Educational Administration: Theory and Practice

2024, 30(4), 9003-9007 ISSN: 2148-2403 https://kuey.net/

Research Article

Growth Assessment of *Spirulina platensis* under Oxidative Stress

Jyoti Singh Kushwah¹, Rita Sharma^{2*}, Kuldip Dwivedi³

^{1*,2}Department of Biotechnology School of Sciences, ITM University, Turari-NH-75, Jhansi Road, Gwalior-474001, MP, India

³Department of Environmental Science, Amity University Gwalior, M.P, India

Corresponding Author email: ritasharma.sos@itmuniversity.ac.in

Citation: Kushwah. J. S, *et al* (2024), Growth Assessment of *Spirulina platensis* under Oxidative Stress, *Educational Administration: Theory and Practice*, *3*(4), 9003-9007
Doi: 10.53555/kuey.v30i4.2975

ARTICLE INFO

ABSTRACT

Arthrospira platensis, the spiral, multicellular, filamentous, non-heterocystus, non-nitrogen-fixing photosynthetic cyanobacteria that make up spirulina, is an entirely biologically derived organism. Spirulina can tolerate varied fluctuations in H₂O₂ and requires an abundance of minerals. The current work investigates the possibility of enhanced growth and cultivation under stressful circumstances, like variations in concentration of H₂O₂. Different concentrations of H₂O₂ under which S. platensis untreated, 2, 4, 6, 8, and 10 mM have been grown for 20 days. S. platensis cells, grown under photoperiod of 12 hours light/dark provided by fluorescent lamps with the light intensity of 140 µmol photons m⁻²s⁻¹⁾ in optimized Zarrouk's medium under controlled conditions. The dry biomass of algal (expressed as mgDW/ml) was moderately reduced under H_2O_2 stress with the exposure time and different H_2O_2 concentration. The present study observed that the biomass stimulated at lower oxidative stress concentration which ranges from 2mM (105mg DW/25oml culture) to 10mM(20mg DW/ml) but decreased at higher concentration as algal cells undergo disruption and results into inhibition of many cellular processes at high concentration.

Key words: Spirulina, Growth curve, Biomass, oxidative stress (H₂O₂)

Introduction

Spirulina, a type of multicellular, filamentous blue-green algae, is becoming more and more well- known in the health food sector and as an additional source of protein and vitamins for aquaculture diets. It is readily harvested and processed, grows in water, and has a very high level of macro and micronutrients. The people that live around Chad Lake in Africa have long utilized spirulina as nourishment. The predominant species of phytoplankton of the lake is S. platensis. (Ruma Arora et al 2020) The valuable filamentous cyanobacterium, Arthrospira platensis or Spirulina platensis as it was commonly named for a long time; is a concentrated source of many active compounds, consumed by humans as a functional super-food used as a supplement/ingredient to enhance the human body performance or improve a specific function (Elshouny et al., 2017; Mostolizadeh et al., 2020).S. platensis can produce beneficial compounds with therapeutic properties, characterized by fast digestion and absorption, in order to prevent its nutritional benefits. Agustini and Wijayanto,2020, which led some researchers to believe that Spirulina as an exceptional organism. Moreover, Jinhong Wu, et al., 2021 reported that the dry weight of Spirulina platensis consists protein content 50-70 %, fiber 8-10 % and lipid 5-7 %. It also contains pigments (3-10 %), including phycocrythrin and phycocyanin, having potential properties such as anti-aging, antimicrobials, anticancer, antioxidant and anti- inflammatory (Kapoor and Huang, 2006; Mofeed and Mosleh, 2013; Elshouny et al., 2017; Mofeed et al., 2018; Devab et al., 2019; Mostolizadeh et al., 2020) and various vitamins: B1, B2, B3, B6, B9, B12, vitamin E, vitamin D, vitamin C (Watanabe et al., 2002), as well as vital unsaturated and saturated fatty acids. Moreover, the unsaturated fatty acids were known as vitamin F due to their significant role as bio-regulators and antioxidants and assumed to be responsible for many curative properties in the

treatment of pre- menstrual tension, arthritis and as an auxiliary in weight loss (Saki, et al., 2015) as well as its role in treating atherosclerosis and hypercholesterolemia (Colla et al., 2008; Cingi et. al., 2008). The essential unsaturated fatty acid; Gamma-Linolenic acid (C18:3 - GLA) which known as ω -6 earned the attention of researchers due to its performance in inhibiting or at least controlling several diseases such as blood pressure, cholesterol level and inflammation (Khan, et al., 2005; Colla et al., 2008; Ali et al., 2017) and play a vital role in the regulation of immune system (Kapoor and Huang, 2006), treating eczema (Kawamura et al., 2011), rheumatoid arthritis (Zurier et al., 1998), premenstrual syndrome (Saki et al., 1995), besides affecting the health of the hair, nails, and skin (Otles and Pire, 2001).

The commercial production of *Spirulina* used growth medium with sodium bicarbonate as a carbon source (Kebede, 1997) which counts for at least 60% of all nutrient costs. Because environmental stress causes oxidative damage at the cellular level, it has an impact on *S. platensis* mass cultivation. To overcome the challenges of oxidative damage *S. platensis* developed enzymatic and non-enzymatic antioxidants (Cameron *et al.*, 2010). Early interest in *S. platensis* focused mainly on its potential as a source of protein and vitamins but recently, more attention has been paid to its potential pharmacological properties, which include reports of the ability of preparations of this micro alga to prevent and inhibit cancers, to decrease blood cholesterol levels, to decrease blood glucose levels, free radical scavenging, stimulate the immunological system, to reduce the nephrotoxicity of pharmaceuticals and toxic metals and provide protection against the harmful effects of radiation (Guan and Guo, 2002; Xue *et al.*, 2007; Ismail *et al.*, 2009; Muthuraman *et al.*, 2009; Nielsen *et al.*, 2010).

Material and methods

Sample Collection:

Spirulina sample was procured from the Department of Biotechnology, SOS, Jiwaji University, Gwalior (MP), India and further its slants were maintained in Zarrouk's agar media at 4°C.

Inoculum preparation:

Microalgae was cultivated in 4 L Erlenmeyer flasks and fluorescent lights were used to create a 12-hour light/dark cycle with 140 μ mol photons.m-2.s-1 of intensity and 30 \pm 1°C of temperature. 10% (v/v) inoculum was utilized as a starter culture and it was Zarrouk's medium were used to cultivate S. *platensis*, which was then enriched with H2O2 (30%, w/v) at stock concentrations of 0, 2, 4, 6, 8, and 10 mM. In 250 ml sterilized Zarrouk media-filled Erlenmeyer flasks, the spirulina was grown. 10% (v/v) or 25ml of the prepared inoculums (0.07 O.D.) were added to the flasks. Before the inoculation, the medium's pH was adjusted with 1 M NaOH, and it was then grown at room temperature. Cool white fluorescent lights were used continuously for 12 hours to light the cultured flasks. All the flask were cultured in three replicates.

Growth evaluation:

The growth of *S. platensis* can be specifically determined by measuring optical density. Growth of *Spirulina* under normal and stress conditions would be assessed spectrophotometrically by measurement of absorbance at 560 nm (Fatma *et al.*, 1994).

Harvesting and Dry weight measurement

Algal samples varying in H2O2 content were vacuum-filtered via a $0.45 \mu m$ filter membrane, and the residual salts were eliminated from the algal surface by repeatedly washing with distilled water. Algal cells were dried at 100° C for 30 min and weighed (Abd El-Baky *et al.*, 2003, Ali and Amber, 2010).

Results

Effect on growth of S. platensis at different concentration of H2O2

The impact of different H2O2 concentrations (0, 2, 4, 6, 8 and 10 mM) on the productivity of *S. platensis*, was conducted based on the results of the previous experiment, revealing that, all concentrations of H2O2suppressed the biomass of *S. platensis* and hence reduce the dry weight (Jelan Mofeed, 2019). Showing in figure 1 and 2 *S. platensis* H2O2 stress conditions affected algal growth, it was found that biomass stimulated at lower concentration 2mM (105mg DW/25oml culture),4mM (87mg DW/25oml), 6mM (60mg DW/25oml), 8mM (48mg DW/25oml), 10mM(20mg DW/ml) at higher concentration as compared to untreated culture. After fourth and sixth days of exposure, a dramatic decrease in biomass was recorded at 2-

10 mM H₂O₂. after 3, 6, 12 and 15 days respectively and the cells did not start to bleach. In general, the results revealed that *S. platensis* tolerated up to 8 mM H₂O₂. Bleaching process was noticed at 10mM concentration concomitantly the cells exhibited much softer consistence under the highest H₂O₂ level.

Figure 1. Growth curve of *S. platensis* cultivated under different H₂O₂ concentration (Untreated, 2, 4, 6, 8 and 10Mm salt concentration) during 20 days incubation period.

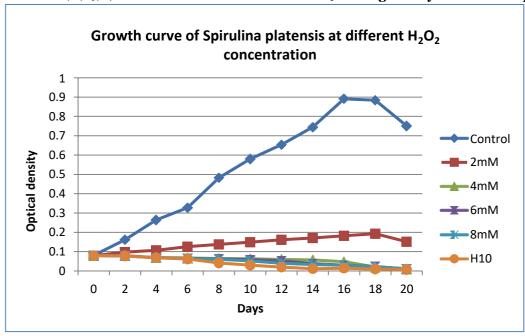
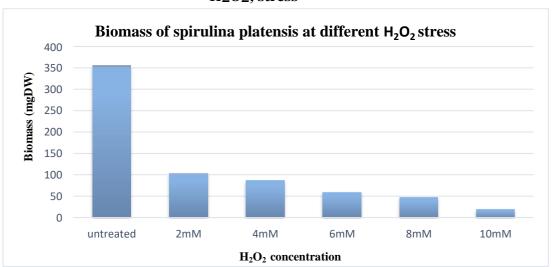



Figure 2 Represented as dry weight (mgDW/250ml culture) of *Spirulina platensis* at different H_2O_2 , stress

Discussion

Free radicals are essential for both the aging process and the development of illness. Our first line of defense against the harm caused by free radicals is antioxidants, which are also essential for preserving our best possible health and wellness. As exposure to free radicals increases, the need for antioxidants becomes even more important. Exposure to free radicals can be increased by cigarette smoke, pollution, drugs, disease, stress, and even physical activity. Oxidative stress can be caused by a wide range of events, therefore

determining one's own vulnerability becomes crucial. Antioxidant supplementation is becoming widely acknowledged as a critical component of a balanced, wholesome diet and a healthy lifestyle that enhances free radical protection. Oxidative stress may progress to oxidative damage involving cellular proteins (contractile, structural, MDA, SOD, and GPX of rats muscle and enzymatic), lipids, DNA, and other molecules in ways that might lead to abnormal cellular function (Lakatta, 1980; Davydov and Shvets, 2001; Nayanatara *et al.*, 2005). Since 1974, Spirulina platensis, which is high in proteins, vitamins, fatty acids, carbs, fibers, and other essential nutrients, was ranked by the United Nations World Food as one of the most nutritious food sources for the future. The cultivation circumstances have a significant impact on the development and dry weight of *S. platensis*. Specifically, the biomass production is supported by 24L illumination regimes, which allow the plant to reach its maximum dry weight of 1.81g/L at 33°C.

The present study revealed that light significantly influenced growth and metabolic activities of *S. platensis*; where it considered as a catalyst in cell building processes through controlling the photosynthesis.

Reference

- 1. Abd El-Baky, H.H. (2003)."Over production of phycocyanin pigment in blue green alga Spirulina and its inhibitory effect on growth of Ehrlich ascites carcinoma cells, J. Med. Sci., 2: 222-240.
- 2. Agustini, N.W.S. and Wijayanto, Y. (2020): Isolation, identification of fatty acids from Spirulina platensis as antibacterial. IOP Conf. Series: Earth and Environ. Sci. 457:012033.
- 3. Ali, C.; Poorsoltan, M.; Fazilati, M.; Latifi, A. M. and Salavati, H. (2017): Spirulina: A Source of Gammalinoleic Acid and Its Applications (Review Article). J. of Appl. Biotech. Rep., 3: 483-488.
- 4. Ali, M.S. and Amber, S.G. (2010) "Chemical composition and potential application of
- 5. S. platensis." J. Am. Sci. 6(10): 1283-1291.
- 6. Alvarez R.; Nicolás T.; Raquel O.; Gustavo I.C.; (2000)."Genetic variation in the rennin angiotensin system and athletic preformation" volume 82,pages 117-120.
- 7. Arora R,; Sudhakar V.; Rana V.; Baredar P.(2020). "food Supplements Formulated with *Spirulina*" In book: Algae, Multifarious Applications for a Sustainable World (pp.201-226).
- 8. Cameron: J.C.; Pakrasi: H.B(2010)"Essential role of Glutathione in acclimation to Environmental and Redox perturbations in the *cyanobacterium Synechocystis sp.* PCC 6803.Plant Physiol 154:1672-1685.
- 9. Cingi, C., Conk-Dalay, M.; Cakli, H. and Bal, C. (2008): The effects of *Spirulina* on allergic rhinitis. Eur.Arch.of Oto-Rhino-Larynol. 265 (10):1219–1223.
- 10. Colla, L.M.; Muccillo-baisch, A.L. and Costa, J.A.V. (2008)" *Spirulina platensis* effects on the levels of total cholesterol, HDL cholesterol and triglycerides in rabbits fed with a hypercholesterolemic diet" Braz. Arch. of Biol. and Tech., 51(2): 405-411.
- 11. Davydov VV, Shvets VV (2001) "Lipid peroxidation in the heart of adult and old rats during immobilization stress" Exp. Gerontol., 36: 1155-1160.
- 12. Deyab *etal.*,(2019) "Effect of nonionic surfactant as an electrolyte additive on the performance of aluminum-air battery M.A". Deyab; Journal of Power Sources Volume 412,: 520-526.
- 13. Elshouny, W. A.; El-Sheekh, M. M.; Sabae, S. Z.; Khalil, M. and Badr, M. A. (2017): Antimicrobial activity of Spirulina platensis against aquatic bacterial isolates. J. of microbe. H. M., biotech. and food sci. 6(5):1203-1208.
- 14. Fatma, T., R.; Sarada and L.V. Venkataraman(1994). "Evaluation of selected strains of Spirulina for their constituents" Pykos. 33 (1-2): 89-97.
- 15. Guo.W.; Guan Y., (.2002) "Tyrosine Phosphorylation of the NR2B Subunit of the NMDA Receptor in the Spinal Cord during the Development and Maintenance of Inflammatory Hyperalgesia," Journal of Neuroscience, 22 (14) 6208-6217.
- 16. Ismail A.F. (2009) "Polymeric Nanofiltration membranes for textile dye wastewater treatment: Preparation, Performance Evaluation, Transport Modelling, and fouling control a review" Volume 245, Issues 1–3, 15 Pages 321-348.
- 17. Jelan Mofeed,(2019)"Stimulating Gamma-Linolenic Acid Productivity by Arthrospira platensis (*Spirulina platensis*)Under Different Culture Conditions (Temperatures, Light Regime, and H2O2 stress". Egypt. Acad. J. Biolog. Sci., 11(1):89-99 Egyptian Academic Journal of Biological Sciences G. Microbiology ISSN: 2090-0872.
- 18. Jelan Mofeed , Yahia Y. Mosleh (2013). "Toxic responses and antioxidative enzymes activity of Scenedesmus obliquus exposed to fenhexamid and atrazine, alone and in mixture" Ecotoxicology and Environmental Safety; Volume 95, 1 Pages 234-240.
- 19. Jinhong Wu, Xinzhe Gu, Danlu Yang, Shannan Xu, Shaoyun Wang, Xu Chen, Zhengwu Wang (2021) "Bioactive substances and potentiality of marine microalgae" V-9, Issue9.
- 20. Kapoor, Rakesh; Huang, Yung-Sheng (2006) "Gamma Linolenic Acid: An Anti- inflammatory Omega-6 Fatty Acid" Current Pharmaceutical Biotechnology, Volume7, Number 6, pp. 531-534(4). Bentham Science Publishers.

- 21. Kebede, E. (1997. Response of Spirulina platensis (Arthrospira fusiformis) from Lake Chitu, Ethiopia, to salinity stress from sodium salts". J. Appl. Phycol. 9: 551–558
- 22. Khan, E.; Allard, E.; Parizot, A.; Olinto, V.; and Goriely, S.; ,(2005) "UHE nuclei propagation and the interpretation of the ankle in the cosmic-ray spectrum D" volume 443, number, 3 pages L29-L32.
- 23. Lakatta, E. G;(1980)"Age related alteration in the cardio vascular response to adrenergic mediated stress" Fed. Proc., 39: 314-317.
- 24. Mofeed *et al.*,(2018)"Anticancer Activity of Some Filamentous Cyanobacterial Isolates against HepG2 and MCF-7 Cancer Cell lines" Vol. 8. No.1.International Journal of Life Sciences (ISSN: 2277-193x) SJIF: 5.79, p-10-17.
- 25. Mostolizadeh *et al.*,(2020).Computational Model Informs Effective Control Interventions against *Y. enterocolitica* Co-Infection" MDPI Journal Vol 9(12), 431.
- 26. Muthuraman *et al.*,(2009)"Extraction and recovery of methylene blue from industrial wastewater using benzoic acid as an extractant" Journal of Hazardous Materials Volume 163, Issue 1, 15 April 2009, Pages 363-369.
- 27. Nayanatara AK, Nagaraja HS, Anupama BK (2005)." The effect of repeated swimming stress on organ weights and lipid peroxidation in rats". Thai. J. Physiol. Sci., 18: 3-9.
- 28. Nielsen *et al.*,(2010) "Karina Nielsen, Raymond John Randall ,Ann-Louise Holten Conducting organizational-level occupational health interventions, "Work & Stress 24(3):234-259.
- 29. Otles S. and Pire R. (2001)."Fatty Acid Composition Of Chlorella And Spirulina
- 30. Microalgae Species" Journal Of AOAC International 84(6):1708,
- 31. Ronda S.R and Lele S.S, (2008) "culture conditions stimulating high γ-linolenic acid accumulation by spirulina platensis " Brazilian journal of microbiology .39:693-697 (2008)
- 32. Ronda, S.R.; Bokka, C.S.; Ketineni, C.; Rijal, B. and Allu, P.R. (2012): Aeration effect on Spirulina platensis growth and γ-linolenic acid production. Braz. J. Microbiol., Vol. 43, pp. 12-20.
- 33. Saki M.Z.,(1995)"Emergence of Buruli ulcer disease in the Daloa region of Cote d'Ivoire." The American Journal of Tropical Medicine and Hygiene, 52 (3):219-224.
- 34. Saki, P.M.; Akbari, P.S.; Saki, P. P. M.; Tarrahi, M. J.; Gholami, M. and Pirdadeh, S. (2015). The effect of primrose oil on the premenstrual syndrome among the female students in Lore stan University of Medical Sciences: A Triple blind study. J. of Nur. and Mid. Sci.,2(1):20-26
- 35. Seiji K., Masaki A., Naoki S., Shuichi S., Takashi N., Kimio T., Nobuyuki K., Takahiro T., Jun'ichi Y., Ikkoh F.(2011) "The Japanese space Gravitational wave Antenna: DECIGO" Classical and Quantum Gravity, Volume 28, Number 9.
- 36. Sharoba, A. M. (2017): *Spirulina*: Functional compound and health benefits. In: Plant secondary metabolites. Apple Academic Press. Taylor & Francis, 1: 335-344.
- 37. Syed Z. Ali ,Edmund S. Cibas (2017) "The Bethesda System for Reporting Thyroid Cytopathology" ,vol 27 ,No,11.
- 38. Tomoyuki W. Ikumasa O., Naoki W., Akira K., Mamoru S. "Stabilization of amorphous indomethacin by co-grinding in a ternary mixture." International Journal of Pharmaceutics Volume 241, Issue 1, 8 July 2002, Pages 103-111.
- 39. Urso M.L, Clarkson P.M(2003) Oxidative Stress, Exercise, and Antioxidant Supplementation Toxicology., 189(1-2): 41-54.
- 40. Xue W *et al.*, (2007) "Lowe Senescence and Tumor clearance is triggered by p53 restoration in murine liver carcinomas.445, pages656–660.
- 41. Zurier R.B.; Rossetti R. G,;:Lane J.H,; Goldberg J.M.; Hunter S.A,; Burstein. S.H;(1998) "Dimethylheptyl-THC-11 OIC acid: A non-psychoactive anti-inflammatory agent with a cannabinoid template structure" journal arthritis & Rheumatology, vol 41, pages -163-170