Dentoalveolar And Skeletal Effects Of Fixed Functional Appliances – A Systematic Review And Meta-Analysis

Dr. Kaashish Kesavan^{1*}, Dr. Narayan Kulkarni²

^{1*}Resident, Department of Orthodontics and Dentofacial Orthopaedics, KM Shah Dental College and Hospital, Sumandeep Vidyapeeth Deemed University, Vadodara, Gujarat, India.

²Professor and PG Guide, Department of Orthodontics and Dentofacial Orthopaedics, KM Shah Dental College and Hospital, Sumandeep Vidyapeeth Deemed University, Vadodara, Gujarat, India.

Citation: Dr. Kaashish Kesavan et al. (2024), Dentoalveolar And Skeletal Effects Of Fixed Functional Appliances – A Systematic Review And Meta-Analysis, *Educational Administration: Theory And Practice*, *30*(*4*), 7451-7465, Doi: 10.53555/kuey.v30i4.2591

ARTICLE INFO	ABSTRACT
	Objective: To appraise the difference between treatment effects of fixed
	functional appliances (FFA) and untreated class II (UclII) malocclusion on
	skeletodental cephalometric measurements.
	Material and Methods: Literature search was conducted across PubMed,
	MEDLINE, DOAJ, Cochrane Library, and Scopus until August 2023. Using
	MeSH and free text terms based on the PICOS framework with Boolean
	operators. Additional searches involved cross-referencing, citation chasing, and
	exploring grey literature through Google Scholar, Greylist, OpenGrey, and hand searching specialty journals.
	Results: 16 studies were included. Studies assessing SNA revealed a pooled
	value of -0.44[-0.78, -0.11], indicating a (p=0.008) reduction in SNA values with
	FFA compared UclII. Mandibular changes reported a combined SNB value of -
	0.10[-0.43, 0.223], suggesting higher SNB with FFA vs UclII. ANB angle
	reported a notable decrease (-0.95[-1.79, -0.11], p=0.03) at 90% heterogeneity.
	Overjet displayed reduction (-2.08[-2.62, -1.54]mm) with 75% heterogeneity,
	while overbite, demonstrated a significant decrease (-1.08[-1.79, -0.37]mm) with
	85% heterogeneity.
	Conclusion: Analysis of 16 studies comparing the effects of Functional
	Appliance (FFA) and UclII revealed significant findings. Studies assessing SNA
	indicated a notable reduction in SNA values with FFA compared to Ucl11
	(p=0.008). Mandibular changes, particularly the SNB value, suggested higher
	values with FFA versus UcIII. The ANB angle showed a significant decrease with
	FFA (p=0.03).
	Keywords: Fixed Functional Appliance, Orthodontic Appliance Functional,
	Untreated Class II Malocclusion

1. INTRODUCTION

Class II Malocclusion is the most common form of malocclusion encountered in orthodontics with mandibular retrusion as its most common component ⁽¹⁾ The available treatment options vary, including methods such as compensating for dentoalveolar issues, making orthopedic corrections using FFA, and resorting to orthognathic surgery. FFA were specifically developed to stimulate the growth of the mandible by positioning it forward into a Class I occlusion. Various kinds of FFA are employed to address Class II malocclusion in adults ⁽²⁻⁶⁾ The choice of FFA depends on the specific skeletal and dental abnormalities. The aim of the present review was to compare and assess the available evidence through a systematic review and meta-analysis, seeking to answer the following research question: Is there a difference in the treatment effects of FFA as compared to UclII malocclusion on skeleton-dental cephalometric measurements?

2. MATERIALS AND METHODS

Search Strategy: A systematic search swas carried out as per data mentioned in Table 1. The study included adolescents with Class II malocclusion undergoing treatment, irrespective of gender, ethnicity, or nationality. Evaluation involved lateral cephalograms to assess skeleton-dental markers, with the intervention being any

Copyright © 2024 by Author/s and Licensed by Kuey. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

FFA Class II malocclusion. UclII malocclusion cases, matched by age and gender, served as the comparative group. The research aims for detailed outcomes through linear and angular dentoskeletal cephalometric analysis. Angular measurements included SNA, SNB, ANB, IMPA, SN-MP, SN-PP, MMA interincisal and gonial angle. Linear measurements included anterior cranial base (N-S), mandibular length (Go-Me), maxillary length (ANS to PNS), and lower anterior facial height (LAFH - ANS to Me). Eligible study designs encompassed clinical trials, in-vivo studies, randomized/controlled/non-randomized/quasi-experimental/non-experimental cohort studies, specifically comparing FFA effects in Class II malocclusion to UclII.

Exclusion of inaccessible studies, single-intervention studies, and non-clinically applicable types. Additionally, studies with only abstracts, lacking full-text availability, and cephalometric analyses in specific cases were disregarded. Exclusions cover impacted anterior teeth, prosthetic restorations, prior orthodontic treatment, orthognathic surgery, cleft lip/palate syndromes, skeletal malformations, systemic diseases, and drug therapy cases. Two reviewers systematically evaluated study titles and abstracts, eliminating duplicates and excluding irrelevant articles. They achieved high concordance levels (Cohen's kappa: 0.92 for titles/abstracts, 0.94 for full texts).

Data extraction

Two independent reviewers meticulously conducted the data extraction process, gathering information from included studies. Discrepancies were resolved through consensus after thorough discussion. For all studies, details on publication, participant demographics, settings, interventions, comparators, outcomes, design, analysis, results, funding sources, and conflicts of interest were accurately extracted and systematically recorded in Excel sheets.

The quality of RCT was evaluated using the Cochrane RoB-2 tool with RevMan software (Review Manager Version 5.3). Studies were categorized as having low, moderate, or high risk overall (Table 2 and 3). Non-randomized studies were assessed using the Methodological Index for Non-Randomized Studies (MINORS) tool (Table 4), which rates eight items on a scale from 0 (not reported) to 2 (reported and adequate), with a maximum score of 16 for non-comparative and 24 for comparative studies.

Sstatistical Analysis for Quantitative Synthesis

Continuous data mean and standard deviation were presented with 95% confidence intervals, setting significance at P<0.05. Heterogeneity was assessed through Chi-square, Tau-square, and I2 tests at α =0.10. I2 represented real variability among studies' effect estimates, with significance at P < 0.05. Cochrane guidelines interpreted I2 values: 0-30% (not important), 30-60% (moderate), 50-90% (substantial), and 75-100% (considerable). Random Effects model (REM) was applied when I2 exceeded 50%. Subgroup analyses addressed clinical heterogeneity, and significance was set at a two-tailed p-value < 0.05. Funnel plots visually detected potential publication bias for studies with >10 counts, contributing to the meta-analysis's robustness. **Meta-analysis:** Data synthesis was carried out using a descriptive synthesis, with a summary of the characteristics of each included study. For quantitative synthesis, a summary of the combined estimate related to the intervention effect was calculated as a mean of the differences of the effects of post-intervention in individual studies.⁷

Effect measures: Effect measures refer to statistical constructs that compare outcome data between two intervention groups. Examples include odds ratios (which compare the odds of an event between two groups) and mean differences (which compare mean values between two groups). For this study, mean difference (MD) was used as effect measures.⁸

Studies included in meta-analysis: Among the included studies, five studies provided result in form of mean and standard deviation and ten studies provided result in terms of mean difference and standard deviation. The values of mean as well as mean difference were used separately in quantitative analysis.

Also, in some studies two types of fixed functional appliances were used. These studies were considered separately for the different functional appliances used. (Table 5)

3. RESULTS

The screening process for section of articles is explained in the form of the PRISMA flowchart 2020 (Table 6) the Cochrane Handbook for systematic reviews of interventions, version 5.1.0. and 4th Edition of the JBI Reviewer's Manual and was registered at PROSPERO under registration code CRD4202343455655.

Sixteen studies⁹⁻²⁴ were included in the qualitative assessment. These studies were conducted in different parts of world 2 in each USA^{9,19}, Turkey^{10,14}, Germany^{11,17}, Brazil^{12,20}, Egypt^{18,24} one in Syria¹³, Canada¹⁵, Spain¹⁶, and Italy²³. Among the included studies, three were randomized controlled trials^{10,13,18} and thirteen were non-randomized clinical studies ^{9,11,12,14-17,22-24}. Different types of FFA were used in these studies such as MARA ^{9,19}, Herbst^{10,11,17,23}, FLMGM¹³, TFBC^{12,14}, Xbow¹⁵, Austro Repositioner¹⁶, MPA²⁰, Jasper jumper^{20,22}, FFRD^{18,21,24}, Twin Force²², Splint FFRD²⁴. A total of 984 participants were evaluated in this review with 571 participants in intervention group and 413 participants in control group.

Outcomes based on mean and standard deviation: In the evaluation of maxillary changes, three studies assessing SNA revealed a pooled value of -0.44[-0.78, -0.11], indicating a statistically significant

(p=0.008) reduction in SNA values with FFA compared UclII, with 0% heterogeneity, involving 74 participants in the intervention group and 72 in the control group. For Co-A, two studies demonstrated a pooled a non-significant (p=0.66) value of -0.34[-1.85, 1.17] for Co-A values with FFA, with 91% heterogeneity. (Table 7)

Three studies assessing mandibular changes reported a comssbined SNB value of -0.10[-0.43, 0.223], suggesting higher SNB with FFA versus no treatment, though not statistically significant (p=0.56) and 0% heterogeneity. For intermaxillary changes, three studies on ANB revealed a pooled value of -0.55[-1.06, -0.05], showing decreased ANB with FFA, significantly (p=0.03) with 55% heterogeneity among 74 and 70 participants in intervention and control groups, respectively. In dentoalveolar changes, three studies indicated a combined overjet reduction of -1.29[-1.63, -0.96]mm with FFA (Table 8).

Overall results were statistically significant (p<0.00001) with 0% heterogeneity, prompting the use of a REM due to high heterogeneity. However, for overbite and molar relationship, pooled values of -0.93[-2.92, 1.07] and -1.73[-4.28, 0.82]mm respectively were not statistically significant (p=0.36, p=0.18), both with high heterogeneity, leading to the application of a REM (Table 9 And 10).

In assessing mandibular changes, three studies examined SNB, revealing a pooled value of -0.10[-0.43, 0.223], suggesting greater SNB values with functional appliances compared to no treatment.

Outcomes based on mean difference and standard deviation: In examining maxillary changes, eight studies on SNA showed a pooled value of -0.66[-0.94, -0.38], indicating a reduced SNA difference post-treatment with functional appliances, significantly so (p<0.00001) with 48% heterogeneity, necessitating a REM due to this high heterogeneity. Regarding Co-A, five studies yielded a pooled value of -0.14[-0.67, 0.38]mm, suggesting a minor decrease post-treatment, though not significant (p=0.59 with 81% heterogeneity, also leading to the use of a REM. (Table 11)

In mandibular evaluations, eight studies on SNB revealed a pooled value of 0.38[0.03, 0.73], showing a significant increase in SNB post-treatment with functional appliances (p=0.03), amid 69% heterogeneity, prompting a REM usage. Six studies on Co-Gn reported a pooled value of 0.54[0.13, 0.95]mm, indicating a notable increase in Co-Gn post-treatment, significantly so (p=0.01) with 71% heterogeneity. Three studies on Go-Gn showed a pooled value of 0.53[0.07, 0.98]mm, suggesting a smaller increase in Go-Gn, not significant with 32% heterogeneity. Two studies on FMPA angle yielded a pooled value of -0.18[-0.69, 0.33], indicating a minor decrease in FMPA post-treatment, not significant (p=0.49) with 60% heterogeneity. High heterogeneity in these cases necessitated REM. (Table 12)

In a thorough exploration of intermaxillary and dentoalveolar landmarks (Table 13 and 14), several studies examined the impact of FFA compared to UclII. Six studies on the ANB angle reported a notable decrease (-0.95[-1.79, -0.11], p=0.03) with substantial 90% heterogeneity. Similarly, Witts's appraisal, from three studies, demonstrated a significant decrease (-1.92[-2.51, -1.32]) with 50% heterogeneity. The ANS-Me measurement, across three studies, showed a non-significant increase (0.75[-0.15, 1.64]mm) with 80% heterogeneity. In dentoalveolar landmarks, the IMPA angle, evaluated in three studies, revealed a significant increase (0.62[0.31, 0.93]) with no heterogeneity. The Go Gn SN angle, from two studies, indicated an increased, yet non-significant change (0.21[-0.09, 0.51]) with no heterogeneity. The nasolabial angle, across two studies, exhibited a significant decrease (0.61[0.18, 1.05]) with 38% heterogeneity. Overiet, analyzed in seven studies, displayed a significant reduction (-2.08[-2.62, -1.54]mm) with 75% heterogeneity, while overbite, from five studies, demonstrated a significant decrease (-1.08[-1.79, -0.37]mm) with 85% heterogeneity. Lastly, the molar relationship, assessed in two studies, indicated a non-significant reduction (-2.04[-5.25, 1.17]mm) with a high 98% heterogeneity. The REM was frequently applied due to the observed high heterogeneity. This thorough analysis highlights the nuanced impact of functional appliances on various skeleton-dental parameters, stressing the need to consider individual variability and the degree of heterogeneity in orthodontic treatment outcomes. A summary of the characteristics of the studies included to derive the above results has been given in Table 15.

4. DISCUSSION

The current systematic review and meta-analysis assesses if there is a difference in the treatment effects of FFA as compared to UCIII patients on dental and skeletal cephalometric measurement. All articles published from 01/01/2000 until 31/07/2023 were searched and were included in the present study. Studies that evaluated MARA, FFRD, Jasper Jumper, Herbst, FLMGM, TFBC, Xbow, Austro Repositioner, MPA, Twin Force, Splint FFRD were included.

The review of studies focusing on orthodontic appliances for the treatment of Class II malocclusion provides a comprehensive understanding of their effectiveness and outcomes. Alhammadi¹⁸ in his study comparing twin block and FFRD revealed twin block showed greater maxillary retrusive effect than FFRD. Twin block appliance also had greater mandibular growth advancing potential than FFRD. However, neither of the appliances seemed to have an effect on maxillary anterior position(A) or vertical growth of condyle (Co). Elkordy²⁴ advocated restricting maxillary growth by the Splint FFRD were significant due to noticeable reduction in SNA. Guimarães ¹² concluded that the Twin Force Bite Corrector has a significant restricting effect on the growth of maxillary complex when compared to the controls. Thus, an overall restrictive effect on maxilla could be concluded by a pooled decreased in SNA by these fixed functional appliances. Dentoalveolar landmarks when assessed, a significant pooled reduction in overjet could be obtained from studies carried out by Ardeshna¹⁹, Bock¹¹ and Guimarães¹². MARA appliance, investigated by Al-Jewair⁹ in 2013, showcased its efficacy in a retrospective study and he concluded that the appliance significantly normalized Class II malocclusion through notable skeletal and dentoalveolar changes. Numerous studies have been conducted on the Herbst appliance, examined in studies by Baysal¹⁰ (2013) who concluded that when compared with twin block greater incisor inclination was seen with mandibular anterior teeth but the functional appliance was more effective in treating skeletal discrepancy than Herbst appliance. Bock¹¹ (2013) conducted long term studies on the stability of the effects of the Herbst appliance which stated that the results were stable the long term and only minor changes in overbite, overjet were seen that were not clinically significant. Henriques's²⁰ (2019) research encompassed randomized controlled trials (RCTs) and retrospective studies on the Jasper Jumper and MPA and demonstrated improvements in skeletal and dentoalveolar aspects, The JJ group presented a greater restriction of growth and anterior displacement of the maxilla and greater maxillary retrusion and the MPA group showed a significantly greater increase of mandibular effective length. Fontes²² in his study between the JJ and the Twin Force concluded that Twin Force seems to provide more skeletal effects than the Jasper Jumper, since it demonstrated greater maxillary growth restriction and mandibular length increase.

Comparative studies on orthodontic appliances for Class II malocclusion highlight varying effects on skeletal and dentoalveolar structures. SNA was significantly reduced in studies conducted by Dalci¹², Elkordy²⁴ and Henriques²⁰ who advocated the Twin Force bite Corrector, FFRD, MPA and Jasper Jumper respectively. The mandibular parameters such as SNB, CO-GN, Go-GN, FMPA did not show statistically significant changes when the functional appliances were compared with their controls.

The majority of these appliances prove effective in correcting Class II malocclusion, but through diverse mechanisms. The differential effects of these appliances on incisor positioning and skeletal changes highlight the nuanced nature of orthodontic treatments. Selecting the right appliance, tailored to the specific malocclusion and desired outcomes, is crucial for effective treatment. Long-term stability and treatment outcomes also vary across different appliances. Some show remarkable stability, maintaining outcomes similar to untreated Class I cases. Patient-specific responses, influenced by individual growth patterns and maturational age, necessitate tailored treatment plans. Appliances differ in their emphasis on skeletal, dental, and soft-tissue changes, guiding clinicians in selecting the most appropriate device based on treatment objectives.

Limitations: High heterogeneity among studies made it difficult to synthesize and pool data effectively. By not including soft tissue parameters, the review might miss critical aspects relevant to the effectiveness of FFA. The included studies vary widely in terms of populations, interventions, and outcomes thus interpreting the overall findings may become complex. The combined effect of these limitations can lead to reduced external validity.

5. CONCLUSION

- Comparative observations emphasized variations among appliances, underlining the intricacy of Class II malocclusion treatment.
- The systematic review and meta-analysis addressed existing literature gaps, revealing the efficacy of appliances like MARA, Herbst, and Twin Block in inducing significant skeletal and dentoalveolar changes.
- Despite diverse mechanisms, most appliances proved effective, highlighting the importance of personalized treatment plans that account for skeletal, dental, and soft-tissue changes.
- The analysis of differential effects emphasized the need for appliance selection based on malocclusion characteristics, and insights into long-term stability and facial profile impacts underscored the nuanced nature of these effects.
- This discussion stresses the vital role of treatment personalization in guiding orthodontic practitioners toward delivering effective, patient-centric care for Class II malocclusion individuals.

6. **REFERENCES**

- 1. McNamara JA Jr. Components of class II malocclusion in children 8–10 years of age. Angle Orthod. 1981;51: 177–202
- Basciftci FA, Uysal T, Buyukerkmen A, Sari Z. The effects of activator treatment on the craniofacial structures of Class II division 1 patients. Eur J Orthod. 2003;25:87–93. 3. Sander FG, Synodinos FN, Sander M, Iglezou E, Sander C. The functional orthodontic-orthopedic VDP appliance. Literature review and typical clinical case presentation. Hell Orthod Rev. 2007;10:11–27.
- 3. Illing HM, Morris DO, Lee RT. A prospective evaluation of Bass, Bionator and Twin Block appliances. Part I—the hard tissues. Eur J Orthod. 1998;20:501–516.
- 4. Kinzinger G, Diedrich P. Skeletal effects in class II treatment with the functional mandibular advancer

(FMA)? J Orofac Orthop. 2005;66:469-490.

- 5. Pangrazio-Kulbersh V, Berger JL, Chermak DS, Simon ES, Haerian A. Treatment effects of the mandibular anterior repositioning appliance on patients with Class II malocclusion. Am J Orthod Dentofacial Orthop. 2003;123:286–295.
- Dalci O, Altug AT, Memikoglu UT (2014) Treatment effects of a twin-force bite corrector versus an activator in comparison with an untreated Class II sample: A preliminary report. Aust Orthod J 30(1):45-53
- Deeks, J.J., Higgins, J.P., Altman, D.G. and Cochrane Statistical Methods Group, 2019. Analysing data and undertaking meta-analyses. Cochrane handbook for systematic reviews of interventions, pp.241-284.
- 8. Higgins, J.P., Li, T. and Deeks, J.J., 2019. Choosing effect measures and computing estimates of effect. Cochrane handbook for systematic reviews of interventions, pp.143-176.
- Al-Jewair T. Treatment Effects of the Edgewise Mandibular Anterior Repositioning Appliance (MARA) in Patients with Class II Malocclusions: A Cephalometric Study. State University of New York at Buffalo; 2013.
- 10. Baysal A, Uysal T. Dentoskeletal effects of Twin Block and Herbst appliances in patients with Class II division 1 mandibular retrognathy. Eur J Orthod. 2014;36(2):164–72.
- 11. Bock NC, Reiser B, Ruf S. Class II subdivision treatment with the Herbst appliance. Angle Orthod. 2013;83(2):327–33.
- 12. Guimarães CH, Henriques JFC, Janson G, De Almeida MR, Araki J, Cançado RH, et al. Prospective study of dentoskeletal changes in Class II division malocclusion treatment with twin force bite corrector. Angle Orthod. 2013;83(2):319–26.
- 13. Alali OH. A prospective controlled evaluation of Class II division 1 malocclusions treated with fixed lingual mandibular growth modificator. Angle Orthod. 2014;84(3):527–33.
- 14. Dalci O, Altug AT, Memikoglu UT. Treatment effects of a twin-force bite corrector versus an activator in comparison with an untreated Class II sample: a preliminary report. Aust Orthod J. 2014;30(1):45–53.
- 15. Ehsani S, Nebbe B, Normando D, Lagravere MO, Flores-Mir C. Dental and skeletal changes in mild to moderate Class II malocclusions treated by either a Twin-block or Xbow appliance followed by full fixed orthodontic treatment. Angle Orthod. 2015;85(6):997–1002.
- Austro MD, González E, Peñalver MA, Pérez D, Alarcón JA. Short-term dentoskeletal changes following Class II treatment using a fixed functional appliance: the Austro Repositioner: A pilot study. J Orofac Orthop. 2018;79(3):147–56.
- 17. Bock NC, Saffar M, Hudel H, Evälahti M, Heikinheimo K, Rice DP, et al. Outcome quality and long-term (≥15 years) stability after Class II:2 Herbst-multibracket appliance treatment in comparison to untreated Class i controls. Eur J Orthod. 2018;40(5):488–95.
- 18. Alhammadi MS, Elfeky HY, Fayed MS, Ishaq RAR, Halboub E, Al-mashraqi AA. Three-dimensional skeletal and pharyngeal airway changes following therapy with functional appliances in growing skeletal Class II malocclusion patients: A controlled clinical trial. J Orofac Orthop. 2019;80(5):254–65.
- 19. Ardeshna A, Bogdan F, Jiang S. Class II correction in orthodontic patients utilizing the Mandibular Anterior Repositioning Appliance (MARA). Angle Orthod. 2019;89(3):404–10.
- 20. Henriques RP, Henriques JFC, Janson G, Freitas MR de, Freitas KMS, Francisconi MF, et al. Effects of Mandibular Protraction Appliance and Jasper Jumper in Class II Malocclusion Treatment. Open Dent J. 2019;13(1):53–60.
- 21. Alhoraibi L, Alvetro L, Al-Jewair T. Long-term effects of the Forsus Device in Class II division I patients treated at pre-peak, peak, and post-peak growth periods: A retrospective study. Int Orthod [Internet]. 2020;18(3):451–60. Available from: https://doi.org/10.1016/j.ortho.2020.07.003
- 22. Pinelli Henriques Fontes F, Bastiani C, Bellini-Pereira SA, Aliaga-Del Castillo A, Castanha Henriques JF, Janson G. Dentoskeletal and soft-tissue changes comparison between the Jasper Jumper and Twin Force Bite Corrector in Class II malocclusion patients: A retrospective study. Int Orthod [Internet]. 2020;18(2):286–96. Available from: https://doi.org/10.1016/j.ortho.2020.01.005
- 23. Giuca MR, Pasini M, Drago S, Del Corso L, Vanni A, Carli E, et al. Influence of Vertical Facial Growth Pattern on Herbst Appliance Effects in Prepubertal Patients: A Retrospective Controlled Study. Int J Dent. 2020;2020.
- 24. Elkordy SA, Abdeldayem R, Fayed MMS, Negm I, El Ghoul D, Abouelezz AM. Evaluation of the splintsupported Forsus Fatigue Resistant Device in skeletal Class II growing subjects. Angle Orthod. 2021;91(1):9-21.
- 25. Giuca MR, Pasini M, Drago S, Del Corso L, Vanni A, Carli E, et al. Influence of Vertical Facial Growth Pattern on Herbst Appliance Effects in Prepubertal Patients: A Retrospective Controlled Study. Int J Dent. 2020;2020.

TABLES

-	Table 1: The search strategy and PICOS tool
Search strategy	
Focused	Is there a difference in the treatment effects of FFAas compared to untreated patients
Question	with Class II malocclusion on dental and skeletal cephalometric measurements?
Search strategy	
Population	((("Class II malocclusion"[All Fields] OR "malocclusion "[All Fields] OR " Malocclusion, Angle Class II "[MeSH Terms] OR "Malocclusion, Angle Class II "[All Fields] OR "Angle Class II "[All Fields] OR "Class II, Angle "[All Fields] OR "Class II division 1 malocclusions" [All Fields])))
Intervention (#1)	"Orthodontic Appliances, Functional"[All Fields] OR "fixed lingual mandibular growth modificator"[All Fields] OR "Herbst appliance"[All Fields] OR "mandibular anterior repositioning appliance"[All Fields] OR "functional mandibular advancer"[All Fields] OR "Forsus Device"[All Fields] OR "AdvanSync"[All Fields] OR "Functional Orthodontic Appliances"[All Fields] OR "Jasper Jumper"[All Fields])) OR (("Twin force Bite corrector"[All Fields]))
Comparisons (#2)	("Untreated"[All Fields] OR "Untreated Class II Malocclusion"[All Fields] OR "Control group"[All Fields]))
Outcomes (#3)	("Angular measurements" [Text Word] OR "Linear measurements" [Text Word] OR Dental [Text Word] OR Skeletal [Text Word] OR Cephalometric Analysis [Text Word]))
Study design (#4)	(Clinical trials [MeSH] OR randomized controlled studies [Text Word] OR randomized control trials [MeSH] OR randomized control clinical trial MeSH OR non-randomized control trials [Text Word] OR Quasi experimental studies [Text Word] OR before and after study design [Text Word] OR cohort studies [Text Word] OR in vivo study [Text Word]) OR cross-sectional studies [Text Word] OR comparative studies[Text Word] OR observational studies [Text Word]))
Search Combination	#1 AND #2 AND #3 AND #4
Database search	
Language	Articles in English language
Electronic Databases	PubMed/MEDLINE, Cochrane Central Register of Controlled Trials, Scopus, DOAJ
Period of Publication	Studies published between 1-1-2013 to 31-07-2023

zTable 2: Risk of bias graph

Table 4: Quality assessment according to MINORS tool

Stud y Id	d I	A cl ea rl y st at ed ai m	Inclu sion of cons ecuti ve patie nts	Pros pecti ve colle ction of data	End point s appr opria te to the aim of the stud y	Unbi ased asses sme nt of the stud y endp oint	Follo w-up perio d appr opria te to the aim of the stud y	L os s to fo ll o w u p le ss th a n 5%	Pros pecti ve calcu latio n of the stud y size	*An ade qua te con trol gro up	*Conte mpora ry groups	*Bas eline equiv alenc e of grou ps	*Ad equ ate stati stica l anal yses	T o ta l
Al- Jew air 201 9	7 3	2	2	0	1	2	2	2	0	2	2	2	2	1 9
Boc 201	2k 3	2	2	0	1	2	2	2	0	2	2	2	2	1 9
Gui mai aes 201	r 3	2	2	0	1	2	2	2	2	2	2	2	2	2 1
Dal i 201	с 4	2	2	0	1	2	2	2	2	2	2	2	2	2 1
Ehs ni 201	sa 5	1	2	0	1	2	2	2	2	2	2	2	2	2 0
Aus ro 201	st .8	2	2	2	2	2	2	2	2	2	2	2	2	2 4

Bock 2018 17	2	2	0	1	2	2	2	0	2	2	2	2	1 9
Arde shna 2019	2	2	0	1	2	2	2	0	2	2	2	2	1 9
Hen riqu es 2019 ²⁰	2	1	0	2	2	2	2	2	2	2	2	2	2 1
Alho raibi 202 0 ²¹	2	2	0	2	2	2	2	0	2	2	2	2	2 0
Font es 202 0 ²²	2	2	0	2	2	2	2	2	2	2	2	2	2 2
Giuc a 202 0 ²⁵	2	2	0	2	2	2	2	2	2	2	2	2	2 2
Elko rdy 2021 ²⁴	1	2	0	2	2	2	2	2	2	2	2	2	2 1

Table 5: Studies considered separately for the different functional appliances used

Study ID	Functional appliance used
Baysal 2013 (A)	Herbst appliance
Baysal 2013 (B)	Twin Block
Ehsani 2015 (A)	Twin Block
Ehsani 2015 (B)	Xbow
Dalci 2014 (A)	TFBC
Dalci 2014 (B)	Activator
Alhammadi 2019 (A)	Twin block
Alhammadi 2019 (B)	FFRD
Henriques 2019 (A)	MPA
Henriques 2019 (B)	Jasper
Fontes 2020 (A)	Jasper Jumper
Fontes 2020 (B)	Twin Force
Elkordy 2021 (A)	FFRD
Elkordy 2021 (B)	Splint FFRD

Table 6: PRISMA flow diagram

7458

	Function	al applia	ince	C	ontrol			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
2.1.1 SNA									
Alhammadi 2019	79.1	2.71	21	81.31	2.74	20	26.8%	-0.80 [-1.43, -0.16]	
Elkordy 2021 (A)	83.01	2.23	15	83.36	3.12	16	22.0%	-0.13 [-0.83, 0.58]	
Elkordy 2021 (B)	81.74	1.87	15	83.36	3.12	16	20.9%	-0.61 [-1.33, 0.11]	
Guimaraes 2013	81.54	4.28	23	82.59	3.84	20	30.2%	-0.25 [-0.85, 0.35]	-
Subtotal (95% CI)			74			72	100.0%	-0.44 [-0.78, -0.11]	•
Heterogeneity: Tau ^z =	0.00; Chi ²	= 2.54, c	lf = 3 (P	= 0.47);	$ ^{2} = 0$	Ж			
Test for overall effect:	Z = 2.63 (F	P = 0.008)						
2.1.2 Co-A									
Alhammadi 2019	84	4.95	21	81.99	4	18	50.1%	0.43 [-0.20, 1.07]	
Guimaraes 2013	84.58	4.99	23	89.63	3.8	20	49.9%	-1.11 [-1.75, -0.46]	
Subtotal (95% CI)			44			38	100.0%	-0.34 [-1.85, 1.17]	-
Heterogeneity: Tau ² =	1.08; Chi ²	= 11.04,	df = 1 (i	P = 0.00	09); l ^z	= 91%			
Test for overall effect:	Z=0.44 (F	e = 0.66)							
									-4 -2 U Z 4

Test for subgroup differences: $Chi^2 = 0.02$, df = 1 (P = 0.89), $l^2 = 0\%$

Heterogeneity: Tau² = 0.00; Chi² = 3.00, df = 3 (P = 0.39); l² = 0%

Table o:	Forest	plot for	Inetermaxillary	landmarks
I UDIC 9.	I UI USU		motormannar	iunununu

	Function	al applia	nce	C	ontrol		5	Std. Mean Difference	Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl	
3.1.1 ANB										
Alhammadi 2019	6.72	1.75	21	7.53	1.52	18	26.5%	-0.48 [-1.12, 0.16]		
Elkordy 2021 (A)	7.02	1.53	15	7.66	1.23	16	24.0%	-0.45 [-1.17, 0.26]		
Elkordy 2021 (B)	5.66	1.6	15	7.66	1.23	16	21.6%	-1.37 [-2.16, -0.58]		
Guimaraes 2013	4.35	2.31	23	4.49	1.31	20	27.9%	-0.07 [-0.67, 0.53]		
Subtotal (95% CI)			74			70	100.0%	-0.55 [-1.06, -0.05]	◆	
Heterogeneity: Tau ² =	0.14; Chi ²	= 6.61, c	lf = 3 (P	= 0.09)	I ² = 55	5%				
Test for overall effect:	Z = 2.14 (P	P = 0.03)								
Total (95% CI)			74			70	100.0%	-0.55 [-1.06, -0.05]	•	
Heterogeneity: Tau ² =	0.14; Chi ²	= 6.61, c	f= 3 (P	= 0.09)	I ² = 55	5%				100
Test for overall effect:	Z = 2.14 (P	P = 0.03)							-4 -2 U 2 4 Eunctional appliance Control	
Test for subgroup diff	erences: N	lot applic	able						r unctional appliance Control	

	Function	nal applia	ance	C	ontrol		1	Std. Mean Difference		Std. M	ean Diffe	rence	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl		IV, Ra	ndom, 9	5% CI	
4.1.2 Overjet											-		
Ardeshna 2019	2.93	1.34	24	5	1.28	13	19.0%	-1.53 [-2.30, -0.76]			•		
Bock 2018	2.2	0.85	20	3.2	0.81	31	30.1%	-1.19 [-1.80, -0.58]			-		
Guimaraes 2013 Subtotal (95% Cl)	2.88	1.58	233 277	4.89	1.75	20 64	50.9% 100.0%	-1.26 [-1.73, -0.79] - 1.29 [-1.63, -0.96]			•		
Heterogeneity: Tau ² =	0.00; Chi ²	= 0.50, c	if = 2 (P	= 0.78)	$ ^{2} = 0^{0}$	Ж							
Test for overall effect:	Z = 7.54 (F	P < 0.000	01)										
4.1.3 Overbite													
Bock 2018	2.5	1.49	20	2.4	1.21	31	50.7%	0.07 [-0.49, 0.64]					
Guimaraes 2013 Subtotal (95% Cl)	1.02	1.64	23 43	4.41	1.76	20 51	49.3% 100.0%	-1.96 [-2.70, -1.22] - 0.93 [-2.92, 1.07]					
Heterogeneity: Tau² = Test for overall effect:	1.96; Chi² Z = 0.91 (F	= 18.41, P = 0.36)	df = 1 (F	P < 0.00	101); I²	= 95%							
4.1.4 Molar relations	nip												
Ardeshna 2019	-5.57	1.31	24	0.35	1.09	13	31.9%	-4.67 [-5.99, -3.36]		-			
Bock 2018	0	0.15	20	-0.1	0.12	31	34.2%	0.74 [0.16, 1.33]			-		
Guimaraes 2013 Subtotal (95% Cl)	-1.5	1.34	23 67	0.5	1.36	20 64	34.0% 100.0%	-1.45 [-2.14, -0.77] - 1.73 [-4.28, 0.82]			-		
Heterogeneity: Tau ² =	4.88; Chi ²	= 63.47,	df = 2 (F)	< 0.00	001);1	² = 979	6						
Test for overall effect:	Z = 1.33 (F	P = 0.18)											
									-10 Eupeti	-5 anal annlia	Ó Con	5 trol	10

Test for subgroup differences: $Chi^2 = 0.24$, df = 2 (P = 0.89), $l^2 = 0\%$

	Function	nal applia	ince	C	ontrol		9	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI
5.1.1 SNA									
N-Jewari 2013	-0.5	1.5	40	0.4	1.7	24	11.7%	-0.56 [-1.08, -0.05]	
Alali 2014	-0.4	0.7	21	0.2	0.8	11	8.0%	-0.80 [-1.55, -0.04]	
Nhammadi 2019	-0.26	0.83	21	-0.07	0.51	18	9.8%	-0.27 [-0.90, 0.37]	
Dalci 2014	-0.36	0.37	10	0.52	0.24	10	3.8%	-2.70 [-3.98, -1.42]	
Elkordy 2021 (A)	-0.05	0.85	15	0.3	0.88	16	8.6%	-0.39 [-1.11, 0.32]	
Elkordy 2021 (B)	-0.8	0.51	15	0.3	0.88	16	7.4%	-1.48 [-2.28, -0.67]	
⁻ ontes 2020 (A)	-0.2	2.37	20	0.74	2.1	20	9.9%	-0.41 [-1.04, 0.22]	
⁻ ontes 2020 (B)	-0.27	2.02	20	0.74	2.1	20	9.8%	-0.48 [-1.11, 0.15]	
Juimaraes 2013	-0.26	5.11	23	0.85	2.58	20	10.3%	-0.26 [-0.87, 0.34]	
Henriques 2019 (A)	-0.83	3.35	24	0.73	2.59	22	10.5%	-0.51 [-1.10, 0.08]	
Henriques 2019 (B)	-1.42	2.31	25	0.73	2.59	22	10.3%	-0.86 [-1.47, -0.26]	
Subtotal (95% Cl)			234			199	100.0%	-0.66 [-0.94, -0.38]	•
Heterogeneity: Tau ² =	0.10; Chi ² :	= 19.06,	df = 10 (P = 0.0	4); I² =	48%			
est for overall effect:	Z = 4.64 (P	< 0.0001	J1)						
1.2 Co.A									
5 .1.2 Co-A	18	0.6	40	16	07	24	15.2%	0 31 60 20 0 821	-
5 .1.2 Co-A N-Jewari 2013 Nhammadi 2019	1.8 1.4	0.6 0.11	40 21	1.6 1.1	0.7	24 18	15.2% 13.5%	0.31 [-0.20, 0.82] 1 31 [0 61 2 00]	+
5 .1.2 Co-A Al-Jewari 2013 Alhammadi 2019 Contes 2020 (A)	1.8 1.4 0.66	0.6 0.11 2.39	40 21 20	1.6 1.1 1.82	0.7 0.31 1.07	24 18 20	15.2% 13.5% 14.1%	0.31 [-0.20, 0.82] 1.31 [0.61, 2.00] -0.61 [-1.25, 0.02]	+
5 .1.2 Co-A N-Jewari 2013 Nhammadi 2019 [*] ontes 2020 (A) *ontes 2020 (B)	1.8 1.4 0.66 0.75	0.6 0.11 2.39 3.38	40 21 20 20	1.6 1.1 1.82 1.82	0.7 0.31 1.07 1.07	24 18 20 20	15.2% 13.5% 14.1% 14.1%	0.31 [-0.20, 0.82] 1.31 [0.61, 2.00] -0.61 [-1.25, 0.02] -0.42 [-1.05 0.21]	+
5 .1.2 Co-A N-Jewari 2013 Nhammadi 2019 Tontes 2020 (A) Tontes 2020 (B) Suimaraes 2013	1.8 1.4 0.66 0.75 -0.26	0.6 0.11 2.39 3.38 6.27	40 21 20 23	1.6 1.1 1.82 1.82 2.4	0.7 0.31 1.07 1.07 3.05	24 18 20 20 20	15.2% 13.5% 14.1% 14.1% 14.3%	0.31 [-0.20, 0.82] 1.31 [0.61, 2.00] -0.61 [-1.25, 0.02] -0.42 [-1.05, 0.21] -0.52 [-1.13, 0.09]	
5 .1.2 Co-A Al-Jewari 2013 Nhammadi 2019 Contes 2020 (A) Sontes 2020 (B) Suimaraes 2013 Henriques 2019 (A)	1.8 1.4 0.66 0.75 -0.26 2.81	0.6 0.11 2.39 3.38 6.27 2.13	40 21 20 20 23 24	1.6 1.1 1.82 1.82 2.4 2.95	0.7 0.31 1.07 1.07 3.05 2.59	24 18 20 20 20 22	15.2% 13.5% 14.1% 14.1% 14.3% 14.6%	0.31 [-0.20, 0.82] 1.31 [0.61, 2.00] -0.61 [-1.25, 0.02] -0.42 [-1.05, 0.21] -0.52 [-1.13, 0.09] -0.06 [-0.64, 0.52]	+
5.1.2 Co-A Al-Jewari 2013 Vihammadi 2019 Contes 2020 (A) Contes 2020 (B) Juimaraes 2013 Henriques 2019 (A) Henriques 2019 (B)	1.8 1.4 0.66 0.75 -0.26 2.81 0.58	0.6 0.11 2.39 3.38 6.27 2.13 2.2	40 21 20 23 24 25	1.6 1.1 1.82 1.82 2.4 2.95 2.95	0.7 0.31 1.07 1.07 3.05 2.59 2.59	24 18 20 20 20 22 22	15.2% 13.5% 14.1% 14.1% 14.3% 14.6% 14.3%	0.31 [-0.20, 0.82] 1.31 [0.61, 2.00] -0.61 [-1.25, 0.02] -0.42 [-1.05, 0.21] -0.52 [-1.13, 0.09] -0.06 [-0.64, 0.52] -0.98 [-1.58, -0.37]	
5.1.2 Co-A Al-Jewari 2013 Vihammadi 2019 Fontes 2020 (A) Fontes 2020 (B) Juimaraes 2013 Henriques 2019 (A) Henriques 2019 (B) Subtotal (95% CI)	1.8 1.4 0.66 0.75 -0.26 2.81 0.58	0.6 0.11 2.39 3.38 6.27 2.13 2.2	40 21 20 23 24 25 173	1.6 1.1 1.82 1.82 2.4 2.95 2.95	0.7 0.31 1.07 1.07 3.05 2.59 2.59	24 18 20 20 20 22 22 22 146	15.2% 13.5% 14.1% 14.1% 14.3% 14.6% 14.3% 100.0 %	0.31 [-0.20, 0.82] 1.31 [0.61, 2.00] -0.61 [-1.25, 0.02] -0.42 [-1.05, 0.21] -0.52 [-1.13, 0.09] -0.06 [-0.64, 0.52] -0.98 [-1.58, -0.37] -0.94 [-1.67, 0.38]	
5.1.2 Co-A Al-Jewari 2013 Uhammadi 2019 Sontes 2020 (A) Sontes 2020 (B) Suimaraes 2013 Henriques 2019 (A) Henriques 2019 (B) Subtotal (95% Cl) Heterogeneity: Tau ² =	1.8 1.4 0.66 0.75 -0.26 2.81 0.58 0.40; Chi [≉] :	0.6 0.11 2.39 3.38 6.27 2.13 2.2 = 31.04,	40 21 20 23 24 25 173 df = 6 (P	1.6 1.1 1.82 1.82 2.4 2.95 2.95 < 0.00	0.7 0.31 1.07 1.07 3.05 2.59 2.59 01); I ² =	24 18 20 20 20 22 22 146 = 81%	15.2% 13.5% 14.1% 14.1% 14.3% 14.6% 14.3% 14.3%	0.31 [-0.20, 0.82] 1.31 [0.61, 2.00] -0.61 [-1.25, 0.02] -0.42 [-1.05, 0.21] -0.52 [-1.13, 0.09] -0.06 [-0.64, 0.52] -0.98 [-1.58, -0.37] -0.14 [-0.67, 0.38]	
5.1.2 Co-A Al-Jewari 2013 Uhammadi 2019 iontes 2020 (A) iontes 2020 (B) Suimaraes 2013 Henriques 2019 (A) Henriques 2019 (B) Subtotal (95% CI) Heterogeneity: Tau ² = iest for overall effect:	1.8 1.4 0.66 0.75 -0.26 2.81 0.58 0.40; Chi≆: Z = 0.55 (P	0.6 0.11 2.39 3.38 6.27 2.13 2.2 = 31.04, = 0.59)	40 21 20 23 24 25 173 df = 6 (P	1.6 1.1 1.82 1.82 2.4 2.95 2.95 < 0.00	0.7 0.31 1.07 1.07 3.05 2.59 2.59 01); F=	24 18 20 20 20 22 22 146 = 81%	15.2% 13.5% 14.1% 14.1% 14.3% 14.6% 14.3% 14.3%	0.31 [-0.20, 0.82] 1.31 [0.61, 2.00] -0.61 [-1.25, 0.02] -0.42 [-1.05, 0.21] -0.52 [-1.13, 0.09] -0.06 [-0.64, 0.52] -0.98 [-1.58, -0.37] -0.14 [-0.67, 0.38]	+++ ++ ++ ++ ++
5.1.2 Co-A AL-Jewari 2013 Alhammadi 2019 Fontes 2020 (A) Fontes 2020 (B) Juimaraes 2013 Henriques 2019 (A) Henriques 2019 (C) Subtotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect.	1.8 1.4 0.66 0.75 -0.26 2.81 0.58 0.40; Chi [≇] : Z = 0.55 (P	0.6 0.11 2.39 3.38 6.27 2.13 2.2 = 31.04, = 0.59)	40 21 20 23 24 25 173 df = 6 (P	1.6 1.1 1.82 1.82 2.4 2.95 2.95 < 0.000	0.7 0.31 1.07 1.07 3.05 2.59 2.59 01); I ² =	24 18 20 20 20 22 22 146 = 81%	15.2% 13.5% 14.1% 14.1% 14.3% 14.6% 14.3% 100.0%	0.31 [-0.20, 0.82] 1.31 [0.61, 2.00] -0.61 [-1.25, 0.02] -0.42 [-1.05, 0.21] -0.52 [-1.13, 0.09] -0.06 [-0.64, 0.52] -0.98 [-1.58, -0.37] -0.14 [-0.67, 0.38]	++ ++ ++ ++ ++
5.1.2 Co-A AL-Jewari 2013 Alhammadi 2019 Fontes 2020 (B) Guimaraes 2013 Henriques 2019 (A) Henriques 2019 (B) Subtotal (95% Cl) Heterogeneity: Tau ² = Fest for overall effect.	1.8 1.4 0.66 0.75 -0.26 2.81 0.58 0.40; Chi≇: Z = 0.55 (P	0.6 0.11 2.39 3.38 6.27 2.13 2.2 = 31.04, = 0.59)	40 21 20 23 24 25 173 df = 6 (P	1.6 1.1 1.82 1.82 2.4 2.95 2.95 < 0.000	0.7 0.31 1.07 1.07 3.05 2.59 2.59 01); F=	24 18 20 20 20 22 22 146 = 81%	15.2% 13.5% 14.1% 14.1% 14.3% 14.3% 14.3% 100.0 %	0.31 [-0.20, 0.82] 1.31 [0.61, 2.00] -0.61 [-1.25, 0.02] -0.42 [-1.15, 0.21] -0.52 [-1.13, 0.09] -0.06 [-0.64, 0.52] -0.98 [-1.58, -0.37] -0.14 [-0.67, 0.38]	

Test for subgroup differences: Chi² = 2.92, df = 1 (P = 0.09), l² = 65.7\%

Table 12: Forest plot for Mandible landmarks

		- 40		• • •		- P		indificatione na	
	Function	nal applia	ance	c	ontrol			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	mean	SD	Total	Mean	SD	Total	weight	IV, Random, 95% CI	IV, Random, 95% CI
5.2.1 SNB	073	002	102		10000	1000	0.000		100
Al-Jewari 2013	1.5	1.6	40	0.2	0.9	24	10.2%	0.93 [0.40, 1.46]	24 July 1
Alali 2014	1.7	1.1	21	-0.2	0.7	17	7.9%	1.97 [1.18, 2.76]	
Alhammadi 2019	-0.29	0.93	21	0.05	0.56	18	9.3%	-0.43 [-1.06, 0.21]	20 20 20 and 20
Dalci 2014	0.93	0.49	10	0.799	0.46	10	7.2%	0.26 [-0.62, 1.15]	
Elkordy 2021 (A)	0.22	0.66	15	-0.07	1.05	16	8.6%	0.32 [-0.39, 1.03]	and the second sec
Elkordy 2021 (B)	0.35	0.35	15	-0.07	1.05	16	8.6%	0.52 [-0.20, 1.23]	20 augustation - 20
Fontes 2020 (A)	0.74	1.59	20	0.46	2.09	20	9.4%	0.15 [-0.47, 0.77]	2 August 20
Fontes 2020 (B)	1.39	1.94	20	0.46	2.09	20	9.4%	0.45 [-0.18, 1.08]	
Guimaraes 2013	1.5	4.2	23	0.7	2.15	20	9.6%	0.23 [-0.37, 0.83]	
Henriques 2019 (A)	1.04	2.61	24	0.48	2.19	22	9.8%	0.23 [-0.35, 0.81]	
Henriques 2019 (B)	0.02	1.07	25	0.48	2.19	22	9.8%	-0.27 [-0.84, 0.31]	
Subtotal (95% CI)			234			205	100.0%	0.38 [0.03, 0.73]	-
Heterogeneity: Tau ² =	0.24; Chi ²	= 31.82,	df = 10	(P = 0.0)	004); P	*= 69%			
Test for overall effect:	Z = 2.12 (P	= 0.03)							
5.2.2 Co-Gn (mm)									
Al-Jewari 2013	4.5	3.6	40	2.6	2	24	13.9%	0.60 [0.09, 1.12]	
Alali 2014	3.5	1.4	21	1.2	1.1	17	11.0%	1.77 [1.00, 2.53]	
Baysal 2013	3	2.63	20	3.83	2.62	11	11.3%	-0.31 [-1.05, 0.43]	
Fontes 2020 (A)	4.18	2.15	20	2.94	1.75	20	12.5%	0.62 [-0.02, 1.26]	
Fontes 2020 (B)	6.23	4.64	20	2.94	1.75	20	12.3%	0.92 [0.26, 1.57]	
Guimaraes 2013	4.08	6.96	23	4.37	4.59	20	12.9%	-0.05 [-0.65, 0.55]	
Henriques 2019 (A)	7.14	3.57	24	4.11	3.55	22	12.9%	0.84 [0.23, 1.44]	
Henriques 2019 (B)	4.17	2.91	25	4.11	3.55	22	13.2%	0.02 [-0.55, 0.59]	
Subtotal (95% CI)			193			156	100.0%	0.54 [0.13, 0.95]	-
Heterogeneity: Tau ² =	0.25; Chi²	= 24.06,	df = 7 (F	P = 0.00	1); l² =	71%			
Test for overall effect:	Z = 2.56 (P	= 0.01)							
5.2.3 Go-Gn (mm)									
Al-Jewari 2013	3.3	2.5	40	1.6	1.1	24	43.7%	0.80 [0.28, 1.33]	
Baysal 2013	3	2.63	20	2.75	2.08	20	35.7%	0.10 (-0.52, 0.72)	_
Dalci 2014	1.84	0.84	10	1.41	0.22	10	20.5%	0.67 [-0.24, 1.58]	
Subtotal (95% CI)			70			54	100.0%	0.53 [0.07, 0.98]	-
Heterogeneity: Tau ² =	0.05: Chi ²	= 2.94. d	f = 2 (P :	= 0.23):	² = 32	%			
Test for overall effect .	Z = 2.24 (P	= 0.02)		0.2071					
5.2.4 FMPA									
AL Jewari 2013	0.6	27	40	1.8	1.5	24	35 5%	-0.51 [-1.02 0.01]	
Honriquee 2010 (A)	-0.72	2.1	24	-0.02	1.01	29	32.104	-0.34 [-0.02, 0.01]	
Honriques 2013 (A)	0.73	2.2	24	-0.02	1.01	22	32.170	0.34 [0.32, 0.23]	
Subtotal (95% CI)	0.70	2.02	89	40.02	1.91	68	100.0%	-0.18 [-0.69, 0.33]	
Heterogeneity: Tau ² =	0.12; Chi ²	= 4.96, d	f= 2 (P :	= 0.08);	I ² = 60	%			
iestor overall effect.	∠ = 0.69 (P	= 0.49)							
									-2 -1 0 1 2
-									Functional appliance Control
		MIG - 6 -	At = 0.	20 L = 12 4	1.5 1.6	- ALC 1100			

Test for subgroup differences: Chi² = 5.57, df = 3 (P = 0.13), l² = 46.2%

Table 13: Forest plot for Intermaxillary landmarks Study or Subgroup 5.3.1 ANB Alail 2014 Alhammadi 2019 (A) Alhammadi 2019 (B) Dalci 2014 (A) Dalci 2014 (A) Elikordy 2021 (A) Elikordy 2021 (B) Fontes 2020 (A) Fontes 2020 (A) Fontes 2020 (A) Heterogenelly: Tau*= 1. Test for overall effect Z i 5 3.2 Witte Functional appliance Control Mean Difference Mean SD Total Mean SD Total Weight IV, Random, 95% CI Mean Difference IV, Random, 95% CI Mean 3D Joka 0.4 0.7 0.48 18 0.29 0.48 18 0.29 0.48 18 0.27 0.27 10 -0.27 0.27 10 -0.27 0.27 10 -0.27 0.27 10 0.06 0.8 15 0.27 1.2 0.07 1.2 20 0.17 1.2 20 0.17 1.2 20 0.17 1.1 20 > 0.000011; |= 96% > > > > > -2.40 [+2.84, -1.96] -2.78 [+3.16, -2.40] -0.32 [+0.72, 0.08] -1.02 [+1.37, -0.67] -0.87 [+1.21, -0.53] -0.34 [+0.83, 0.15] -1.30 [0.70, 1.90] -1.22 [+2.20, -0.24] -1.81 [+2.68, -0.94] -1.91 [+3.25, -0.57] -1.12 [+1.85, -0.38] 10.5% 10.6% 10.6% 10.6% 10.6% 10.4% 10.2% 9.1% 9.4% 8.0% **100.0%** -2 -2.49 -0.03 -1.29 -1.14 -0.28 1.36 -0.95 -1.54 -1.74 0.9 0.74 0.79 0.49 0.48 0.53 0.87 1.88 1.59 3.07 21 23 21 10 15 15 20 20 23 **178** = 9 (P -+ .29; Chi² = 201.21, d = 2.99 (P = 0.003) 5.3.2 Witts 5.3.2 Witts Dalci 2014 (A) Dalci 2014 (B) Fontes 2020 (A) Fontes 2020 (B) Guimaraes 2013 Subtotal (95% CT) -1.1 0.58 -1.1 0.58 1.17 2.05 1.17 2.05 1.08 1.96 -1.84 [-2.33, -1.35] -0.85 [-1.48, -0.22] -4.65 [-6.01, -3.29] -4.49 [-6.00, -2.98] -5.07 [-7.19, -2.95] -**3.17 [-4.61, -1.73**] -2.94 -1.95 -3.48 -3.32 -3.99 23.1% 22.7% 19.6% 18.8% 15.7% **100.0%** 0.53 0.83 2.32 2.77 4.75 10 10 20 20 20 **80** 10 10 20 20 23 83 Heterogeneity: Tau² = 2.28; Chi² = 46.37, df: Test for overall effect: Z = 4.31 (P < 0.0001) = 4 (P < 0.00001); I² = 91% 5.3.3 ANS-Me (mm) 5.3.3 ANS-Me (mn Al-Jewari 2013 Baysal 2013 (A) Baysal 2013 (B) Dalci 2014 (A) Dalci 2014 (B) Subtotal (95% CI) -0.10 [-2.74, 2.54] 2.30 [1.05, 3.55] 1.80 [0.58, 3.02] 1.22 [0.44, 2.00] 3.49 [2.91, 4.07] **1.96 [0.75, 3.17]** 40 20 20 10 10 **10** 0.1 2.3 2.05 1.73 2.05 1.73 0.59 0.7 0.59 0.7 11.5% 20.2% 20.5% 23.3% 24.4% **100.0%** 0 4.35 3.85 1.81 4.08 8 2.27 2.17 1.05 0.61 24 20 20 10 10 **84** Sublotar (95% Cl) 84 Heterogeneity: Tau² = 1.47; Chi² = 26.74, df = 4 (P < 0.0001); l² = 85% Test for overall effect: Z = 3.18 (P = 0.001) + -4 -2 Functional appliance

0 2 Control

Test for subgroup differences: Chi² = 31.19, df = 2 (P < 0.00001), i² = 93.6%

Table 14: Forest plot for Dentoalveolar landmarks

	Function	al applia	ince	010	ontrol	101		Std. Mean Difference	Std. Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl			
5.4.1 IMPA												
Ardeshna 2019	4.9	9.51	24	0.84	2.24	13	20.7%	0.51 [-0.18, 1.19]				
Guimaraes 2013	4.53	8.49	23	-0.07	3.6	20	25.5%	0.68 [0.06, 1.29]				
Henriques 2019 (A)	4.57	9.02	24	-0.1	1.4	22	27.2%	0.70 [0.10, 1.29]				
Henriques 2019 (B)	2.43	5.95	22	-0.1	1.4	22	26.6%	0.57 [-0.03, 1.18]				
Subtotal (95% CI)			93			77	100.0%	0.62 [0.31, 0.93]	◆			
Heterogeneity: Tau ² = (Test for overall effect: 2	0.00; Chi ^z = Z = 3.90 (P	= 0.22, d < 0.0001	f=3(P: 1)	= 0.97);	I ² = 0%)						
5.4.2 Go Gn SN angle												
Fontes 2020 (A)	0.05	2.27	20	-0.63	2.8	20	23.2%	0.26 (-0.36, 0.88)				
Fontes 2020 (B)	0.11	3.24	20	-0.63	2.8	20	23.3%	0.24 [-0.38, 0.86]				
Henriques 2019 (A)	-0.56	3.06	24	-0.28	2.3	22	26.9%	-0.10 [-0.68, 0.48]				
Henriques 2019 (B)	0.7	1.83	25	-0.28	2.3	22	26.6%	0.47 [-0.11, 1.05]	+			
Subtotal (95% CI)			89			84	100.0%	0.21 [-0.09, 0.51]	◆			
Heterogeneity: Tau ² = 0.00; Chi ² = 1.89, df = 3 (P = 0.59); I ² = 0% Test for overall effect: $Z = 1.40$ (P = 0.16)												
5.4.3 Nasolabial angle												
Elkordy 2021 (A)	2.48	6.79	15	-2.95	4.08	16	22.3%	0.95 [0.20, 1.70]				
Elkordy 2021 (B)	2.21	4.78	15	-2.95	4.08	16	21.6%	1.13 (0.37, 1.90)				
Fontes 2020 (A)	1.67	8.69	20	-1.08	9.02	20	28.0%	0.30 [-0.32, 0.93]	-+			
Fontes 2020 (B)	0.92	6.66	20	-1.08	9.02	20	28.1%	0.25 [-0.38, 0.87]				
Subtotal (95% CI)			70			72	100.0%	0.61 [0.18, 1.05]	◆			
Heterogeneity: Tau ² = (Test for overall effect: 2	0.07; Chi² = Z = 2.77 (P	= 4.80, d = 0.006)	f=3(P:	= 0.19);	l² = 38'	%						
5.4.4 Overiet												
Alali 2014	-3.3	2.9	21	0.7	0.9	40	12.6%	-2 15 [-2 80 -1 49]				
Ardeshna 2019	-4.72	2.26	24	-0.18	0.52	13	10.9%	-2.39 [-3.28, -1.50]				
Baysal 2013	-0.58	2.73	20	0.38	1.31	11	12.0%	-0.40 [-1.14, 0.34]				
Dalci 2014	-4.69	1.22	10	-0.15	0.27	10	5.3%	-4.92 [-6.84, -3.01]	←			
Fontes 2020 (A)	-4.05	2.29	20	0.05	1.12	20	11.5%	-2.23 [-3.03, -1.42]				
Fontes 2020 (B)	-3.8	2.12	20	0.05	1.12	20	11.5%	-2.23 [-3.03, -1.42]				
Guimaraes 2013	-3.83	3.02	23	0.18	1.28	20	12.3%	-1.66 [-2.36, -0.95]				
Henriques 2019 (A)	-5.64	2.54	24	-0.08	1.39	22	11.5%	-2.64 [-3.44, -1.83]				
Henriques 2019 (B)	-3.7	2.38	25	-0.08	1.39	22	12.4%	-1.80 [-2.48, -1.11]				
Subtotal (95% CI)		101101	187			178	100.0%	-2.08 [-2.62, -1.54]	•			
Heterogeneity: Tau* = 1 Test for overall effect: 2	0.49; Chi*⊧ Z= 7.55 (P	= 31.81, < 0.000(df = 8 (F 01)	' = 0.001	01); I*=	: 75%						
5.4.5 Overbite												
Baysal 2013	2	1.82	20	0.05	1.3	11	14.1%	1.14 [0.35, 1.94]				
Dalci 2014	-2.69	1.02	10	-0.46	0.44	10	11.0%	-2.72 [-4.00, -1.43]				
Fontes 2020 (A)	-2.52	1.46	20	-0.63	1.35	20	14.8%	-1.32 [-2.01, -0.63]				
Fontes 2020 (B)	-2.93	2.13	20	-0.63	1.35	20	14.8%	-1.26 [-1.95, -0.58]	- - -			
Guimaraes 2013	-3.34	1.97	23	-0.2	2.21	20	14.8%	-1.48 [-2.16, -0.80]				
Henriques 2019 (A)	-2.21	1.84	24	-0.6	1.9	22	15.3%	-0.85 [-1.45, -0.24]				
Henriques 2019 (B) Subtotal (95% CI)	-2.9	1.33	25 142	-0.6	1.9	22 125	15.1% 100.0%	-1.39 [-2.04, -0.75] -1.08 [-1.79, -0.37]	•			
Heterogeneity: Tau ² = 0 Test for overall effect: 2	0.76; Chi² = Z = 2.98 (P	= 39.63, = 0.003)	df=6 (F	< 0.00	001); I²	= 85%)					
5.4.7 Molar relationshi	ip											
Ardeshna 2019	-7	2.08	24	-0.41	0.71	13	48.9%	-3.71 [-4.83, -2.59]	+ -			
Guimaraes 2013	-1.82	2.07	23	-1.04	1.33	20	51.1%	-0.43 [-1.04, 0.17]				
Subtotal (95% CI)			47			33	100.0%	2.04 [5.25, 1.17]				
Heterogeneity: Tau ² = 5 Test for overall effect: 2	5.17; Chi² = Z = 1.24 (P	= 25.42, = 0.21)	df = 1 (F	< 0.00	001); IP	= 96%	,					
									-4 -2 0 2 4			
To at fair and support diffe			0.46		00004	17 0	1.50		Functional appliance Control			

Test for subgroup differences: Chi² = 91.40, df = 5 (P < 0.00001), l² = 94.5%

Table 15: Characteristics of included studies

	3	g	Design	Interve ntion/ Control	grou p	Gende r M/F	Inter venti on	Contro l	Outcom e assessed	Authors conclusions
Al- Jewa 1 ir 20137	New York	private practic e	retrosp ective	64 40/24	10-17	35/29	MAR A applia nce	no treatme nt	35 landmark s	Overall, the MARA showed significant skeletal and dentoalveolar changes resulting in normalization of the Class II malocclusion
Bays al 7 2013 9	Turke y	Orthod ontic Clinic of Erciyes Univer sity	RCT	51 40/11		30/21	Herbs t applia nce n=20 Twin block n=20	no treatme nt	cephalom etric measure ments	Therapies with both appliances resulted in correction of Class II relationship, reduction of overjet, and improvement in skeletal discrepancy. The only statistically significant differences between treatment groups were recorded for mandibular incisor position and skeletal

										protrusion was higher in the Herbst group and skeletal discrepancy improvement was greater in the TB group
Bock 2013 9	Germ any	Orthod ontic Depart ment at the Univer sity of Giesse n	retrosp ective	22	12-27 years mean 15+- 3.27	11/11	Herbs t applia nce	no treatme nt	molar relationsh ip overjet midline shift	Class II subdivision Herbst treatment was similarly as successful as symmetric Class II Herbst treatment with respect to the occlusal correction
Gui mara es 2013 ¹ °	Brazil	Bauru Dental School, Univer sity of Sa~o Paulo	prospec tive	43 23/20	11.33- 16.5	20/23	Twin Force Bite Corre ctor	no treatme nt	cephalom etric measure ments	The appliance promotes restriction of anterior maxillary displacement without significant changes in mandibular length and position and improvement of maxillomandibular relationship without changes in facial growth and significant buccal tipping of mandibular incisors.
Alali 2014 ¹ 1	Syria	Univer sity of Damas cus, Depart ment of Orthod ontics	RCT	38 21/17	mean 13.2 years	17/21	FLM GM	no treatme nt	cephalom etric measure ments	FLMGM was effective in treating Class II/1 growing patients and produced favorable and measurable dentofacial changes. Overjet reduction was achieved by a combination of upper incisor retroclination and increase in total mandibular length associated with forward chin repositioning.
Dalci 2014 ¹ 0	Turke y	Univer sity of Ankara , Depart ment of Orthod ontics	clinical study	30 10/10/1 0	-	21/9	TFBC Activ ator	no treatme nt	cephalom etric measure ments	The TFBC and the Activator were both successful in correcting a Class II relationship in young adults, with greater skeletal mandibular changes identified in the Activator Group and mandibular dentoalveolar changes in the Twin- Force Bite Corrector Group.
Ehsa ni 2015 ¹ 3	Cana da	private practic e	retrosp ective	75 25/25/2 5	-	27/48	Twin block Xbow	no treatme nt	cephalom etric measure ments	Class II correction with an XBow or Twin-block followed by orthodontic brackets and archwires is achieved by a combination of dentoalveolar and skeletal effects without vertical changes

Aust ro 2018 ¹⁴	Spain	private practic e	prospec tive	85 45/40	11.3- 11.7	45/40	Austr o Repos itione r	no treatme nt	cephalom etric measure ments	The Austro Repositioner is a FFAthat was found to be effective for the treatment of skeletal Class II malocclusion resulting from the retrusion of the mandible in both dolicho- and brachyfacial patients over the short term.
Bock 2018 ¹⁵	Germ any	Depart ment of Orthod ontics at the Univer sity of Giesse n,	Retrosp ective	51 20/31	mean 14.4 years	29/22	Herbs t multi brack et applia nce	no treatme nt	sagittal molar and canine relationsh ip, PAR score	A very good long- term stability was seen for the occlusal outcome of Class II:2 Herbst-MBA Tx. On average mild changes had occurred during the post-Tx observation period and the long-term findings were similar as in untreated Class I controls.
Alha mma di 2019 ¹ 6	Egypt	Depart ment of Orthod ontics, Cairo univers ity	RCT	41 23/18	IG:11. 89+- 1.85 CG:11 .27+- 1.19	0/41	FFRD	no treatme nt	cephalom etric measure ments	The Twin Block functional appliance induced significant skeletal and pharyngeal airway changes compared to the effects induced by FFRD or by natural growth.
Arde shna 2019 ¹ 7	USA	Rutger s Univer sity	retrosp ective	37 24/13		21/16	MAR A applia nce	no treatme nt	cephalom etric measure ments	The MARA is effective in the treatment of Class II malocclusion, resulting in a significant decrease in overjet and correction of the Class II molar relationship. Improvement is primarily the result of dental effects of the mandibular incisor and molar and maxillary molar.
Henr iques 2019 ¹	Brazil	Bauru Dental School, Univer	prospec tive	71 24/25/2	12.36 years	37/34	MPA	no treatme	cephalom etric measure	The JJ group presented a greater restriction of growth and anterior displacement of the maxilla and greater maxillary retrusion
8		sity of São Paulo	r	2	5		Jaspe r Jump er	nt	ments	and the MPA group showed a significantly greater increase of mandibular effective length.
Alho raibi 2020	USA	private practic e	retrosp ective	120 60/60			FFRD applia nce	no treatme nt	cephalom etric measure ments	This study found that the FFRD was capable of correcting Class II malocclusion in growing patients presenting at various skeletal maturational ages via different methods. FFRD induced skeletal maxillary restraint and dentoalveolar compensation

										during the pre-peak and peak growth stages.
Font es 2020 ²⁰	Brazil	Bauru Dental School, Univer sity of São Paulo	retrosp ective	60 40/20		30/30	Jaspe r Jump er Twin Force	no treatme nt	cephalom etric measure ments	The dentoalveolar and soft-tissue effects of the Jasper jumper and the Twin Force Bite Corrector, followed by fixed orthodontic appliances were similar in Class II malocclusion treatment. However, the Twin Force seems to provide more skeletal effects than the Jasper Jumper, since it demonstrated greater maxillary growth restriction and mandibular length increase
Giuc a 2020 21	Italy	private practic e	retrosp ective	150 75/75	9.8+- 1.9	70/80	Herbs t applia nce	no treatme nt	cephalom etric measure ments	The study showed differences in response to treatment with the Herbst appliance depending on patient's vertical growth pattern.
Elko rdy 2021 22	Egypt	Faculty of Dentist ry, Cairo Univer sity	retrosp ective	46 15/15/16	11/14	-	FFRD applia nce	no treatme nt	cephalom etric measure ments	FFRD was successful in the treatment of Class II malocclusion through dento- alveolar changes and minimal skeletal changes. The splint- supported FFRD was equally effective as the conventional FFRD, with no
		sity					Splint FFRD			significant difference in the treatment effects, except for a modest maxillary headgear effect.