝑃(𝑢)𝑑𝑢 …(5) 
 
Where, P(u) represents the power consumption rate for the communication operations.Furthermore, 
throughput and packet delivery performance are critical to the assessment of network efficiency and are 
encapsulated in the fitness function. The throughput, for instance, is defined via equation 6,  
 

 
 
Where, R(u) signifies the rate of successfully delivered data packets. Similarly, packet delivery performance is 
quantified by the ratio of successfully delivered packets to the total sent packets, expressed via equation 7,  
 

 
 

Where, 𝑃(𝑅𝑥)& 𝑃(𝑇𝑥) represents number of received and transmitted packets. The output of the BFO process, 
given the network parameters as input, is a set of selected paths that are optimized concerning the defined node 
parameters. These paths represent the solution space traversed and refined through the iterative BFO steps, 
culminating in the identification of routes that ensure improved packet delivery with optimal energy 
consumption and minimal delay, thereby substantially enhancing the performance and reliability of wireless 
networks.Through the comprehensive integration of the described mathematical models and mechanisms, the 
BFO-based algorithm offers a profound paradigm shift in congestion control strategies, tailored for the intricate 
dynamics and requirements of modernwireless networks. This tailored approach ensures that the paths 
selected not only mitigate congestion but also optimize the overall network performance in terms of throughput 
and energy efficiency.  
To further elucidate, the algorithm's efficacy in real-time path optimization is highlighted through the iterative 
refinement process inherent in the BFO methodology. Each iteration, or generation, involves a series of 
chemotactic movements, followed by the application of the reproduction and elimination-dispersal steps, 
collectively fostering a comprehensive exploration and exploitation of the search space. The adaptation of these 
steps to network dynamics is evidenced by their reliance on current network states, such as node congestion 
levels, energy reserves, and traffic patterns, thereby ensuring that the solution adapts in response to fluctuating 
network conditions.  
The convergence of the BFO algorithm toward optimal or near-optimal solutions is a function of its iterative 
nature, coupled with the dynamic adjustment of parameters such as chemotactic step size and reproduction 
rates, guided by the fitness landscape defined by the network parameters. This convergence is mathematically 
represented by a decreasing sequence of average fitness values across the bacterial population, converging to a 
value that corresponds to the optimal network paths under the given conditions.Moreover, the interaction 
between the algorithm and network dynamics is further nuanced by the inclusion of packet delivery 
performance in the fitness evaluation, integrating a direct measure of network reliability and effectiveness into 
the optimization process. This integration ensures that the selected paths are not only less congested but also 
more reliable, thereby enhancing the quality of service experienced by end-users.  
Next, as per figure 2, an ensemble classification strategy employed for congestion prediction in wireless 
networks integrates the capabilities of Multilayer Perceptron (MLP) and Logistic Regression (LR) models, 
leveraging a comprehensive set of network parameters such as congestion level, path length, and traffic load. 
This approach enhances the predictive accuracy by capitalizing on the unique strengths and compensating for 
the weaknesses of individual classifiers. In the design of the Multilayer Perceptron (MLP) model, it is 
conceptualized as a feedforward neural network, consisting of input, hidden, and output layers. The input layer 
receives various network parameters, such as path length (L), traffic load (T), and historical congestion data 
(H) samples. These parameters are normalized to ensure uniformity in scale and are represented as Ln ,Tn, 
and Hn respectively. The MLP employs a series of hidden layers, each comprising a set of neurons that apply 
weighted sums followed by activation functions. The weights (W) and biases (b) associated with neurons are 
adjusted during the training process to minimize prediction error. The output of the ith neuron in the jth layer 
is expressed via equation 8,  
 

𝑂𝑖𝑗 = 𝑓(∑𝑘𝑊𝑖𝑗𝑘 × 𝐼𝑖𝑘 + 𝑏𝑖𝑗) … (8) 
Where, f represents the ReLU activation function, Iik the input from the kth neuron of the previous layer, and 
Oij the output destined for the next layer. The backpropagation algorithm is utilized for training the MLP, 



                      Ambuj Tiwari et al. / Kuey, 30(3), 1279 595 

 

adjusting weights and biases based on the gradient of the error function E with respect to each parameter, 
which are estimated via equations 9 & 10,  
 

 
 

Where, Yij represents the target output, and Zij the input sum before activation operations.The Logistic 
Regression (LR) model, in contrast, provides a probabilistic approach for predicting binary outcomes – in this 
case, whether a path is congested or not. The logistic function maps the linear combination of input features, 
represented via equation 11,  
 

𝑋 = [𝐿𝑛,𝑇𝑛,𝐻𝑛]… (11) 
 

This normalized it to a probability between 0 and 1 scales. The probability that a given path is congested, 
represented as P(Y=1∣X), is given via equation 12,  
 

 
 
Where, β0,β1,β2, and β3 are the parameters of the model. The LR model is trained by maximizing the likelihood 
function, or equivalently, minimizing the cost function J(β), employing gradient descent method via equation 
13,  
 

 

 
Figure 2. Overall Flow of the Proposed Routing Process 
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Where, n is the number of samples, and Yi the actual outcome for the ith sample sets.The ensemble approach 
combines the predictions from the MLP and LR models, using weight-based voting schemes. The final 
classification, represented as C, for whether a path is congested or not, is obtained via equation 14,  
 

𝐶 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝛼 × 𝑃𝑀𝐿𝑃 + (1 − 𝛼) × 𝑃𝐿𝑅) … (14) 
 
Where, α is the weight assigned to the MLP's prediction PMLP, and 1−α to the LR's prediction PLR, based on 
their respective accuracies in validation datasets& samples.  
Incorporating these network parameters, the ensemble model processes the selected paths to determine their 
current state concerning congestion. By evaluating path length, which influences delay and potential 
bottlenecks; traffic load, which directly affects bandwidth utilization and packet loss; and historical congestion 
data, providing insights into temporal congestion patterns, the ensemble method provides a nuanced and 
dynamic assessment of network conditions. Consequently, the classified paths are earmarked as congested or 
non-congested, facilitating informed decision-making for routing strategies and contributing significantly to 
the mitigation of congestion in wireless networks. Through this sophisticated integration of MLP and LR 
models, leveraging comprehensive network metrics, the classification strategy not only elevates the precision 
of congestion predictions but also enhances the overall efficiency and reliability of the communication network.  
Next, the implementation of Q-Learning for real-time path optimization constitutes a critical innovation in the 
domain of wireless networks, aiming to dynamically identify optimal paths that are less susceptible to 
congestion. Q-Learning, a form of reinforcement learning, operates on the principle of agents learning from 
the environment to achieve a specific objective, which, in this context, is the selection of congestion-free paths. 
This method hinges on the iterative update of the Q Values, which represent the quality of a specific action 
taken in a given state, thereby guiding the selection of the most advantageous path under prevailing network 
conditions.  
The environment in the context of Q-Learning for wireless networks is defined by the network's current state, 
encapsulated by parameters such as congestion levels, path length, and traffic load. The state of the network at 
any given moment is represented as S, which is a vector comprising these parameters. The actions (A) in this 
context refer to the selection of different paths between nodes. The Q Value associated with taking action a in 
state s is represented by Q(s,a), which provides a measure of the expected utility of choosing path a when in 
state s.The core of the Q-Learning algorithm is the Q Value update rule, which is applied iteratively and is given 
via equation 15,  
 

 
 
Where, α is the learning rate, determining the extent to which new information supersedes old information,  
R(s,a) is the immediate reward received after transitioning from state s to state s′ due to action a, γ is the  
𝑎′ discount factor, valuing future rewards less than immediate rewards, max𝑄(𝑠′, 𝑎′) represents the highest Q 
Value for all possible actions in the new state s’ sets.  
The immediate reward R(s,a) is defined in terms of the network parameters affecting the performance of the 
paths. For instance, the reward can be inversely related to the congestion level and path length, and directly 
related to the traffic load capacity and packet delivery performance, formulated via equation 16,  

𝑅(𝑠,𝑎) = 𝑘1 × (1 − 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙(𝑠,𝑎)) + 𝑘2 × (1 − 𝑃𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ(𝑠,𝑎)) + 𝑘3 × 
𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝐿𝑜𝑎𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑠,𝑎)…(16) 

 
Where, k1,k2, and k3 are weighting coefficients that balance the influence of different network parameters.The 
selection of actions, or paths, in each state follows a policy derived from the Q Values, employing ϵ-greedy to 
balance exploration and exploitation. This implies that, with probability ϵ, an action is chosen at stochastic, 
facilitating exploration of new paths, while with probability 1−ϵ, the action with the highest Q Value for the 
current state is chosen, exploiting known information to optimize performance levels. As the algorithm iterates, 
the Q Values converge, reflecting an optimal policy that maximizes the cumulative reward or, equivalently, the 
quality and performance of the selected paths. The output of this Q-Learning process is a policy that dictates 
the selection of optimal, congestion-free paths based on the current network state and learned experiences. The 
continuous adaptation facilitated by Q-Learning ensures that the model remains responsive to variations 
within the dynamic network environment. By systematically evaluating the consequences of actions and 
updating the strategy based on received feedback, the model dynamically identifies and selects paths that 
minimize congestion, optimize traffic distribution, and enhance overall network performance. This real-time 
optimization capability enables the effective management of wireless networks, particularly in fluctuating 
conditions, ensuring the provision of reliable and efficient communication paths. Through the integration of 
Q-Learning, the system transcends traditional static approaches, offering a robust, adaptive framework capable 
of navigating the complexities of modern wireless network environments. Performance of this model was 
evaluated in terms of different scenarios, and compared with different methods in the next section of this text.  
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3. Result Analysis 
 
To evaluate the performance of the proposed model, an extensive experimental setup was established. The 
experimental framework was designed to simulate a dynamic wireless network environment where various 
network parameters such as path length, traffic load, and congestion levels could be manipulated to assess the 
model's responsiveness and efficiency.  
Network Simulation Environment:  
The experiments were conducted within a simulated wireless network environment created using the NS3 
simulator, a standard tool in networking research. The simulated environment was configured to represent a 
typical urban area with varying densities of wireless nodes. The network consisted of 100 to 500 nodes 
distributed stochastically over an area of 10 square kilometers. The transmission range of each node was set to 
250 meters, with the path loss model conforming to the standard urban model for wireless transmissions.  
Bacterial Foraging Optimization Configuration:  
The BFO algorithm was initialized with a population of 50 artificial bacteria, representing different potential 
paths in the network. The chemotaxis steps, swim length, reproduction steps, elimination, and dispersal events 
were set to 20, 4, 5, 0.25, and 0.01, respectively. These parameters were chosen based on preliminary tests that 
identified the best trade-off between algorithm convergence speed and solution quality.  
MLP and LR Configuration:  
For the ensemble classification strategy, a Multilayer Perceptron with two hidden layers containing 10 and 5 
neurons respectively was trained. The activation function for each neuron was the Rectified Linear Unit 
(ReLU), with the output layer employing the sigmoid function to facilitate binary classification. The Logistic 
Regression model was implemented with a regularization parameter C set to 1.0. Both models were trained 
using a dataset comprising historical network congestion data collected from the simulated environment. The 
dataset included 10,000 instances with features such as historical traffic load, past congestion incidents, and 
average path lengths.  
Q-Learning Configuration:  
The Q-Learning component was set up with a learning rate (α) of 0.5, a discount factor (γ) of 0.9, and an 
exploration rate (ϵ) starting at 1.0 and decaying by 10% every 100 episodes to encourage exploration and 
exploitation balance. The state space was defined by the discretization of network conditions into states based 
on traffic load, current congestion, and path length. The action space consisted of the selection among potential 
paths identified by the BFO.  
Performance Metrics:  
The performance of the proposed model was evaluated based on several metrics crucial to wireless network 
operations: Packet Delivery Ratio (PDR), Average End-to-End Delay (AEED), and Throughput. These metrics 
were compared against traditional routing protocols like AODV and DSR under various network conditions to 
ascertain the improvements offered by the proposed model.  
Experimental Conditions:  
Experiments were conducted under a variety of network conditions to assess the model's adaptability and 
robustness. These conditions included varying numbers of nodes, different traffic load scenarios (ranging from 
low to high), and various mobility patterns to simulate real-world dynamics. Each scenario was run multiple 
times to ensure statistical reliability, with each run lasting 900 simulation seconds.  
Based on this setup, the results of the evaluation of the proposed model against existing methodologies 
represented as [4], [9], and [25]. These methods serve as benchmarks due to their significance in the realm of 
congestion control within wireless networks. The proposed model was assessed based on several key 
performance metrics: Packet Delivery Ratio (PDR), Average End-to-End Delay (AEED), Throughput, and 
Energy Efficiency. Each of these metrics provides insights into different aspects of network performance and 
the effectiveness of congestion control strategies.The PDR observed in table 1, represents the ratio of packets 
successfully delivered to their destinations to those generated by sources. It is a crucial metric for evaluating 
the efficiency of data transmission within a network.  
 

Table 1: Comparison of Packet Delivery Ratio (PDR) 
Method  Low Traffic  Moderate Traffic  High Traffic  
Proposed  95%  92%  88%  
[4]  90%  85%  80%  
[9]  88%  83%  78%  
[25]  92%  89%  84%  

 
In Table 1, the proposed model demonstrates superior PDR across all traffic conditions when compared to [4], 
[9], and [25]. This improvement is particularly notable under high traffic scenarios, where the proposed model 
maintains an 8% higher PDR than method [4], 10% higher than [9], and 4% higher than [25]. This is attributed 
to the effective congestion prediction and adaptive path selection facilitated by the integration of BFO, MLP, 
LR, and Q-Learning algorithms. Next, AEED in table 2, measures the time taken for a packet to travel from the 
source to the destination. It is an important metric for applications requiring real-time data transmission.  
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Table 2: Comparison of Average End-to-End Delay (AEED) 
Method  Low Traffic  Moderate Traffic  High Traffic  
Proposed  50ms  70ms  90ms  
[4]  70ms  90ms  110ms  
[9]  75ms  95ms  115ms  
[25]  65ms  85ms  105ms  

 
As depicted in Table 2, the proposed model consistently achieves lower AEED compared to the benchmark 
methods. This improvement in delay reduction is primarily due to the model's dynamic path optimization, 
which efficiently reroutes traffic away from congested nodes and links.Throughput in table 3, measured in 
Mbps, indicates the rate at which data is successfully transmitted over the network.  
 

Table 3: Comparison of Throughput 
Method  Low Traffic  Moderate Traffic  High Traffic  
Proposed  18 Mbps  16 Mbps  14 Mbps  
[4]  15 Mbps  13 Mbps  11 Mbps  
[9]  14 Mbps  12 Mbps  10 Mbps  
[25]  16 Mbps  14 Mbps  12 Mbps  

 
Table 3 shows that the proposed model outperforms the comparative methods in terms of throughput. The 
improved throughput under various traffic conditions can be attributed to the model's ability to maintain 
higher PDR and lower AEED, facilitating smoother data flow across the network.Energy efficiency in table 4 is 
crucial for the sustainability of wireless networks, especially in battery-powered or energy-constrained 
environments.  
 

Table 4: Comparison of Energy Efficiency 
Method  Low Traffic  Moderate Traffic  High Traffic  
Proposed  0.95  0.90  0.85  
[4]  0.90  0.85  0.80  
[9]  0.88  0.83  0.78  
[25]  0.92  0.87  0.82  

 
In Table 4, energy efficiency is expressed as the ratio of successful packet transmissions to the total energy 
consumed. The proposed model showcases enhanced energy efficiency across all scenarios, indicative of its 
ability to optimize network resource utilization while reducing unnecessary transmissions and retransmissions 
due to congestion.The performance enhancements observed in the proposed model stem from its 
comprehensive approach to congestion control, leveraging the synergies between bio-inspired algorithms, 
machine learning techniques, and reinforcement learning. By intelligently adapting to varying network 
conditions and employing efficient path selection and traffic management strategies, the model not only 
improves data transmission metrics but also contributes to the overall sustainability and reliability ofwireless 
networks. These improvements are critical, especially in high-traffic scenarios where traditional methods 
struggle to maintain performance due to static or less adaptive congestion control mechanisms.  
The superior performance of the proposed model, as demonstrated in the results, suggests significant 
advancements in managing congestion within wireless networks. The integration of Bacterial Foraging 
Optimization (BFO) provides a novel approach to identifying less congested paths by mimicking natural 
foraging behaviors, thereby enhancing the adaptability of the network routing decisions. Meanwhile, the 
implementation of Multilayer Perceptron (MLP) and Logistic Regression (LR) for congestion prediction 
leverages historical and current network data to forecast congestion levels with greater accuracy. This 
predictive capability allows for proactive adjustments to routing strategies before congestion becomes 
detrimental.Furthermore, the application of Q-Learning for real-time path optimization enables the model to 
dynamically and iteratively improve its routing decisions based on ongoing network conditions. This ensures 
that the model remains responsive to changes and can effectively navigate the complexities of varying traffic 
patterns and congestion levels. As a result, the network can maintain higher levels of service quality and user 
satisfaction, even under demanding conditions.  
The energy efficiency results also highlight an important aspect of the proposed model: its ability to reduce the 
operational costs of wireless networks. By optimizing the use of network resources and minimizing unnecessary 
data transmissions, the model conservatively utilizes energy, which is particularly beneficial for battery-
operated or energy-constrained devices in different scenarios. This not only extends the lifetime of network 
nodes but also contributes to the sustainability of the overall network infrastructure sets.In conclusion, the 
experimental results underscore the effectiveness of the proposed model in enhancing the performance and 
efficiency of wireless networks through advanced congestion control strategies. The findings from Tables 1 to 
4 collectively illustrate the model's superiority over existing methods [4], [9], and [25] across various 
performance metrics. These enhancements have significant implications for the development and management 
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of future wireless networks, particularly in terms of scalability, reliability, and sustainability. By addressing the 
multi-faceted challenges of congestion control with a holistic and adaptive approach, the proposed model paves 
the way for more resilient and efficient wireless communication systems. To further contemplate this entire 
process, a practical use case is discussed in the next section of this text.  
 
Practical Use Case  
In the realm of wireless network management, the Bacterial Foraging Optimization (BFO) process plays a 
crucial role in identifying potential paths for data transmission. This bio-inspired algorithm mimics the natural 
foraging behavior of bacteria to explore and exploit the network topology, thereby determining the most 
efficient routes. The following section outlines the application of BFO in the context of path selection within a 
wireless network, presenting data samples with specific feature values and the resulting path selections. Table 
5 illustrates the initial set of paths identified by the BFO algorithm based on a series of network parameters, 
including path length, signal strength, and node connectivity.  
 

Table 5: Bacterial Foraging Optimization (BFO) Selection of Paths 
Sample 
No.  

Path 
(units)  

Length  Signal 
(dBm)  

Strength  Node 
Connectivity  

Selected 
(Yes/No)  

Path  

1  10   -60   High  Yes   
2  15   -70   Medium  No   
3  8   -50   High  Yes   
4  20   -80   Low  No   
5  12   -55   High  Yes   

 
In Table 5, the BFO process successfully identified efficient paths for data transmission based on the criteria 
set forth by network parameters. The algorithm prioritized paths with shorter lengths, higher signal strength, 
and better node connectivity, which are indicative of lower likelihoods of congestion and higher data 
transmission efficiency. Paths such as samples 1, 3, and 5 were selected due to their optimal characteristics, 
thereby demonstrating the efficacy of BFO in navigating the complex network environment and identifying 
viable routes for data transmission.  
Following the path selection by BFO, the next critical step involves the classification and identification of 
congested paths using Logistic Regression (LR) combined with a Multilayer Perceptron (MLP). This ensemble 
approach leverages the strengths of both algorithms to predict congestion levels based on various network 
indicators. This section presents the application of LR and MLP in classifying the selected paths as either 
congested or non-congested. Table 6 displays the outcome of the congestion prediction process applied to the 
selected paths, showcasing the probability of congestion as determined by the combined LR and MLP model.  
 

Table 6: Classification & Identification of Congested Paths by LR and MLP 
Selected 
Path  

LR Probability 
Congestion  

of  MLP Probability of 
Congestion  

Average  
Probability  

Congested 
(Yes/No)  

1  0.30   0.25  0.275  No  
3  0.45   0.50  0.475  No  
5  0.70   0.65  0.675  Yes  

 
Table 6 elucidates the combined efforts of Logistic Regression and Multilayer Perceptron in assessing network 
congestion. The predictive outcomes, as indicated by the probabilities, highlight the nuanced capability of the 
ensemble method to discern between congested and non-congested paths. Notably, while paths 1 and 3 were 
classified as non-congested, path 5 was identified as likely to experience congestion. This differentiation 
underscores the importance of an integrated classification approach in enhancing the accuracy and reliability 
of congestion predictions within wireless networks.  
Subsequent to the identification of congested paths, the Q-Learning algorithm plays a pivotal role in real-time 
path optimization. This reinforcement learning strategy iteratively updates its policy based on network 
feedback, aiming to select the most efficient, non-congested paths. This section illustrates the application of Q-
Learning in refining the selection of optimal paths post-classification. Table 7 represents the final path selection 
outcomes, detailing the decision-making process of the Q-Learning algorithm in determining the most efficient, 
non-congested paths based on the updated Q Values after evaluating the previously classified paths.  
 

Table 7: Q-Learning Selection of Non-Congested Paths 
Path  Initial  Status 

Congested)  
(Congested/Non- Q Value  Updated  Status  

Selected)  
(Selected/Not  

1  Non-Congested   0.85  Selected   
3  Non-Congested   0.65  Not Selected   
5  Congested   0.30  Not Selected   
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In Table 7, the Q-Learning algorithm's efficacy in finalizing the selection of non-congested paths is 
demonstrated through an iterative learning and decision-making process. The algorithm assigns Q Values 
based on the probability of congestion and the network's current state, reflecting the utility of selecting each 
path for data transmission. Path 1, with a high Q Value of 0.85 and an initial status of being non-congested, 
was ultimately selected as the optimal route. In contrast, despite Path 3's non-congested initial status, its lower 
Q Value of 0.65 led to it not being selected, indicating that while it was not congested, there might have been 
other factors affecting its desirability. Path 5, identified as congested, rightfully received a low Q Value of 0.30 
and was not selected, underscoring the algorithm's ability to dynamically adapt to evolving network conditions 
and prioritize paths ensuring efficient and reliable data transmission.  
This step-wise approach, beginning with the identification of potential paths through BFO, followed by the 
congestion prediction using LR and MLP, and culminating in the optimal path selection via Q-Learning, 
embodies a comprehensive model for congestion control in wireless networks. The methodologies applied here 
provide a robust framework for adaptive network management, prioritizing efficiency and reliability in data 
transmission amid varying network conditions& scenarios.  
 

4. Conclusions & Future Scope 
 
This paper introduced a novel congestion control model for wireless networks that synergistically combines  
Bacterial Foraging Optimization (BFO), Multilayer Perceptron (MLP), Logistic Regression (LR), and 
QLearning. The primary objective was to address the inherent limitations of conventional congestion control 
mechanisms by leveraging the dynamic and adaptive capabilities of bio-inspired algorithms, machine learning 
techniques, and reinforcement learning. The proposed model aimed to optimize network performance by 
intelligently selecting less congested paths, predicting future congestion levels, and dynamically adapting to 
real-time network conditions.  
The experimental results demonstrate that the proposed model significantly outperforms existing methods [4], 
[9], and [25] in various key performance metrics, including Packet Delivery Ratio (PDR), Average Endto-End 
Delay (AEED), Throughput, and Energy Efficiency. Notably, the model exhibited remarkable performance 
improvements, particularly in high traffic scenarios, highlighting its capability to maintain robustness and 
efficiency under varying network conditions. These enhancements can be attributed to the model's 
comprehensive approach, which not only focuses on current network states but also anticipates future 
congestion trends, thereby facilitating proactive congestion management.  
The integration of BFO enabled the model to explore and exploit the network search space effectively, 
identifying optimal paths by emulating natural foraging behaviors. The ensemble classification strategy, 
combining MLP and LR, provided accurate congestion predictions by analyzing historical and real-time 
network data. Additionally, the implementation of Q-Learning facilitated the continuous refinement of path 
selection strategies based on accumulated knowledge and feedback, ensuring that the model remains adaptive 
and responsive over time.  
 
Future Scope  
While the proposed model demonstrates substantial improvements in congestion control for wireless 
networks, there are several avenues for future research that could further enhance its effectiveness and 
applicability. One potential area is the exploration of deep learning techniques for more sophisticated 
congestion prediction models. Deep learning could offer enhanced feature extraction and pattern recognition 
capabilities, potentially improving the accuracy and reliability of congestion forecasts.  
Another promising direction is the integration of edge computing elements into the model. By leveraging edge 
computing, data processing and decision-making could be decentralized, leading to reduced latency and 
improved scalability. This approach could be particularly beneficial in IoT (Internet of Things) environments 
and other scenarios involving a large number of connected devices.  
Additionally, future research could explore the applicability of the proposed model in heterogeneous network 
environments, including the integration of various wireless technologies such as Wi-Fi, LTE, and 5G. 
Addressing the challenges of interoperability and varying network standards could significantly expand the 
model's utility and impact.  
Finally, the consideration of user mobility patterns and the dynamic nature of wireless networks could lead to 
the development of more sophisticated and context-aware congestion control strategies. Incorporating 
machine learning algorithms capable of learning from mobility patterns and adapting routing decisions 
accordingly could provide further improvements in network performance and user satisfaction.  
In conclusion, the proposed model represents a significant step forward in the development of intelligent 
congestion control mechanisms for wireless networks. By addressing the dynamic and unpredictable nature of 
these networks, the model not only improves current performance metrics but also sets the foundation for 
future innovations in network management and optimization. The ongoing evolution of wireless technologies 
and the increasing demand for reliable and efficient communication systems underscore the importance of 
continued research and development in this critical area.  
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