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ARTICLE INFO ABSTRACT 
 Metal powder can be used in additive manufacturing, especially with methods such as 

Selective Laser Melting (SLM), to create intricate metallic components. Optimising 
process parameters, sometimes referred to as cycle limits, such as laser power, speed, 
hatching distance, and layer thickness, is crucial to producing high-quality produced 
products. A lot of the final parts' mechanical qualities come from changing these 
parameters. An Artificial Neural Network (ANN) model that makes use of the 
Levenberg-Marquardt learning method has been used to tackle this optimization 
challenge. The tangent sigmoid function, which is easily implemented using MATLAB, is 
used as the activation function in the training and testing phases of the ANN. The 
primary material utilised in this experiment is powdered aluminum metal. The 
conventional mechanical attributes have been replaced with output metrics including 
Volumetric Energy Density (VED), Surface Energy Density (SED), and Linear Energy 
Density (LED). A structural integrity and functional assessment is eventually impacted 
by these factors, which shed light on energy distribution and fusion characteristics 
during the SLM process. Measuring the difference between expected and actual 
outcomes, the Mean Square Error (MSE), must be minimized by optimizing cycle 
boundaries. Further evaluating the prediction accuracy of the ANN model is the 
correlation coefficient (R²). This work intends to push quality and control in aluminum 
additive manufacturing forward more quickly with SLM. In conjunction with 
ANN-based modelling, this is accomplished by deliberately altering cycle boundaries 
based on LED, SED, and VED properties. Researchers hope to improve outcomes in 
aluminum additive manufacturing by better understanding and controlling the SLM 
process through the integration of various technologies. 
 
Keywords: Additive manufacturing, Aluminum Metal powder, Artificial Neural 
Network, and Levenberg-Marquardt Algorithm. 

 
1.INTRODUCTION 

 
After moving beyond its roots in rapid prototyping, additive manufacturing (AM) has become a significant 
participant in the manufacturing sector during the past ten years. The process of producing products layer by 
layer from 3D model data is known as additive manufacturing (AM), and it represents a creative break from 
conventional subtractive manufacturing techniques (ASTM - F2792). [1][2][3]. 
 
Due to its multiple potential benefits, this technology has attracted considerable attention from a variety of 
industries, including aviation, biomedicine, and the automotive. These advantages include more adaptability 
to a range of materials, faster product development, less material waste, lighter components, and enhanced 
design freedom. [4][5][6][7]. Selective Laser Melting (SLM) stands out among the variety of AM techniques as 
the best technology for creating delicate metallic parts by totally melting metal powder, a feat unfeasible by 
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traditional subtractive procedures. [8][9][10][11]. 
It is commonly acknowledged that certain process variables, including laser power, scan speed, layer height 
and hatch spacing, have a significant impact on the ultimate quality and robustness of made products. The 
final product's overall quality and durability can be greatly improved by achieving the ideal combination of 
these factors [12][13]. With laser power indicating the amount of energy transferred per second and scan speed 
dictating the amount of time spent on a single location, the interaction between scan speed and laser power has 
significant significance. The relationship between these numbers determines how much energy is applied there 
[14]. 
 
Another crucial element, hatch spacing, affects how the laser beam's energy is distributed. While decreasing 
hatch spacing results in track overlap and potential problems with neighboring laser tracks, increasing hatch 
spacing focuses less energy toward the outer zone of the laser beam track. To maximize output while ensuring 
optimum powder melting, the right hatch spacing must be chosen [15]. The resolution of a part is substantially 
impacted by layer height. For high-resolution printing and to avoid structural flaws, the proper balance must 
be struck between maximizing height and maintaining layer adhesion [16]. The quality of the finished product 
is significantly influenced by these particular parameter values. As a result, improving the strength and overall 
quality of the finished product still depends on finding the perfect balance between these process boundaries 
[17][18]. 
 
Numerous forecasting methods and models have been developed in the field of additive manufacturing to 
choose the best parameter combinations. Artificial Neural Network (ANN) models have been popular among 
these strategies as prediction tools for enhancing cycle boundaries across various materials and manufacturing 
processes. When dealing with dynamic input cycle boundaries, ANN models excel in predicting parameter 
connections [19][20][21]. Researchers have investigated the impact of SLM cycle borders on microstructure 
and thermomechanical reactions in parts manufactured using AM, such as Saedi et al. These studies 
emphasize how important it is to carefully choose cycle boundaries to provide different features and behaviors 
in the manufactured components [22]. Additionally, employing a similar modeling strategy, Mehrpouya et al. 
employed ANN models to determine the ideal laser settings for NiTi components, finding a good correlation 
between the input parameters and projected values [23]. 
 
1.1. Parameters for input 
When executing an SLM procedure, a number of parameters need to be adjusted. These elements are critical 
and have the ability to significantly alter the quality of the result. A thorough understanding of these process 
features is necessary for both energy optimization and effective model training. Four important parameters are 
selected as the inputs for our model. A more thorough explanation of these parameters may be found below: 
Layer thickness, hatching distance, laser power, and scan speed [25]. 
 
Laser Power: The energy absorbed during powder melting is determined by laser power, which makes it 
essential. Uneven melting of the powder due to improper calibration or overly high power can cause defects 
and porosity. On the other hand, overpowering could prevent heat from dissipating and result in over burning. 
Generally speaking, SLM apparatus uses 200–1,000 W power lasers. 
 
Scan Speed: During SLM sintering, scan speed is crucial. Quicker scan rates reduce the size of the molten 
pools, changing their flow and the quality of the finished product. On the other hand, dropping too fast could 
cause droplets to splash and result in microstructural abnormalities. To get a uniform, cemented structure, the 
right scan speed must be used. 
Hatch Distance: Hatch Distance impacts density and surface quality in SLM fabrication. It's the distance a 
laser route takes. Scan times are accelerated by a greater distance, but thicker layers require modification. A 
range of 0.05 to 0.25 mm is excellent. 
Layer Thickness: Layer Thickness in additive manufacturing controls surface polish and product quality. 
While thicker layers speed up printing but may lose detail, thinner layers provide smoothness and detail but 
may slow down printing. Application, material, and machine capabilities all influence the decision, which 
usually ranges from 0.02 to 0.1 mm. 
B = h • t • v                                          (1) 
 
1.2. Output Parameters : 
When developing a construction task, a number of parameters are set at the job's inception and added to the 
program's parameter set. Prior to integrating the previously given parameters, critical parameters need to be 
computed [26]. 
Linear Energy Density (LED): 
For evaluating the energy input into the powder bed, LED is essential. It is represented in J/mm and is 
computed by dividing the power by the scanning speed. 
LED  =  P/V                                           (2) 
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Surface Energy Density (SED): 
Secondly, hatching distance divided by LED yields SED, which is another crucial element. It represents the 
energy that the laser beam applies to the surface and is given in J/mm2. 
SED  = P/V*H                                      (3) 
Volume Energy Density (VED): 
An essential component of a successful construction job design is VED, which is the power that the laser beam 
delivers to the working volume. It is calculated by dividing SED by the layer height, which needs to be 
determined in advance, and is represented in J/mm3 

VED = P/V*H*T                              (4) 

 
2.  Artificial Neural Networks Methodology (ANN) 

 
Recent years have seen a substantial increase in the study of artificial intelligence (AI), which has found use in 
several fields, including computing, engineering, statistics, and the physical and mathematical sciences. In this 
AI world, artificial neural networks (ANNs), which can learn and adapt to their surroundings, have become 
potent tools. They are exceptional at solving pattern recognition, data categorization, and application-specific 
problems that are frequently challenging to solve using traditional methods [24][25][26]. In this study, the 
Multi-Layer Perception (MLP) neural network model and techniques, most notably the feed-forward back 
propagation algorithm, are used in conjunction with the MATLAB toolset. These resources are used to develop 
precise predictive models. The toolkit makes use of core elements like activation functions and different 
learning techniques, which may be tailored to the user's needs to ensure that the model is properly analyzed 
and the code is performed with the fewest restrictions possible. 
The input layer,hidden layer and output layer are the three layers that makeup the MLP neural network 
architecture. The input received and the weights given to connections between input items and hidden neurons 
determine each hidden neuron's function. All hidden neurons must be active for these weights to be computed, 
therefore changing them will change how the hidden layer is represented. The network's connections between 
neurons are crucial in determining how well the system works. 
The MLP model is similar to gradient descent (GD) training functions with adaptive learning rates in function 
estimation since it frequently incorporates the back-propagation (BP) algorithm. These methods incrementally 
change the weight and bias settings to reduce the discrepancy between the network's predictions and the actual 
results. An input layer, a hidden layer with a predetermined number of hidden neurons (in this instance 10,) 
and an output layer normally make up a network architecture. Cycle boundaries, which in this case include 
variables like laser power, scan speed, layer height, and hatch spacing, make up the input layer. Figure 1's 
illustration of the ANN modeling method shows how these parameters are utilized to estimate the ultimate 
tensile strength, which is used as the output layer. 
 

Table 1: Experimental Observations 
R A B C D R1 R2 R3 

1 325 1100 0.25 0.03 0.29 14.77 39.39 

2 295 1300 0.12 0.06 0.22 3.8 30.05 

3 317 1000 0.25 0.04 0.31 7.93 32.01 

4 370 900 0.17 0.04 0.41 10.28 79.05 

5 370 1300 0.25 0.02 0.28 14.23 57.22 

6 370 955 0.15 0.02 0.38 19.37 129.4 

7 370 1270 0.15 0.05 0.29 5.83 31 

8 314 900 0.19 0.06 0.34 5.81 30.89 

9 295 1100 0.12 0.03 0.26 8.94 71.55 

10 310 1270 0.25 0.05 0.24 4.88 16.7 

11 325 1250 0.25 0.04 0.26 6.5 25.74 

12 325 1300 0.15 0.03 0.25 8.33 56.05 

13 370 1235 0.1 0.04 0.3 7.49 74.68 

14 370 1300 0.25 0.02 0.28 14.2 56.02 

15 370 1270 0.15 0.03 0.29 7.3 49.61 

 
2.1. MLP Neural Network Model 
The MLP neural network has three layers’ inputs, hidden, and output. Hidden neurons' behavior is shaped by 
received data and connection weights. The energy density between input and hidden components is 
established when all hidden products are active. The hidden layer's behavior can be modified by adjusting the 
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energy density between the input and hidden components. The effectiveness of the network is significantly 
influenced by how the neurons are connected. The MLP model often trains using the back-propagation aa(BP) 
method and uses gradient descent (GD) as a training function [26]. By modifying the data and bias values, this 
procedure seeks to reduce the discrepancy between the network's predictions and the original results. The 
network design consists of an input layer representing cycle boundaries (laser intensity, scanning rate, layer 
thicknesses, and inter-hatch distance) and an output layer representing LED, SED, and VED. Complex pattern 
recognition and feature extraction are facilitated by a hidden layer with 10 neurons between these layers. 
Neurons in each layer must be connected and communicate with one another for information to circulate and 
be processed in the network. As was indicated Previously, neurons in each layer would take weighted inputs 
from the layer below and pass them on to the layer above, outputs are the weighted input signal sum, and the 
nonlinearity and complexity in the equation transmit that sum in Equation 6. Equation 7 was used to calculate 
the network error in MSE. Considering the relationship between the expected and actual results. In most cases, 
the preparation cycle continues, but this inaccuracy still achieves an acceptable result. 
 
 

                                  (5) 

                                  (6) 

2                                (7) 

2]                            (8) 

                                                          (9) 

where the is neuron’s response, f( ) represents the activation function, is  weighted input sum.,  

represents the input neurons ,  is the weight of coefficient, represents bias, MSE represents the mean 

square error between predicted and actual results, and is actual value Sigmoid function is for 

testing/training. The correlation coefficient is expressed as E(Y) [26].Usually, we use equations 5,6,7,8 to 
calculate predicted values for inputs and output parameters. However, we can simplify the process by using the 
MATLAB toolkit. 
 

3. Results and Discussions: 
 
3.1 Predictive Modeling and Results for Additive Manufacturing Part Quality: 
The cycle limits used in this study, such as layer power, scanning speed, hatching distance, and layer thickness, 
are input data. 15 datasets are randomly selected for modeling and split into 70% training, 15% validation, and 
15% testing phases. The Levenberg-Marquardt algorithm is employed for model training and testing. The 
model is intended to predict optimal constraints for additive manufacturing patterns while focusing on 
achieving desired results. 
This approach requires more memory but runs faster. When generalization stops developing, training comes to 
an end as evidenced by an increase in the validation samples' mean square error. The average squared 
discrepancy between outputs and objectives is defined as the mean squared error. Lower numbers are 
preferred. There is no error if the value is zero. 
 

 
Fig. 1..The design of neural network input/output boundaries 

 
The study focuses on constructing Artificial Neural Networks (ANNs) and analyzing their performance based 
on various factors such as ANN configuration, learning rules, and the number of hidden neurons. Metrics such 
as Mean Square Error (MSE) and correlation coefficient are applied to evaluate the performance of neural 
networks when working with training, validation, and testing datasets and by computing the MSE with 
equation 7.The study uses tables and graphs to display predicted values using ANN models, assessing the 
impact of input deviations on measured outputs.Training, Validation, and Testing lines are represented 
graphically in Table7 using different colours. While Mean Squared Error (MSE) and R values are computed 
using input and output data taken from the composite matrix within the Design of Experiments (DoE), these 
lines represent the relationship between samples. Fig 2 showcases a title window of the neural network during 
training, displaying progress and allowing interruption using a quit button. 
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Fig . 2. Training, Validation, and Testing Information for Samples 

                      
Fig 3.( a )Training error using histogram     Fig (b )Regression during the training period 
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Fig  (c) Training performance         Fig (d) Gradient descent 

 
The explanatory window of neural network (NN) training performance is displayed in Fig b. The best 
validation performance, which demonstrates the best mean squared error (MSE) combination, is seen at epoch 
2 at 37.87. Fig d. shows the neural network performs best when the outcomes of training, validating, and 
testing are combined. The "training histogram" is a visual representation of how frequently the network's 
educated guesses are incorrect. The ideal line that reduces errors throughout the training, validation, and 
testing phases exemplifies the efficiency of ANN models.  Fig 3 shows how computing the gradient's loss 
function is employed in the context of learning back propagation to modify the weight of neurons. The valid 
check is 5 at epoch 7, and the gradient value is 68.7045%. For the normal period of 18 epochs, training is 
stopped if validation efficiency declines to prevent the training network from acting poorly during 
non-training. Various output patterns for testing (R = 0.8046), validation (R = 0.9888), and training (R = 
0.9945) are displayed in Fig d. These ANN forecasts contribute to the overall response with an R-value of 
0.8814, and the R2 value was computed using equation 9. The relationship between the actual outcomes and 
those anticipated by the ANN is demonstrated by the regression plot in this figure. The ANN findings and the 
objective are in agreement. Since the R-value is 0.9463, there is a clear agreement between the ANN findings 
and the desired outcome. The link between desired an objective and realized results is precisely quantified by 
regression values. 
 

Conclusion 
 
In conclusion, this work emphasizes the crucial role that screening designs and Design of Experiments (DoE) 
play in resolving complex interactions between process variables, thereby increasing understanding and 
decision-making, particularly in the context of additive manufacturing. Notably, the study makes use of 
Artificial Neural Networks (ANN) to effectively combine complicated data and predict outcomes, obtaining an 
astonishing 94.63% alignment with real results during validation. Importantly, this research's ramifications go 
beyond selective laser melting (SLM), providing helpful information for a variety of production processes. This 
research has the potential to transform processes and improve product quality across industries through the 
integration of DoE, ANN modeling, and quality prediction. The significance of systematic experimentation and 
predictive modeling as drivers of improvements in manufacturing and process optimization's is shown by 
these findings. 
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