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ARTICLE INFO ABSTRACT 

 This research examines the performance measures of the bulk queue system in a 
Neutrosophic setting. It creates and improves the performance measures for bulk 
queue systems with two and three parameters; in notation, this is represented as 
NM[b]/NM/1. We use Neutrosophic values to indicate the arriving rate and serving 
rate. We calculated the formula for the performance measure in the Neutrosophic 
environment for both uniform and non-uniform service rates. Additionally, show 
how to compute the NM[b]/NM/1   performance measure for values of two and 
three parameters. Additionally, a comparison and discussion of the performance 
metrics between crisp and Neutrosopic values were made. 
 
Key Words: bulk queueing system, neutrosophic values, two parameters, three 
parameters, performance measure. 

 
1. Introduction: 

 
In the classical queueing theory, the several performance measures were determined by the arrival, service or 
exit rates. In real life, the arrival rate and service rate are usually erroneous [1,2].  In order to address 
uncertainty in the queueing system parameters, researchers offered the queueing theory in a fuzzy 
environment, as in [3,4]. Better models and reality representations are required in order to address the 
unreliable arrival rate and service rate constraints with queueing theory. 
In 1995, Smarandache combined the ideas of intuitionistic fuzzy logic and fuzzy logic to create Neutrosophic 
logic [5,6,7,8]. Neutronosophic logic has the advantage of handling factual ambiguity in addition to degrees of 
truth and falsity. Consequently, decision-making is enhanced in a neutrophilic environment [9,10,11,12, 13]. 
Mohamed Bishe Zeina [14,15,16] provided numerous essential formulas that are an important tool in queueing 
systems in a Neotrosophic environment in his study of the Erlang service queueing model in a Neutrosophic 
environment. 
An event is considered to be (T) true, (F) false, and (I) indeterminate in Neutrosophic probability, where T, I, 
and F are real values from the intervals between ]-0,1+[, with no restriction on the total T+I+F. However, in 
many applications, these components may not be presented clearly, and Neutrosophic numbers can be formed 
by adding the determinant part of the number (D) and the sum of Indeterminacy (I) in the form N=D+I 
[11,12,13,16]. 
In queueing theory, a bulk queue—also referred to as a batch queue—is a type of queue discipline. Many 
researchers have been interested in dimension-related problems. The concept of bulk queues, including bulk 
arrivals and/or bulk service, is well-established and has garnered significant attention. Recognize that 
scenarios involving bulk arrivals (also called batch arrivals) and bulk service waits are common in places like 
utilizing the elevator in government buildings and hospitals, driving traffic, traveling on suburban trains, etc. 
Consequently, related models find many practical applications. In this research, we compute the performance 
measure by using the Neutrosophic queueing formula on bulk queues. 
The following are the remaining sections of this paper: The preliminary discussion of queueing theory was 
given in brief in Section 2. In Section 3, the basic principles of Neutrosophic queueing theory are addressed 
and a bulk queueing system model is presented using Neutrosophic queueing formulas. Numerical examples 
for the proposed model of NM[b]/NM/1 Neutrosophic formulas with uniform and uneven service rates for two 
and three parameters are provided in sections 4 and 5. We had discussions and a conclusion in 
section 6. 
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2. Bulk Queueing model description: 
 
The model is of notation type M[x]/M/1/∞/FCFS, consider a single service channel 
with a Poisson input of batch size X, a fuzzified exponential inter-arrival service model of a queue system with 
infinite capacity, and FCFS service discipline. 
Let 𝑐𝑥 to represent assigned probability and let x represent the arrival rate of the Poisson Process for batch size 

x. The number of customers in any arrival is a random variable, with 𝐶𝑥 =
𝜆𝑋

𝜆
 and where 𝜆 is representing the 

composite arrival rate of all batches of size x 

𝜆 = ∑ 𝜆𝑖 .
∞

𝑖=1
 

Define Pn (t), the likelihood that n units are present in the system at any time t. By using general Birth Death 
arguments, it is easy to derive the model's differential difference equations. 
𝑃𝑛

′(𝑡) = −(𝜆 + 𝜇)𝑃𝑛(𝑡) + 𝜇𝑃𝑛+1(𝑡)+λ∑ .∞
𝑖=1 𝑃𝑛+1(𝑡)𝑐𝑘,                      𝑛 ≥ 1 

𝑃0
′(𝑡) = −𝜆𝑃0(𝑡) + 𝜇𝑃1(𝑡),                                                                            n = 0 

 
In steady state: 
The steady state condition is reached when the behavior of the system becomes independent of the time. 
When 𝑡 → ∞ the steady state equations are 

0 = −(λ +  μ)𝑃𝑛  +  μ𝑃𝑛+1  +  λ∑ 𝑃𝑛−𝑘𝑐𝑘,

𝑛

𝑘=1
                               n ≥ 1 

0 = λ 𝑃0  +  μ 𝑃1                                                                                         𝑛 = 0 
The various performance measures of this model are derived by Meenu Mittal etal [17]. 
 
2.1 Two Parameter value – the batch of two customers arrivals 
2.1.1 Expected batch size E(x) for two parameters 𝜆1 & 𝜆2 is given by 
 

𝐸(𝑋) =
(𝜆1+2𝜆2)

𝜆
  where 𝜆 = 𝜆1 + 𝜆2 

2.1.2 Expected queue length Lq for two parameters 𝜆1 & 𝜆2 is given by 

𝐿𝑞 = [
𝜌1+3𝜌2

1−𝜌1−2𝜌2
] where 𝜌 = 𝜌1 + 2𝜌2;   𝜌1 =

𝜆1

𝜇
    , 𝜌2 =

𝜆2

𝜇
 

2.1.3 Waiting time in queue: 

𝑊𝑞 =
𝐿𝑞

𝜆
 

2.1.4 Waiting time in the system 

𝑊𝑠 = 𝑊𝑞 +
1

𝜇
 

2.1.5    Average Utilization    ρ=
𝜆

𝜇
 

 
2.2 Three Parameters value – the batch of three customers arrival 
2.2.1 Expected batch size E(x) for three parameters 𝜆1, 𝜆2 & 𝜆3 is given by 

𝐸(𝑋) =
(𝜆,+2𝜆2+3𝜆3)

𝜆
 where 𝜆 = 𝜆1 + 𝜆2 + 𝜆3 

2.2.2 Expected queue length for three parameters 𝜆1, 𝜆2 & 𝜆3 is given by 

𝐿𝑞 = [
𝜌1+3𝜌2+6𝜌3

1−𝜌1−2𝜌2−3𝜌3
] where 𝜌 = 𝜌1 + 2𝜌2 + 3𝜌3;   𝜌1 =

𝜆1

𝜇
    , 𝜌2 =

𝜆2

𝜇
   , 𝜌3 = 

𝜆3

𝜇
 

 
3. Preliminaries of Neutrosophic theory 

 
In this section, we present the idea of the neutrosophic and construct the neutrosophic formula for performance 
measures with two and three parameters. 
 
3.1 Neutrosophic Queue 
A queueing system known as a neutrosophic queue uses neutrosophic numbers to represent queueing 
parameters like the average rate of consumers entering the queueing system (𝜆), and the average rate of 
customers being served (𝜇) are neutrosophic numbers [15,18]. 
In neutrosophic queueing 𝜆 is denoted by 𝜆𝑁= [𝜆𝐿 , 𝜆𝑈]  and 𝜇 is denoted by 𝜇𝑁= [𝜇𝐿, 𝜇𝑈]. Then, the neutrosophic 
traffic intensity if we have ‘s’ servers is denoted by 
 

𝜌𝑁 =
𝜆𝑁

𝜇𝑁

 =
[𝜆𝐿 , 𝜆𝑈]

[𝜇𝐿 , 𝜇𝑈]
= [

𝜆𝐿

𝜇𝑈

 ,
𝜆𝑈

𝜇𝐿

] 
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3.2 Arithmetic Operations of Interval Values 
Let [x1, y1], [x2, y2] be two Intervals where x1, x2, y1, y2 ∈ ℝ and for practical cases set x 1 > 0, x2 > 0, y1 > 0, 

y2 > 0 then: 
[x1, y1] + [x2, y2] = [x1 + x2, y1 + y2] 

 
[x1, y1] − [x2, y2] = [x1 − x2, y1 − y2] 

 
[x1, y1] * [x2, y2] = [x1 x2,  y1y2] 

 

[x1, y1] ÷ [x2, y2] = [x1, x2]*[
1

y2
 ,

1

y1
] = [

x1

y2
 ,

x2

y1
] 

 
3.3 (NM[b]/NM/1): (FCFS/∞/∞) Neutrosophic arrival of batch size ‘b’ 
The neutrosophic chance that an arriving customer will locate a batch of two customers in a batch queue or a 
batch of three customers in bulk arrival is calculated after substituting crisp parameters with neutrosophic 
parameters. 
 
3.3.1 (NM[2]/NM/1): (FCFS/∞/∞) 
1) Neutrosophic expected number of customers in queue with two parameters: 

𝑁𝐿𝑞 = [
𝜌1 + 3𝜌2

1 − 𝜌1 − 2𝜌2

] 

𝑁𝐿𝑞 =

[
 
 
 [

𝜆(1,𝐿)

𝜇(1,𝑈)
,
𝜆(1,𝑈)

𝜇(1,𝐿)
 ] + 3 [

𝜆(2,𝐿)

𝜇(2,𝑈)
,
𝜆(2,𝑈)

𝜇(2,𝐿)
 ]

1 − [
𝜆(1,𝐿)

𝜇(1,𝑈)
,
𝜆(1,𝑈)

𝜇(1,𝐿)
 ] − 2 [

𝜆(2,𝐿)

𝜇(2,𝑈)
,
𝜆(2,𝑈)

𝜇(2,𝐿)
 ]
]
 
 
 

 

𝑁𝐿𝑞 =

[
 
 
 

𝜆(1,𝐿)

𝜇(1,𝑈)
+ 3

𝜆(2,𝐿)

𝜇(2,𝑈)

1 −
𝜆(1,𝐿)

𝜇(1,𝑈)
− 2

𝜆(2,𝐿)

𝜇(2,𝑈)

 ,

𝜆(1,𝑈)

𝜇(1,𝐿)
+ 3

𝜆(2,𝑈)

𝜇(2,𝐿)

1 −
𝜆(1,𝑈)

𝜇(1,𝐿)
− 2

𝜆(2,𝑈)

𝜇(2,𝐿)]
 
 
 

 

2) Neutrosophic expected waiting time in queue with two parameters: 
 

𝑁𝑊𝑞 = [
1

𝜆𝑁

(
𝜌1 + 3𝜌2

1 − 𝜌1 − 2𝜌2

)] 

𝑁𝑊𝑞 =

[
 
 
 
1

𝜆𝑁

(

 
[
𝜆(1,𝐿)

𝜇(1,𝑈)
,
𝜆(1,𝑈)

𝜇(1,𝐿)
 ] + 3 [

𝜆(2,𝐿)

𝜇(2,𝑈)
,
𝜆(2,𝑈)

𝜇(2,𝐿)
 ]

1 − [
𝜆(1,𝐿)

𝜇(1,𝑈)
,
𝜆(1,𝑈)

𝜇(1,𝐿)
 ] − 2 [

𝜆(2,𝐿)

𝜇(2,𝑈)
,
𝜆(2,𝑈)

𝜇(2,𝐿)
 ]
)

 

]
 
 
 

 

 

𝑁𝑊𝑞 =

[
 
 
 
1

𝜆𝑈

(

 

𝜆(1,𝐿)

𝜇(1,𝑈)
+ 3

𝜆(2,𝐿)

𝜇(2,𝑈)

1 −
𝜆(1,𝐿)

𝜇(1,𝑈)
− 2

𝜆(2,𝐿)

𝜇(2,𝑈))

  ,
1

𝜆𝐿

(

 

𝜆(1,𝑈)

𝜇(1,𝐿)
+ 3

𝜆(2,𝑈)

𝜇(2,𝐿)

1 −
𝜆(1,𝑈)

𝜇(1,𝐿)
− 2

𝜆(2,𝑈)

𝜇(2,𝐿))

 

]
 
 
 

 

3) Neutrosophic expected waiting time in system with two parameters: 

𝑁𝑊𝑠 = [
1

𝜆𝑁

(
𝜌1 + 3𝜌2

1 − 𝜌1 − 2𝜌2

) +
1

𝜇𝑁

] 

𝑁𝑊𝑠 =

[
 
 
 
1

𝜆𝑁

(

 
[
𝜆(1,𝐿)

𝜇(1,𝑈)
,
𝜆(1,𝑈)

𝜇(1,𝐿)
 ] + 3 [

𝜆(2,𝐿)

𝜇(2,𝑈)
,
𝜆(2,𝑈)

𝜇(2,𝐿)
 ]

1 − [
𝜆(1,𝐿)

𝜇(1,𝑈)
,
𝜆(1,𝑈)

𝜇(1,𝐿)
 ] − 2 [

𝜆(2,𝐿)

𝜇(2,𝑈)
,
𝜆(2,𝑈)

𝜇(2,𝐿)
 ]
)

 +
1

𝜇𝑁

]
 
 
 

 

𝑁𝑊𝑠 =

[
 
 
 
1

𝜆𝑈

(

 

𝜆(1,𝐿)

𝜇(1,𝑈)
+ 3

𝜆(2,𝐿)

𝜇(2,𝑈)

1 −
𝜆(1,𝐿)

𝜇(1,𝑈)
− 2

𝜆(2,𝐿)

𝜇(2,𝑈))

 +
1

𝜇𝑈

,
1

𝜆𝐿

(

 

𝜆(1,𝑈)

𝜇(1,𝐿)
+ 3

𝜆(2,𝑈)

𝜇(2,𝐿)

1 −
𝜆(1,𝑈)

𝜇(1,𝐿)
− 2

𝜆(2,𝑈)

𝜇(2,𝐿))

 +
1

𝜇𝐿

]
 
 
 

 

 
3.3.2 (NM[3]/NM/1): (FCFS/∞/∞) 
4)  Neutrosophic expected number of customers in queue with three parameters: 

𝑁𝐿𝑞 = [
𝜌1 + 3𝜌2 + 6𝜌3

1 − 𝜌1 − 2𝜌2 − 3𝜌3

] 
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𝑁𝐿𝑞 =

[
 
 
 [

𝜆(1,𝐿)

𝜇(1,𝑈)
,
𝜆(1,𝑈)

𝜇(1,𝐿)
 ] + 3 [

𝜆(2,𝐿)

𝜇(2,𝑈)
,
𝜆(2,𝑈)

𝜇(2,𝐿)
 ] + 6 [

𝜆(3,𝐿)

𝜇(3,𝑈)
,
𝜆(3,𝑈)

𝜇(3,𝐿)
 ]

1 − [
𝜆(1,𝐿)

𝜇(1,𝑈)
,
𝜆(1,𝑈)

𝜇(1,𝐿)
 ] − 2 [

𝜆(2,𝐿)

𝜇(2,𝑈)
,
𝜆(2,𝑈)

𝜇(2,𝐿)
 ] − 3 [

𝜆(3,𝐿)

𝜇(3,𝑈)
,
𝜆(3,𝑈)

𝜇(3,𝐿)
 ]
]
 
 
 

 

𝑁𝐿𝑞 =

[
 
 
 

𝜆(1,𝐿)

𝜇(1,𝑈)
+ 3

𝜆(2,𝐿)

𝜇(2,𝑈)
+ 6

𝜆(3,𝐿)

𝜇(3,𝑈)

1 −
𝜆(1,𝐿)

𝜇(1,𝑈)
− 2

𝜆(2,𝐿)

𝜇(2,𝑈)
− 3

𝜆(3,𝐿)

𝜇(3,𝑈)

 ,

𝜆(1,𝑈)

𝜇(1,𝐿)
+ 3

𝜆(2,𝑈)

𝜇(2,𝐿)
+ 6

𝜆(3,𝑈)

𝜇(3,𝐿)

1 −
𝜆(1,𝑈)

𝜇(1,𝐿)
− 2

𝜆(2,𝑈)

𝜇(2,𝐿)
− 3

𝜆(3,𝑈)

𝜇(3,𝐿)]
 
 
 

 

5) Neutrosophic expected waiting time in queue with three parameters: 

𝑁𝑊𝑞 = [
1

𝜆𝑁

(
𝜌1 + 3𝜌2 + 6𝜌3

1 − 𝜌1 − 2𝜌2 − 3𝜌3

)] 

𝑁𝑊𝑞 =

[
 
 
 
1

𝜆𝑁

(

 
[
𝜆(1,𝐿)

𝜇(1,𝑈)
,
𝜆(1,𝑈)

𝜇(1,𝐿)
 ] + 3 [

𝜆(2,𝐿)

𝜇(2,𝑈)
,
𝜆(2,𝑈)

𝜇(2,𝐿)
 ] + 6 [

𝜆(3,𝐿)

𝜇(3,𝑈)
,
𝜆(3,𝑈)

𝜇(3,𝐿)
 ]

1 − [
𝜆(1,𝐿)

𝜇(1,𝑈)
,
𝜆(1,𝑈)

𝜇(1,𝐿)
 ] − 2 [

𝜆(2,𝐿)

𝜇(2,𝑈)
,
𝜆(2,𝑈)

𝜇(2,𝐿)
 ] − 3 [

𝜆(3,𝐿)

𝜇(3,𝑈)
,
𝜆(3,𝑈)

𝜇(3,𝐿)
 ]
)

 

]
 
 
 

 

𝑁𝑊𝑞 =

[
 
 
 
1

𝜆𝑈

(

 

𝜆(1,𝐿)

𝜇(1,𝑈)
+ 3

𝜆(2,𝐿)

𝜇(2,𝑈)
+ 6

𝜆(3,𝐿)

𝜇(3,𝑈)

1 −
𝜆(1,𝐿)

𝜇(1,𝑈)
− 2

𝜆(2,𝐿)

𝜇(2,𝑈)
− 3

𝜆(3,𝐿)

𝜇(3,𝑈))

 ,
1

𝜆𝐿

(

 

𝜆(1,𝑈)

𝜇(1,𝐿)
+ 3

𝜆(2,𝑈)

𝜇(2,𝐿)
+ 6

𝜆(3,𝑈)

𝜇(3,𝐿)

1 −
𝜆(1,𝑈)

𝜇(1,𝐿)
− 2

𝜆(2,𝑈)

𝜇(2,𝐿)
− 3

𝜆(3,𝑈)

𝜇(3,𝐿))

 

]
 
 
 

, 

6)  Neutrosophic expected waiting time in system with three parameters: 

𝑁𝑊𝑠 = [
1

𝜆𝑁

(
𝜌1 + 3𝜌2 + 6𝜌3

1 − 𝜌1 − 2𝜌2 − 3𝜌3

) +
1

𝜇𝑁

] 

𝑁𝑊𝑠 =

[
 
 
 
1

𝜆𝑁

(

 
[
𝜆(1,𝐿)

𝜇(1,𝑈)
,
𝜆(1,𝑈)

𝜇(1,𝐿)
 ] + 3 [

𝜆(2,𝐿)

𝜇(2,𝑈)
,
𝜆(2,𝑈)

𝜇(2,𝐿)
 ] + 6 [

𝜆(3,𝐿)

𝜇(3,𝑈)
,
𝜆(3,𝑈)

𝜇(3,𝐿)
 ]

1 − [
𝜆(1,𝐿)

𝜇(1,𝑈)
,
𝜆(1,𝑈)

𝜇(1,𝐿)
 ] − 2 [

𝜆(2,𝐿)

𝜇(2,𝑈)
,
𝜆(2,𝑈)

𝜇(2,𝐿)
 ] − 3 [

𝜆(3,𝐿)

𝜇(3,𝑈)
,
𝜆(3,𝑈)

𝜇(3,𝐿)
 ]
)

 +
1

𝜇𝑁

]
 
 
 

 

𝑁𝑊𝑠 =

[
 
 
 
1

𝜆𝑈

(

 

𝜆(1,𝐿)

𝜇(1,𝑈)
+ 3

𝜆(2,𝐿)

𝜇(2,𝑈)
+ 6

𝜆(3,𝐿)

𝜇(3,𝑈)

1 −
𝜆(1,𝐿)

𝜇(1,𝑈)
− 2

𝜆(2,𝐿)

𝜇(2,𝑈)
− 3

𝜆(3,𝐿)

𝜇(3,𝑈))

 +
1

𝜇𝑈

,
1

𝜆𝐿

(

 

𝜆(1,𝑈)

𝜇(1,𝐿)
+ 3

𝜆(2,𝑈)

𝜇(2,𝐿)
+ 6

𝜆(3,𝑈)

𝜇(3,𝐿)

1 −
𝜆(1,𝑈)

𝜇(1,𝐿)
− 2

𝜆(2,𝑈)

𝜇(2,𝐿)
− 3

𝜆(3,𝑈)

𝜇(3,𝐿))

 +
1

𝜇𝐿

]
 
 
 

 

7) Average Utilization    𝜌𝑁 =
𝜆𝑁

𝜇𝑁
=

[𝜆𝐿,𝜆𝑈 ]

[𝜇𝐿 ,𝜇𝑈]
= [

𝜆𝐿

𝜇𝑈
,
𝜆𝑈

𝜇𝐿
] 

 
4. NUMERICAL EXAMPLE 

 
4.1 (NM[2]/NM/1): (FCFS/∞/∞) batch of 2 arrival neutrosophic values with uniform service rate 
Let   𝜆1 = [9,11], 𝜆2 = [11,13]   and 𝜇 = [49,51] 
Then  𝜆 = 𝜆1 + 𝜆2 = [20,24]  and here 𝜇1 = 𝜇2 = 𝜇 
𝜇(1,𝐿) = 𝜇(2,𝐿) = 𝜇𝐿 and    𝜇(1,𝑈) = 𝜇(2,𝑈) = 𝜇𝑈 

By using 3.3.1, 

1) Neutrosophic expected number of customers in queue with two parameters service rate is uniform 

𝑁𝐿𝑞 =

[
 
 
 

𝜆(1,𝐿)

𝜇(1,𝑈)
+ 3

𝜆(2,𝐿)

𝜇(2,𝑈)

1 −
𝜆(1,𝐿)

𝜇(1,𝑈)
− 2

𝜆(2,𝐿)

𝜇(2,𝑈)

 ,

𝜆(1,𝑈)

𝜇(1,𝐿)
+ 3

𝜆(2,𝑈)

𝜇(2,𝐿)

1 −
𝜆(1,𝑈)

𝜇(1,𝐿)
− 2

𝜆(2,𝑈)

𝜇(2,𝐿)]
 
 
 

 

= [
(

9
51

) + 3 (
11
51

)

1 − (
9
51

) − 2 (
11
51

)
 ,

(
11
49

) + 3 (
13
49

)

1 − (
11
49

) − 2 (
13
49

)
] = [2.0997, 4.1666] 

2) Neutrosophic expected waiting time in queue with two parameters service rate is uniform 
 

𝑁𝑊𝑞 =

[
 
 
 
1

𝜆𝑈

(

 

𝜆(1,𝐿)

𝜇(1,𝑈)
+ 3

𝜆(2,𝐿)

𝜇(2,𝑈)

1 −
𝜆(1,𝐿)

𝜇(1,𝑈)
− 2

𝜆(2,𝐿)

𝜇(2,𝑈))

  ,
1

𝜆𝐿

(

 

𝜆(1,𝑈)

𝜇(1,𝐿)
+ 3

𝜆(2,𝑈)

𝜇(2,𝐿)

1 −
𝜆(1,𝑈)

𝜇(1,𝐿)
− 2

𝜆(2,𝑈)

𝜇(2,𝐿))

 

]
 
 
 

 

= [(
1

24
)(

(
9
51

) + 3 (
11
51

)

1 − (
9
51

) − 2 (
11
51

)
) , (

1

20
)(

(
11
49

) + 3 (
13
49

)

1 − (
11
49

) − 2 (
13
49

)
)  ] = [0.0875, 0.2083] 
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3) Neutrosophic expected waiting time in system with two parameters service rate is uniform 
 

𝑁𝑊𝑠 =

[
 
 
 
1

𝜆𝑈

(

 

𝜆(1,𝐿)

𝜇(1,𝑈)
+ 3

𝜆(2,𝐿)

𝜇(2,𝑈)

1 −
𝜆(1,𝐿)

𝜇(1,𝑈)
− 2

𝜆(2,𝐿)

𝜇(2,𝑈))

 +
1

𝜇𝑈

,
1

𝜆𝐿

(

 

𝜆(1,𝑈)

𝜇(1,𝐿)
+ 3

𝜆(2,𝑈)

𝜇(2,𝐿)

1 −
𝜆(1,𝑈)

𝜇(1,𝐿)
− 2

𝜆(2,𝑈)

𝜇(2,𝐿))

 +
1

𝜇𝐿

]
 
 
 

 

𝑁𝑊𝑠 = [(
1

24
)(

(
9
51

) + 3 (
11
51

)

1 − (
9
51

) − 2 (
11
51

)
) + (

1

51
) ,   (

1

20
)(

(
11
49

) + 3 (
13
49

)

1 − (
11
49

) − 2 (
13
49

)
) + (

1

49
)  ] 

𝑁𝑊𝑠 = [0.1071, 0.2287] 
 

Average Utilization    𝜌𝑁 =
𝜆𝑁

𝜇𝑁
=

[20,24]

[49,50]
= [0.3922, 0.4898] 

 
4.2 Crisp queue values with two parameters with uniform service rate 
Let   𝜆1 = 10, 𝜆2 = 12   and μ=50 
Then  𝜆 = 𝜆1 + 𝜆2 = 22 

By Using 2.1.2,  𝐸(𝑋) =
(𝜆1+2𝜆2)

𝜆
= 

10+2(12)

22
= 1.5455 

By using 2.1.3, 𝐿𝑞 = [
𝜌1+3𝜌2

1−𝜌1−2𝜌2
], 𝜌1 =

𝜆1

𝜇
=

10

50
= 0.2   , 𝜌2 =

𝜆2

𝜇
=

12

50
= 0.24 

𝐿𝑞 = [
0.2 + 3(0.24)

1 − 0.2 − 2(0.24)
] = 2.875 

By Using 2.1.4,         𝑊𝑞 =
𝐿𝑞

𝜆
= 

2.875

22
= 0.1306 

By Using 2.1.5,      𝑊𝑠 = 𝑊𝑞 +
1

𝜇
= 0.1306 +

1

50
= 0.1506 

Average Utilization    ρ=
𝜆

𝜇
=

22

50
= [0.44] 

 
4.3 (NM[3]/NM/1): (FCFS/∞/∞) batch of 3 arrival neutrosophic values with uniform service 
rate 
Let   𝜆1 = [9,11], 𝜆2 = [11,13], 𝜆3 = [14,16]   and 𝜇 = [99,101] 
Then  𝜆 = 𝜆1 + 𝜆2 + 𝜆3 = [34, 40], 𝜇1 = 𝜇2 = 𝜇3 = 𝜇, 
𝜇(1,𝐿) = 𝜇(2,𝐿) = 𝜇(3,𝐿) =  𝜇𝐿 and    𝜇(1,𝑈) = 𝜇(2,𝑈) = 𝜇(3,𝑈) = 𝜇𝑈 

By using 3.3.2, 

4) Neutrosophic expected number of customers in queue with three parameters service rate is uniform 
 

𝑁𝐿𝑞 =

[
 
 
 

𝜆(1,𝐿)

𝜇(1,𝑈)
+ 3

𝜆(2,𝐿)

𝜇(2,𝑈)
+ 6

𝜆(3,𝐿)

𝜇(3,𝑈)

1 −
𝜆(1,𝐿)

𝜇(1,𝑈)
− 2

𝜆(2,𝐿)

𝜇(2,𝑈)
− 3

𝜆(3,𝐿)

𝜇(3,𝑈)

 ,

𝜆(1,𝑈)

𝜇(1,𝐿)
+ 3

𝜆(2,𝑈)

𝜇(2,𝐿)
+ 6

𝜆(3,𝑈)

𝜇(3,𝐿)

1 −
𝜆(1,𝑈)

𝜇(1,𝐿)
− 2

𝜆(2,𝑈)

𝜇(2,𝐿)
− 3

𝜆(3,𝑈)

𝜇(3,𝐿)]
 
 
 

 

           𝑁𝐿𝑞 = [
(

9
101

) + 3 (
11
101

) + 6 (
14
101

)

1 − (
9

101
) − 2 (

11
101

) − 3 (
14
101

)
 ,   

(
11
99

) + 3 (
13
99

) + 6 (
16
99

)

1 − (
11
99

) − 2 (
13
99

) − 3 (
16
99

)
] 

           𝑁𝐿𝑞 = [4.5004, 10.4293] 

5) Neutrosophic expected waiting time in queue with three parameters service rate is uniform 
 

𝑁𝑊𝑞 =

[
 
 
 
1

𝜆𝑈

(

 

𝜆(1,𝐿)

𝜇(1,𝑈)
+ 3

𝜆(2,𝐿)

𝜇(2,𝑈)
+ 6

𝜆(3,𝐿)

𝜇(3,𝑈)

1 −
𝜆(1,𝐿)

𝜇(1,𝑈)
− 2

𝜆(2,𝐿)

𝜇(2,𝑈)
− 3

𝜆(3,𝐿)

𝜇(3,𝑈))

 ,
1

𝜆𝐿

(

 

𝜆(1,𝑈)

𝜇(1,𝐿)
+ 3

𝜆(2,𝑈)

𝜇(2,𝐿)
+ 6

𝜆(3,𝑈)

𝜇(3,𝐿)

1 −
𝜆(1,𝑈)

𝜇(1,𝐿)
− 2

𝜆(2,𝑈)

𝜇(2,𝐿)
− 3

𝜆(3,𝑈)

𝜇(3,𝐿))

 

]
 
 
 

 

𝑁𝑊𝑞 = [(
1

40
)(

(
9

101
) + 3 (

11
101

) + 6 (
14
101

)

1 − (
9

101
) − 2 (

11
101

) − 3 (
14
101

)
) , (

1

34
)(

(
11
99

) + 3 (
13
99

) + 6 (
16
99

)

1 − (
11
99

) − 2 (
13
99

) − 3 (
16
99

)
)  ] 

𝑁𝑊𝑞 = [0.1125, 0.3067  ] 

 

6) Neutrosophic expected waiting time in system with three parameters service rate is uniform 
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𝑁𝑊𝑠 =

[
 
 
 
1

𝜆𝑈

(

 

𝜆(1,𝐿)

𝜇(1,𝑈)
+ 3

𝜆(2,𝐿)

𝜇(2,𝑈)
+ 6

𝜆(3,𝐿)

𝜇(3,𝑈)

1 −
𝜆(1,𝐿)

𝜇(1,𝑈)
− 2

𝜆(2,𝐿)

𝜇(2,𝑈)
− 3

𝜆(3,𝐿)

𝜇(3,𝑈))

 +
1

𝜇𝑈

,
1

𝜆𝐿

(

 

𝜆(1,𝑈)

𝜇(1,𝐿)
+ 3

𝜆(2,𝑈)

𝜇(2,𝐿)
+ 6

𝜆(3,𝑈)

𝜇(3,𝐿)

1 −
𝜆(1,𝑈)

𝜇(1,𝐿)
− 2

𝜆(2,𝑈)

𝜇(2,𝐿)
− 3

𝜆(3,𝑈)

𝜇(3,𝐿))

 +
1

𝜇𝐿

]
 
 
 

 

𝑁𝑊𝑠 = [(
1

40
)(

(
9

101
) + 3 (

11
101

) + 6 (
14
101

)

1 − (
9

101
) − 2 (

11
101

) − 3 (
14
101

)
) + (

1

101
) , (

1

34
)(

(
11
99

) + 3 (
13
99

) + 6 (
16
99

)

1 − (
11
99

) − 2 (
13
99

) − 3 (
16
99

)
) + (

1

99
)] 

𝑁𝑊𝑠 = [0.1224, 0.3168] 

Average Utilization    𝜌𝑁 =
𝜆𝑁

𝜇𝑁
=

[34,40]

[99,101]
= [0.3366, 0.4040] 

 
4.4 Crisp queue values with 3 parameter and uniform service rate 
Let   𝜆1 = 10, 𝜆2 = 12, , 𝜆3 = 15    and μ=100 
 
Then  𝜆 = 𝜆1 + 𝜆2 + 𝜆3 = 37, here 𝜇1 = 𝜇2 = 𝜇3 = 𝜇 
 

By Using 2.2.1,  𝐸(𝑋) =
(𝜆1+2𝜆2+3𝜆3)

𝜆
= 

10+2(12)+3(15)

37
= 2.14 

 
By using 2.1.3, 

𝐿𝑞 = [
𝜌1+3𝜌2+6𝜌3

1−𝜌1−2𝜌2−3𝜌3
], 𝜌1 =

𝜆1

𝜇
=

10

100
= 0.1   , 𝜌2 =

𝜆2

𝜇
=

12

100
= 0.12, 𝜌3 =

𝜆3

𝜇
=

15

100
= 0.15 

𝐿𝑞 = [
0.1 + 3(0.12) + 6(0.15)

1 − 0.1 − 2(0.12) − 3(0.15)
] = 6.4762 

 

By Using 2.1.4,         𝑊𝑞 =
𝐿𝑞

𝜆
= 

6.4762

37
= 0.1750 

By Using 2.1.5,      𝑊𝑠 = 𝑊𝑞 +
1

𝜇
= 0.1750 +

1

100
= 0.1850 

Average Utilization    ρ=
𝜆

𝜇
=

37

100
= [0.37] 

 
5. In neutrosophic environment when service rate is not uniform 

 
In this section, we take the (NM[2]/NM/1): (FCFS/∞/∞) and (NM[3]/NM/1): (FCFS/∞/∞) type case with arrival 
rate, service rate is in neutrosophic environment of single server with service rate is not uniform. 
 
5.1(NM[2]/NM/1): (FCFS/∞/∞) two parameter value when service rate is not uniform 
Let   𝜆1 = [9,11], 𝜆2 = [11,13]   and 𝜇1 = [23,25], 𝜇2 = [53,55] 
Then  𝜆 = 𝜆1 + 𝜆2 = [20,24]  and here 𝜇1 ≠ 𝜇2 ≠ 𝜇  also 𝜇 = 𝜇1 + 𝜇2 = [76, 80] 
By using 3.3.1, 

7) Neutrosophic expected number of customers in queue with two parameters service rate is  not uniform 

𝑁𝐿𝑞 =

[
 
 
 

𝜆(1,𝐿)

𝜇(1,𝑈)
+ 3

𝜆(2,𝐿)

𝜇(2,𝑈)

1 −
𝜆(1,𝐿)

𝜇(1,𝑈)
− 2

𝜆(2,𝐿)

𝜇(2,𝑈)

 ,

𝜆(1,𝑈)

𝜇(1,𝐿)
+ 3

𝜆(2,𝑈)

𝜇(2,𝐿)

1 −
𝜆(1,𝑈)

𝜇(1,𝐿)
− 2

𝜆(2,𝑈)

𝜇(2,𝐿)]
 
 
 

 

= [
(

9
25

) + 3 (
11
55

)

1 − (
9
25

) − 2 (
11
55

)
 ,

(
11
23

) + 3 (
13
53

)

1 − (
11
23

) − 2 (
13
53

)
] = [4,    38.9135] 

 

8) Neutrosophic expected waiting time in queue with two parameters service rate is not uniform 
 

𝑁𝑊𝑞 =

[
 
 
 
1

𝜆𝑈

(

 

𝜆(1,𝐿)

𝜇(1,𝑈)
+ 3

𝜆(2,𝐿)

𝜇(2,𝑈)

1 −
𝜆(1,𝐿)

𝜇(1,𝑈)
− 2

𝜆(2,𝐿)

𝜇(2,𝑈))

  ,
1

𝜆𝐿

(

 

𝜆(1,𝑈)

𝜇(1,𝐿)
+ 3

𝜆(2,𝑈)

𝜇(2,𝐿)

1 −
𝜆(1,𝑈)

𝜇(1,𝐿)
− 2

𝜆(2,𝑈)

𝜇(2,𝐿))

 

]
 
 
 

 

= [(
1

24
)(

(
9
25

) + 3 (
11
55

)

1 − (
9
25

) − 2 (
11
55

)
) , (

1

20
)(

(
11
23

) + 3 (
13
53

)

1 − (
11
23

) − 2 (
13
53

)
)  ] = [0.1667, 1.9457] 
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9) Neutrosophic expected waiting time in system with two parameters service rate is not uniform 
 

𝑁𝑊𝑠 =

[
 
 
 
1

𝜆𝑈

(

 

𝜆(1,𝐿)

𝜇(1,𝑈)
+ 3

𝜆(2,𝐿)

𝜇(2,𝑈)

1 −
𝜆(1,𝐿)

𝜇(1,𝑈)
− 2

𝜆(2,𝐿)

𝜇(2,𝑈))

 +
1

𝜇𝑈

,
1

𝜆𝐿

(

 

𝜆(1,𝑈)

𝜇(1,𝐿)
+ 3

𝜆(2,𝑈)

𝜇(2,𝐿)

1 −
𝜆(1,𝑈)

𝜇(1,𝐿)
− 2

𝜆(2,𝑈)

𝜇(2,𝐿))

 +
1

𝜇𝐿

]
 
 
 

 

𝑁𝑊𝑠 = [(
1

24
)(

(
9
25

) + 3 (
11
55

)

1 − (
9
25

) − 2 (
11
55

)
) + (

1

80
) ,   (

1

20
)(

(
11
23

) + 3 (
13
53

)

1 − (
11
23

) − 2 (
13
53

)
) + (

1

76
)  ] 

𝑁𝑊𝑠 = [0.1792, 1.9589] 
 

Average Utilization    𝜌𝑁 =
𝜆𝑁

𝜇𝑁
=

[20,24]

[76,80]
= [0.25, 0.3158] 

 
5.2 Crisp queue values two parameter value when service rate is not uniform 
Let   𝜆1 = 10, 𝜆2 = 12   and  𝜇1 = 24, 𝜇2 = 54 
Then  𝜆 = 𝜆1 + 𝜆2 = 22, 𝜇 = 𝜇1 + 𝜇2 = 78 

By Using 2.1.2,  𝐸(𝑋) =
(𝜆1+2𝜆2)

𝜆
= 

10+2(12)

22
= 1.5455 

By using 2.1.3, 𝐿𝑞 = [
𝜌1+3𝜌2

1−𝜌1−2𝜌2
], 𝜌1 =

𝜆1

𝜇1
=

10

24
= 0.4166   , 𝜌2 =

𝜆2

𝜇2
=

12

54
= 0.2222 

𝐿𝑞 = [
0.4166 + 3(0.2222)

1 − 0.4166 − 2(0.2222)
] = 7.7999 

By Using 2.1.4,         𝑊𝑞 =
𝐿𝑞

𝜆
= 

7.7999

22
= 0.3545 

By Using 2.1.5,      𝑊𝑠 = 𝑊𝑞 +
1

𝜇
= 0.3545 +

1

78
= 0.3673 

Average Utilization    ρ=
𝜆

𝜇
=

22

78
= [0.282] 

 
5.3 (NM[3]/NM/1): (FCFS/∞/∞) three parameters value when service rate is not uniform 
Let   𝜆1 = [9,11], 𝜆2 = [11,13], 𝜆3 = [14,16]   and 

𝜇1 = [23,25], 𝜇2 = [105,107], 𝜇3 = [257,259], 
 
Then  𝜆 = 𝜆1 + 𝜆2 + 𝜆3 = [34, 40] and 𝜇 = 𝜇1 + 𝜇2 + 𝜇3 = [385,391] 
 
By using 3.3.2 

10) Neutrosophic expected number of customers in queue with two parameters service rate is not uniform 

𝑁𝐿𝑞 =

[
 
 
 

𝜆(1,𝐿)

𝜇(1,𝑈)
+ 3

𝜆(2,𝐿)

𝜇(2,𝑈)
+ 6

𝜆(3,𝐿)

𝜇(3,𝑈)

1 −
𝜆(1,𝐿)

𝜇(1,𝑈)
− 2

𝜆(2,𝐿)

𝜇(2,𝑈)
− 3

𝜆(3,𝐿)

𝜇(3,𝑈)

 ,

𝜆(1,𝑈)

𝜇(1,𝐿)
+ 3

𝜆(2,𝑈)

𝜇(2,𝐿)
+ 6

𝜆(3,𝑈)

𝜇(3,𝐿)

1 −
𝜆(1,𝑈)

𝜇(1,𝐿)
− 2

𝜆(2,𝑈)

𝜇(2,𝐿)
− 3

𝜆(3,𝑈)

𝜇(3,𝐿)]
 
 
 

 

           𝑁𝐿𝑞 = [
(

9
25

) + 3 (
11
107

) + 6 (
14
259

)

1 − (
9
25

) − 2 (
11
107

) − 3 (
14
259

)
 ,   

(
11
23

) + 3 (
13
105

) + 6 (
16
257

)

1 − (
11
23

) − 2 (
13
105

) − 3 (
16
257

)
] 

           𝑁𝐿𝑞 = [3.6469, 14.0115] 

 

11) Neutrosophic expected waiting time in queue with two parameters service rate is not uniform 

𝑁𝑊𝑞 =

[
 
 
 
1

𝜆𝑈

(

 

𝜆(1,𝐿)

𝜇(1,𝑈)
+ 3

𝜆(2,𝐿)

𝜇(2,𝑈)
+ 6

𝜆(3,𝐿)

𝜇(3,𝑈)

1 −
𝜆(1,𝐿)

𝜇(1,𝑈)
− 2

𝜆(2,𝐿)

𝜇(2,𝑈)
− 3

𝜆(3,𝐿)

𝜇(3,𝑈))

 ,
1

𝜆𝐿

(

 

𝜆(1,𝑈)

𝜇(1,𝐿)
+ 3

𝜆(2,𝑈)

𝜇(2,𝐿)
+ 6

𝜆(3,𝑈)

𝜇(3,𝐿)

1 −
𝜆(1,𝑈)

𝜇(1,𝐿)
− 2

𝜆(2,𝑈)

𝜇(2,𝐿)
− 3

𝜆(3,𝑈)

𝜇(3,𝐿))

 

]
 
 
 

 

𝑁𝑊𝑞 = [(
1

40
)(

(
9
25

) + 3 (
11
107

) + 6 (
14
259

)

1 − (
9
25

) − 2 (
11
107

) − 3 (
14
259

)
) , (

1

34
)(

(
11
23

) + 3 (
13
105

) + 6 (
16
257

)

1 − (
11
23

) − 2 (
13
105

) − 3 (
16
257

)
)  ] 

𝑁𝑊𝑞 = [0.0912,0.4121  ] 

 

12) Neutrosophic expected waiting time in system with two parameters service rate is not uniform 

𝑁𝑊𝑠 =

[
 
 
 
1

𝜆𝑈

(

 

𝜆(1,𝐿)

𝜇(1,𝑈)
+ 3

𝜆(2,𝐿)

𝜇(2,𝑈)
+ 6

𝜆(3,𝐿)

𝜇(3,𝑈)

1 −
𝜆(1,𝐿)

𝜇(1,𝑈)
− 2

𝜆(2,𝐿)

𝜇(2,𝑈)
− 3

𝜆(3,𝐿)

𝜇(3,𝑈))

 +
1

𝜇𝑈

,
1

𝜆𝐿

(

 

𝜆(1,𝑈)

𝜇(1,𝐿)
+ 3

𝜆(2,𝑈)

𝜇(2,𝐿)
+ 6

𝜆(3,𝑈)

𝜇(3,𝐿)

1 −
𝜆(1,𝑈)

𝜇(1,𝐿)
− 2

𝜆(2,𝑈)

𝜇(2,𝐿)
− 3

𝜆(3,𝑈)

𝜇(3,𝐿))

 +
1

𝜇𝐿

]
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𝑁𝑊𝑠 = [(
1

40
)(

(
9
25

) + 3 (
11
107

) + 6 (
14
259

)

1 − (
9
25

) − 2 (
11
107

) − 3 (
14
259

)
) + (

1

391
) , (

1

34
)(

(
11
23

) + 3 (
13
105

) + 6 (
16
257

)

1 − (
11
23

) − 2 (
13
105

) − 3 (
16
257

)
) + (

1

385
)] 

𝑁𝑊𝑠 = [0.0938,0.4147] 

Average Utilization    𝜌𝑁 =
𝜆𝑁

𝜇𝑁
=

[34,40]

[385,391]
= [0.0870, 0.1039] 

 
5.4 Crisp queue values three parameter value when service rate is not uniform 
Let   𝜆1 = 10, 𝜆2 = 12, , 𝜆3 = 15    and 𝜇1 = 24, 𝜇2 = 106, 𝜇3 = 258 
Then  𝜆 = 𝜆1 + 𝜆2 + 𝜆3 = 37, here 𝜇1 ≠ 𝜇2 ≠ 𝜇3 ≠ 𝜇. Also  𝜇 = 𝜇1 + 𝜇2 + 𝜇3 = 388 

By Using 2.2.1,  𝐸(𝑋) =
(𝜆1+2𝜆2+3𝜆3)

𝜆
= 

10+2(12)+3(15)

37
= 2.14 

By using 2.1.3, 

𝐿𝑞 = [
𝜌1 + 3𝜌2 + 6𝜌3

1 − 𝜌1 − 2𝜌2 − 3𝜌3

], 

𝜌1 =
𝜆1

𝜇1

=
10

24
= 0.4167   , 𝜌2 =

𝜆2

𝜇2

=
12

106
= 0.1132, 𝜌3 =

𝜆3

𝜇3

=
15

258
= 0.0581 

𝐿𝑞 = [
0.4167 + 3(0.1132) + 6(0.0581)

1 − 0.4167 − 2(0.1132) − 3(0.0581)
] = 6.0509 

By Using 2.1.4,         𝑊𝑞 =
𝐿𝑞

𝜆
= 

6.0509

37
= 0.1635 

By Using 2.1.5,      𝑊𝑠 = 𝑊𝑞 +
1

𝜇
= 0.1635 +

1

388
= 0.1660 

Average Utilization    ρ=
𝜆

𝜇
=

37

388
= [0.0954] 

 
6 Discussions and Conclusions 

 
The efficiency of the system was found to be between [0.3922,0.4898] and [0.3366,0.4040] for the two 
parameters and three parameters  bulk queues, respectively. Additionally, the efficiency of the crisp values 
[0.44] ∈[0.3922,0.4898] in the 2 parameters queue model and [0.37]∈ [0.3366,0.4040] in the three 
parameters queue model.  The property is also satisfied by the average number of people in the queue, the 
average length of time in the queue, and the average waiting time throughout the system. Thus, when dealing 
with uncertain data, neutrosophic models produce better results than crisp values. 
 

Table:1. Uniform Service Rate for Two parameters and Three parameters 
Two parameters with uniform service rate 3 parameters with uniform service rate 
Crisp value Neutrosophic Crisp value Neutrosophic 
E(X)=1.5455  E(X)=2.14  

𝐿𝑞=2.875 𝑁𝐿𝑞 = [2.0997,4.166] 𝐿𝑞=6.4762 𝑁𝐿𝑞 = [4.504, 10.4297] 

𝑊𝑞=0.1306 𝑁𝑊𝑞 = [0.0875,0.2083] 𝑊𝑞=0.1750 𝑁𝑊𝑞 = [0.1125,0.3067] 

𝑤𝑠=0.1506 𝑁𝑊𝑠 = [0.1071,0.2287] 𝑤𝑠=0.1850 𝑁𝑊𝑠 = [0.1224,0.3168] 
ρ=0.44 𝜌𝑁=[0.3922, 0.4898] ρ=0.37 𝜌𝑁=[0.3366,0.404] 

 
Table:2. Service Rate is not uniform  for Two parameters and Three parameters 

Two parameters with service rate is not uniform 3 parameters with  service rate is not 
uniform 

Crisp value Neutrosophic Crisp value Neutrosophic 
E(X)=1.5455  E(X)=2.14  

𝐿𝑞=7.7909 𝑁𝐿𝑞 = [4,38.9135] 𝐿𝑞=6.0553 𝑁𝐿𝑞 = [3.6469,14.011] 

𝑊𝑞=0.3545 𝑁𝑊𝑞 = [0.1667,1.9457] 𝑊𝑞=0.1637 𝑁𝑊𝑞 = [0.0912,0.4121] 

𝑤𝑠=0.3673 𝑁𝑊𝑠 = [0.25,0.3158] 𝑤𝑠=0.1662 𝑁𝑊𝑠 = [0.0938,0.4147] 
ρ=0.282 𝜌𝑁= [0.25,0.3158] ρ=0.0954 𝜌𝑁=[0.0870,0.103] 

 
In both the two parameter and three parameter models in NM[b]/NM/1 proposed model, we found that the 
expected value E(X) is the same for uniform service rate and non-uniform service rate. The crisp value of two 
parameter model shows a considerable difference in the average length of the queue (𝐿𝑞) compared in uniform 

service rate and non-uniform service rate. However, the three parameters' crisp values of   𝐿𝑞varied less. The 

slightly larger interval is provided by the neutrosophic model 𝑁𝐿𝑞. In three parameter proposed model despite 

the lengthy queue, there is surprisingly little wait time. As a result, the interval for waiting time in length and 
system is substantially shorter in a neutrosophic environment. The model's utilization factor ρ and 𝜌𝑁 is quite 
low, especially when it comes to the three parameter problem 𝜌𝑁=[0.0870,0.103]. 
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We concluded that, in a neutrosophic enviroment, we presented the results of the two parameter bulk queues 
(NM[2]/NM/1): (FCFS/∞/∞) and the three parameter bulk queues (NM[3]/NM/1): (FCFS/∞/∞) while dealing 
with imprecise data during bulk arrival, the neutrosophic queueing theory provides better interval values 
compared to crisp values. 
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