
Copyright © 2024 by Author/s and Licensed by Kuey. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Educational Administration: Theory and Practice
2024, 30(5), 2305 - 2316

ISSN: 2148-2403

https://kuey.net/ Research Article

Efficient Implementation Of The Sum Of Residues
Modular Reduction Using Arithmetic-Friendly RNS

Moduli Set

Danial Alvani1*, Mohammad Esmaeildoust2, Amer Kaabi3

1*Faculty of Marine Engineering, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran,
Email: danial.alvani@kmsu.ac.ir
2Faculty of Marine Engineering, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran,
Email: m_doust@kmsu.ac.ir
3Department of Basic Sciences, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran,
Email: kabbi_amer@put.ac.ir

*Corresponding Author: Danial Alvani
*Faculty of Marine Engineering, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran,
Email: danial.alvani@kmsu.ac.ir

Citation: Danial Alvani, et.al (2024), Efficient Implementation Of The Sum Of Residues Modular Reduction Using Arithmetic-Friendly

RNS Moduli Set, Educational Administration: Theory and Practice, 30(4), 2305 - 2316
Doi: 10.53555/kuey.v30i5.3278

ARTICLE INFO ABSTRACT
 Introduction: Due to the importance of public-key cryptography in information and

communication security, it is widely employed in various applications for secure
communication.
Materials and Methods: multiplication and exponentiation of large numbers are used
in cryptography algorithms such as RSA, ElGamal, and elliptic curve cryptography.
Results and Discussion: The residue number system in these algorithms is very
efficient since calculations are performed on small residues, resulting in a fast arithmetic
operation, as well as lower power consumption. The modular reduction of large numbers
is one of the main operations in most public-key cryptography systems, which includes
large computations in finite fields. This paper presents an efficient implementation of
modular reduction. To this end, arithmetic-friendly moduli were selected and employed
in the implementation of the improved sum of residues reduction algorithm. The SOR
algorithm using the proposed moduli set was described in VHDL language and
synthesized on the Xilinx virtex7 FPGA family using ISE14.7 software.
Conclusion: The results showed that, compared to the recent similar works, the
implementation of the improved sum of residues algorithm using the proposed moduli
set has achieved higher speed and uses less hardware resources.

Keywords: residue number system (RNS); modular reduction; modular multiplication;
sum of residues (SOR) reduction; arithmetic residue.

INTRODUCTION

Public key cryptography algorithms have an important role in information and communication security and
are widely employed in various applications [1-2]. Modular addition and multiplication are the most basic
components of these algorithms. With the growth of the complexity of algorithms, computational cost
dramatically increases. Nowadays, with the proliferation of portable computers and electronic devices as well
as the use of general-purpose or special-purpose processors, low-power and high-speed computing are very
much needed. The Residue Number System (RNS) is a non-weighted number system [3], which provides
parallel and fast computational operations with high accuracy. In this system, calculations are performed on
residues. Many works used RNS for implementing public-key cryptography algorithms such as RSA [4-5],
ElGamal [6], and ECC [7-10] where modular multiplication and exponentiation are used for very large
numbers. Therefore, one of the ways to significantly increase the speed and decrease the computing power in
these algorithms is to utilize the residue number system. RNS usually is used for applications such as digital
signal processing [11, 12], digital filters [13, 14], image processing [15, 16], and error correction systems [17, 18].

https://kuey.net/
mailto:m_doust@kmsu.ac.ir
mailto:kabbi_amer@put.ac.ir
mailto:danial.alvani@kmsu.ac.ir

2306 Danial Alvani et.al / Kuey, 30(5), 3278

The Montgomery modular multiplication [19] is one of the efficient methods for modular multiplication and
exponentiation in public-key cryptography algorithms. For simultaneous use of the advantages of the residue
number system and Montgomery modular multiplication, RNS Montgomery modular multiplication is
presented in [20]. A new algorithm and VLSI architecture for RNS Montgomery modular multiplication are
stated in [21] and a survey of Montgomery reduction in the context of RNS arithmetic is reported in [22]. In
[23] a modern architecture which comes with two new well-formed 4-moduli RNS bases {2n-2+1, 2n-3-1, 2n-3+1,
2n-5-1}, {2n+1, 2n, 2n-1-1, 2n-1+1}, for performing RNS Montgomery modular multiplication is offered. The main
advantage of the RNS Montgomery modular multiplication method is the efficiency of this procedure in using
hardware resources. The sum of residues algorithm is one of the new and important methods to perform
modular reduction which was first introduced in [24]. Hardware implementation of the sum of residues
algorithm was proposed later in [25]. The proposed implementation in [25] is very large in terms of area. In
[10], the sum of residues algorithm [24] was employed to perform modular reduction, and general RNS moduli
were chosen to implement the ECC processor. Further, by modified series/parallel implementation of the sum
of residues, the proposed ECC processor has become more effective. In [10], the absence of balanced RNS
moduli set was observed significantly. In [27], by introducing the correction factor k to obtain an accurate
result, the sum of residues algorithm was improved. Furthermore, by using a balanced and efficient 8-moduli
set {266-1, 266-22-1, 266-23-1, 266-24-1, 266-25-1, 266-26-1, 266-28-1, 266-29-1}, a new design was represented for
improving the area compared to [25], as well as the timing of its design, was improved compared to the RNS
Montgomery modular multiplication. In addition, in [27], two implementations were performed for the 256-
bit prime field of the elliptic curve SEC2P256K1 and the 255-bit prime field of the ED25519 elliptic curve. In
[28], a hardware architecture based on the residue number system that supports quick elliptic curve point
doubling, point tripling, and point addition, based on the chosen 8-moduli set in [27], is presented.
Moduli in the forms of 2n and 2n±1 can reduce the required arithmetic operations, leading to an efficient
implementation of hardware in the reside number system [3]. The use of well-formed and balanced moduli in
the forms 2n and 2n±1 can significantly improve the system performance. In [9], parts of RNS bases were chosen
in the forms 2n and 2n±1 for achieving higher efficiency. In this paper, to obtain the advantages of the moduli
in the forms 2n and 2n±1 and the hardware implementation of the improved sum of residues reduction
algorithm, the new 8-moduli set is selected as {2d+6-1, 2d+4-1, 2d-1, 2d-2-1, 2d-3-1, 2d-4-1, 2d-6-1, 2d-8-1} where d =

6b+1, b= 2, 3, 4, …, 13, and
5

0,2,3b  .

The novelties of the article are as follows:
1- Selection of the new and balanced 8-moduli set {2d+6-1, 2d+4-1, 2d-1, 2d-2-1, 2d-3-1, 2d-4-1, 2d-6-1, 2d-8-1}.
2- Hardware implementation of improved sum of residues reduction algorithm with new 8-moduli set.
The rest of this paper is organized as follows: In section 2, the related mathematical background is presented.
Section 3 explains the proposed RNS moduli selection for SOR. In section 4, a performance evaluation with
recent works is presented. Finally, section 5 concludes the paper.

MATHEMATICAL BACKGROUND

RNS background

The RNS is described in terms of relatively prime moduli set 1 2{ , , , }nm m m where gcd (,) 1i jm m = for

i j . A weighted number X can be displayed as 1 2(, ,)nX x x x= , where,

 mod , 0 .
i

i i i im
x X m X x m= =   (1)

Such a representation is unique for any integer X in the range [0, M-1], where M is the dynamic range of the

moduli set 1 2{ , , , }nm m m , which is equal to the product of mi terms 1 2()nM m m m=    [29]. The

RNS generally includes three sections: the forward converter, arithmetic unit, and reverse converter [3]. In
RNS, the weighted numbers are converted to their equivalent residue numbers by a forward converter [30].
The arithmetic unit of the residue number system includes the modular adder, multiplier, and subtractor for
each modulus channel [31-32]. The residue numbers are converted to their weighted equivalents in the binary
system by a reverse converter to utilize the outcomes of arithmetic operations [33-34]. Reverse converter
algorithms are basically based on the mixed-radix conversion (MRC) [35], Chinese remainder theorem (CRT)
[36-37], new Chinese remainder-1 [38-39], and new Chinese remainder-2 [40].

Chinese remainder theorem
The Chinese Remainder Theorem (CRT) [41] may be considered as one of the most fundamental results in the
theory of residue number systems. Computing weighted number X from its RNS representation, i.e.,

1 2(, , ,)nx x x , based on the moduli set 1 2{ , , , }nm m m is as follows:

1
i

n

i i im
i M

X x N M
=

=  (2)

2307 3278),5(30Kuey, / et.al Danial Alvani

Where
1

1 2 , / ,
i

n i i i i m
M m m m M M m N M −=    = = is the multiplicative inverse of Mi ,

1,2, , .i n=

Sum of residues reduction background
Sum of residues RNS modular multiplication algorithm is a novel algorithm to perform modular multiplication
in the residue number system [24-25]. In SOR, calculations are performed in RNS modules. SOR [24] is a rival
to Montgomery modular multiplication [19]. CRT [41] is used to Conclude a RNS algorithm for the sum of
residues reduction [10,24]. A brief description of the sum of residues reduction is provided for understanding
[24].

Display of the integer X, 0X<m, using CRT is given in Eq. (2). Assume two l-bit integers, X and Y. Then the
multiplication outcome Z= X×Y is a 2l-bit integer.
The presentation of Z in the residue number system is:

 1 2() , , , NRNS Z z z z= (3)

Where, .
i

i i i m
z x y= , and N is equal to the number of moduli.

The CRT performs condition Z<M. otherwise, the N-tuple RNS set in Eq. (3) doesn’t display integer Z. Defining
1

i
i i i m

z M −= , the integer Z can be offered as:

1

N

i i

i M

Z M
=

=  (4)

The α is an integer coefficient, which can be computed such as follows [42]:

1

N

i i

i

Z M M 
=

= − (5)

The reduction of Z by the modulus p is shown as follows:

1

mod .
N

i ip p
i p

Z p Z M M 
=

= = − (6)

The computation of α has been debated in [25-43]. It is shown that selecting suitable constants q, and
performing boundary condition of Eq. (7), α can be computed using Eq. (8).

0 (1) .X M  − (7)

1

1
2 .

2 2

N
qi

q n q
i




−
=

  
= +   

  
 (8)

In Eq. (8), Δ is a constant-point rectification term and q is an integer constant that determines the number of
bits shorted of γi terms in the sum.

Improved Sum of residues reduction algorithm
The improved sum of residues reduction algorithm [27] is presented to compute the accurate value of “X mod
p” straightly in the RNS representation of an integer.

Algorithm 1 shows the RNS modulus p multiplication 1 2 1 2{ , ,..., } { , ,..., }modN Nx x x y y y p over chosen

moduli set using improved sum of residues manner [27].

Algorithm 1: improved sum of residues reduction

1 1 2 2 1

2

Require: , , , = { ,..., }, , log

2
log , ,

N Np q m m m m m n m

W
W p T N

n

    =   

 
=     

 

1

ˆRequire: , (1) , for 1 to N
N

i i

i i

M
M m M M M i

m=

= = − = =

2308 Danial Alvani et.al / Kuey, 30(5), 3278

1 1

22

1 1
1

1

2

1

2

Require: pre-computed tables , , and

2N
N

p
m m W T

mm

N p

W TmN m

M
M p

M p

M
pM

−

−

−

−
−

     −            −                   −             

1

2Require: pre-computed table for 1 to .

N

i p m

i p m

i p m

M

M
i N

M

 
 
 
 

= 
 
 
 
 

1

2

.

.
Require: pre-computed table for 1 to 1

.
N

p m

p m

p m

M

M
N

M








 −
 
 

− 
= − 

 
 

− 
 

1 1

1

ˆinput : Integers and , 0 , in form of RNS: { , , } and { , , }.

output : presentation of . mod in RNS: { , , }.

N N

N

X Y X Y M x x y y

Z X Y p z z

 

=

1

1. for 1 to do

 . .

end

2. for 1 to do

 . .

end

i

i
i

i i i m

i i i m
m

i N

xy x y

i N

x y M −

=



=



3. for 1 to do

for 1 to do

 Y .

 end

end

j

ij i i p m

i N

j N

M

=

=



1

1

4. for 1 to do

1
4.1 (2) .

2 2

1
4.2 .

2 2

end

N
qi

q n q
i

N
i p

iT W T
i

i N

M
k






−
=

−
=

=

  
 +   

  

  
   
    





2309 3278),5(30Kuey, / et.al Danial Alvani

1

5. for 1 to do

 5.1 Calculate . .

 5.2 Read from the table.

 5.3 sum .

end

i
i

i

i

m
m

p m

N

i ji

j m

i N

k p

M

Y



=

=

−

−

 

6. for 1 to do

 .

end

ii i

i i P mm m

i N

z sum M k p

=

 + − + −

RNS moduli selection for SOR
As discussed in section 1, many works are done to select efficient RNS moduli set for effective implementation
of SOR. In the work reported in [25], the N general moduli are chosen with same word length. This shows that
dynamic range of the residue number system is equally dispensed into N moduli. The SOR implementation of
[25], later is employed in the implementation of elliptic curve point multiplication reported in [10]. This work
only concentrated on general moduli to show that rapid implementation of modular multiplication and missed
the special attributes of the well-formed moduli. In [27], for efficient implementation of the SOR, moduli set

in form of 2 2 1itn − − (n=66) are selected. Moduli in the form of 2 2 1itn − − , first presented in [44] and
modular reduction in RNS addition and multiplication can be realized in a adder base structure.
In order to improve efficiency of SOR implementation and employ the property of moduli in the form of 2n-1,
a new 8-moduli set, namely β = {2d+6-1, 2d+4-1, 2d-1, 2d-2-1, 2d-3-1, 2d-4-1, 2d-6-1, 2d-8-1} where, d = 6b+1, b= 2, 3,

4, …, 13, and
5

0,2,3b  , are selected. With substituting b = 11, moduli set {273-1, 271-1, 267-1, 265-1, 264-1,

263-1, 261-1, 259-1} is resulted which provides 523- bit dynamic range. Since RNS modular multiplication in the
256-bit prime field requires a dynamic range of at least 512 bits, the provided 523- bit dynamic range makes it
suitable for RNS modular multiplication in 256- bit prime field. The selected moduli set for 256- bit prime field
are shown in Table 1.

In the following, theorem to prove that the selected modules are relatively prime is included.
Theorem 1. Let a, b ∈ ℤ. If there exist integers x and y such that ax+by=1 then gcd (a, b) = 1.

Proof. Let a, b ∈ ℤ such that d= gcd (a, b). Then d a and .d b

Hence ()d ax by+ , thus 1d . Which implies 1d =  , since gcd is the greatest, d=1.

Because modules are large numbers, a Python program is coded for calculations and verification.
Due to the fact that the selected modules are in the form 2n-1, it leads to fast and simple arithmetic operations
in RNS [45-46] compared to the modules provided in [25] and [27].

Table 1. Co-prime moduli set β

265-1 267-1 271-1 273-1

259-1 261-1 263-1 264-1

Proposed RNS adder and multiplier circuits
Modular addition is basic operation in residue number system, since the modular adders are essential building
blocks for sketching modular multipliers and as well as modular subtraction can be perform by using modular
adders [3].
Figure. 1-(a), shows the design of a n-bit RNS adders.
The formula for performing the (A+B mod 2n-1) is [3]:

(1) mod 2 if 1 2
() mod (2 1)

 if 1 2

n n

n

n

A B A B
A B

A B A B

 + + + + 
+ − = 

+ + + 
 (9)

Due to the condition 1 2nx y+ +  , both additions in Eq. (9) are performed in parallel, and the correct answer

is selected by a multiplexer as shown in figure 1-(a).

2310 Danial Alvani et.al / Kuey, 30(5), 3278

In this paper, n = 73 is considered.

n bits Addern bits Adder

MUX

0

(a)

R

A B

Mult

Addition with delay of RNS Adder

S

R

2n

n

S1S2

A

(b)

1
A B

n

B

Figure 1. a) Modulus 2n-1 RNS adder, b) Modulus 2n-1 RNS multiplier

 Figure. 1-(b), shows the design of a n-bit RNS multiplier circuit.
The formula for performing the multiplication circuit is
 S = A × B (10)
The result S has 2n-bit length and divided into two n-bit as S1 and S2.
Since moduli in the form of 2n-1 are selected, RNS adders and multiplier circuits are less complex compared to

the circuits employed in [27] for moduli in the form of 2 2 1itn − − (n = 66). RNS adder and multiplier for n
=73 (largest selected moduli) are implemented on the different Xilinx FPGAs family which is shown in Table
2. The results are listed based on maximum logic, net and combinational delays of the RNS adder and
multiplier. Although the selected moduli set have higher bit length compared to moduli set selected in [27], the
simple hardware results in noticeable improvement in delay of RNS addition and multiplication.

Table 2. Implementation results of SOR components on ARTIX7 & VIRTEX7 FPGAs series.
Unit Device Max. Logic Delay

(ns)
Max. Net Delay
(ns)

Combinational
Delay (ns)

RNS Multiplier
[27]

ARTIX 7 16.206 5.112 21.318

RNS Multiplier (n
=73)

ARTIX 7 14.987 2.790 17.777

RNS Adder [27] ARTIX 7 6.017 2.303 8.32

RNS Adder (n
=73)

ARTIX 7 3.724 1.550 5.274

RNS Multiplier
[27]

VIRTEX 7 11.525 3.793 15.264

RNS Multiplier (n
=73)

VIRTEX 7 10.58 2.499 13.079

RNS Adder [27] VIRTEX 7 3.931 1.469 5.4
RNS Adder
(n=73)

VIRTEX 7 2.087 1.393 3.481

In order to achieve efficient modular multiplication on FPGA, DSP modules are used for implementation of
73×73-bit, 71×71-bit, 67×67-bit, 65×65-bit, 64×64-bit, 63×63-bit, 61×61-bit and 59×59-bit multipliers, that are
followed by a combinational reduction logic to construct the RNS multiplier. The total number of 116 DSP
resources are used for a RNS multiplier. Table 3 presents number of DSP 48E1s for multipliers.

Table 3. Number of DSP 48E1s for multipliers
Multiplier DSP 48E1s
73×73-bit 20

71×71-bit 20

67×67-bit 16

2311 3278),5(30Kuey, / et.al Danial Alvani

65×65-bit 12

64×64-bit 12

63×63-bit 12

61×61-bit 12

59×59-bit 12

Numerical Example
The algorithm 1 can be more clarify with the help of a numerical example with the following inputs and pre-
computations. The python program is used to attain algorithm outputs.
Inputs:
T = 72, q = 8, Δ = 1/24, n = 73 (largest moduli in selected RNS moduli set), N = 8, w = 256,
 p = 2256 - 232 - 977
⇒p=115792089237316195423570985008687907853269984665640564039457584007908834671663
X = 2256 - 235 – 977
⇒X=115792089237316195423570985008687907853269984665640564039457584007878769900591
Y = 2256 - 237 - 977
⇒Y=115792089237316195423570985008687907853269984665640564039457584007775690685487
Z=X×Y=134078079299425970995740249982058461274793658205923933777235614437018711003908977
68745943162383372889379037440209302592119473661603124793281120775636422817
Moduli = {2d+6-1, 2d+4-1, 2d-1, 2d-2-1, 2d-3-1, 2d-4-1, 2d-6-1, 2d-8-1} when d = 67
As a result, the moduli set is equal to
Moduli = (9444732965739290427391, 2361183241434822606847, 147573952589676412927,
36893488147419103231, 18446744073709551615, 9223372036854775807, 2305843009213693951,
576460752303423487)
Pre-computations:
M = m1 × m2 × … × m8
⇒M=2745919064052243879497438743837295873473890447693293058976068002372244984762364133
4027717419099877483026047907644978036993241544937013360639638063158042558465
Mi = M / mi (for i = 1 to 8)
⇒Mi=
(290735489718242755532041383758754419085916617778029030286083872547310368094371070395504
6783110345933712589679553395256573968815400943615,,
476341026354368931489966129570222603465809396611818480749376067491939917886178414208430
36101050378169680592236974730005947115434580373405695)

1

i
i m

M −
= (5386417757290016831506, 930500703993780264455, 18803160785300071733,

20472618723068709026, 3400417297457863576, 3683224619310100934, 540231240598819487, and
308591480262646799)

xi =
im

X

xi = (103079214127, 8761733282863, 36028762659224623, 2305842974853954607,
18446744039349812271, 9223372002495036478, 2305842974853958702, 576460717944732718)

yi =
im

Y

yi = (9444732965739290426414, 8658654067759, 36028659580009519, 2305842871774739503,
18446743936270597167, 9223371899415821374, 2305842871774743598, 576460614865517614)
Step1:
for i=1 to N

.
i

i i i m
xy x y

1

2

3

9444732865030898225312

2361166221716380126754

77173859857994780864

xy

xy

xy







4

5

6

7

8

32426085153653035174

167675524188672

165098543782273

2305307169103575200

396485711994204320

xy

xy

xy

xy

xy











2312 Danial Alvani et.al / Kuey, 30(5), 3278

Step 2:
For i=1 to N

1

i
i

i i i m
m

xy M −

1

2

3

4

5

6

7

8

2409161764343951463886

1135107945428528244106

135899592520116905117

7898225949981137849

5936354770407377172

865739859861763338

1313261649358731301

83291400022900075

































Step 3:
For i= 1 to N
For j=1 to N

j

ij i i p m
Y M

11 12

21 22

31

681867765270114117420133393408490086262906, 1411099900061574858572502791209519202960572

2659261440602693086991442234037531836892694, 1376784949087910930072503697665873703143752

980

Y Y

Y Y

Y

 

 

 32

41 42

51

204674115271573830804255676847542450458, 4704508928771512517554345298023264500134

5974525928778090626338736042222879520850, 6219390423963401984858197943939689922946

3613829521572

Y

Y Y

Y



 

 52

61 62

71

0298353205959812939100460008, 5607603186449701501359797610557855591304

1852740078360359150364953302955205235416, 1499065839605647225112824798436085160056

5039251287888810431290

Y

Y Y

Y



 

 72

81 82

568139652218946652, 1283872360271851651556491573291643483678

491689769989300091524375965533261748475, 124500195025441885003600682916015173875

Y

Y Y



 

13 14

23 24

33

277156753878887700315594671133777148147854, 60314557050672044604549194671628986198936

11321320756411111666047826669757276652514, 14676688015072631794298638578584883620874

161346961

Y Y

Y Y

Y

 

 

 34

43 44

53

47550311472725944718296707584618, 3691070020767749267947470135952686755595

677586882989888266168461548581148359269, 272764828939575537301832998281487018274

7095629195915895439147

Y

Y Y

Y



 

 54

63 64

73

50498317486374284, 40821924589764152034223438594242314364

28674200848581737311716771794162061462, 1929369805947675906628147180441585638

874129340875037853725036826571716955

Y

Y Y

Y



 

 74

83 84

8, 20811565554527299913474943197756653721

611119128411221256767698377804925825, 671741546367635644410234554027195900

Y

Y Y



 

15 16

25 26

35

2777544291298458401581887747504380829296 , 13367058360951236737018307614526970075440

1308633779771579521369180221195667489768, 1063276267409231305401892130362762706924

2036758186019

Y Y

Y Y

Y

 

 

 36

45 46

55

779579201711235058398273323, 9731768706953119432203237321469874064

36404778208831538842653845239177292619, 38690366755093959725440597010117517681

3099130368167116439847095760223557

Y

Y Y

Y



 

 56

65 66

75 76

2376, 3413446951590187223582237943761751396

15967564895952950879738963026865732760, 6114140002827327687978607407424477548

24221431625966887939302915687296292463, 60542

Y

Y Y

Y Y



 

 

85 86

63937375943593673675653646583405

1536200930104473728887011569798006725, 768094022801397229756427280912258175Y Y 

2313 3278),5(30Kuey, / et.al Danial Alvani

17 18

27 28

37

2256773885564848812199077039693822416028, 867990622203321764436991473908291277512

1063300957183257316768953115869437506490, 408963162271874569983906377861602484362

166457106877758086

Y Y

Y Y

Y

 

 

 38

47 48

57

352824464925257441561, 9788219425522819515980685954231047919

2273825193658014948271037477183515169, 2275830807378412276399269514910278397

3419832367256666925818465835841140384,

Y

Y Y

Y



 

 58

67 68

77 78

 3421509475336408602479721576496915776

997786237018025833654249540432449978, 498978312413921098839608395114602468

670642552681730895134624976157078795, 7569074294

Y

Y Y

Y Y



 

 

87 88

54713464804174183322887736

192022288185827710460559323881629025, 32784220094420210358569677415064275Y Y 

Step 4:
For i=1 to N

1

1
4.1 (2) .

2 2

N
qi

q n q
i




−
=

  
 +   

  


0 

1

1
4.2 .

2 2

N
i p

iT W T
i

M
k 

−
=

  
   
    



1846402278694734677477k 

Step 5:
For i=1 to N

 5.1 Calculate . .
i

i
m

m

k p−

Phase 1.1 = 8283466596510442787559, phase 1.2 = 374180066768676362797
Phase 1.3 = 92393689274398591882, phase 1.4 = 20282568479059962491
Phase 1.5 = 16356846318752536699, phase 1.6 = 8885520965668475841
Phase 1.7 = 1215072663256523127, phase 1.8 = 428518828954403760

5.2 Read from the table.
i

p m
M −

phase 2.1=0, phase 2.2=0, phase 2.3=0, phase 2.4=0, phase 2.5=0, phase 2.6=0, phase 2.7=0, phase 2.8=0

1

 5.3 sum .

i

N

i ji

j m

Y
=

 

1

2

3

4

5

6

7

8

sum 5217897958331825282912

sum 1761286061702129779386

sum 75136033434331914086

sum 13053621835770138398

sum 17138598910088346420

sum 2195256151132184606

sum 531093517150379851

sum 271871109103727507

















Step 6:
For i=1 to N

 .
i

i i

i i p mm m

z sum M k p + − + −

z1 = 13501364554842268070471, z2 = 2135466128470806142183, z3 = 167529722708730505968
z4 = 33336190314830100889, z5 = 33495445228840883119, z6 = 11080777116800660447
z7 = 1746166180406902978, z8 = 700389938058131267
The results are verified as follows:

2314 Danial Alvani et.al / Kuey, 30(5), 3278

1

2

13501364554842268070471

2135466128470806142183

P m

P m

Z

Z

=

=

3

4

5

167529722708730505968

33336190314830100889

33495445228840883119

P m

P m

P m

Z

Z

Z

=

=

=

6

7

11080777116800660447

1746166180406902978

P m

P m

Z

Z

=

=

8

700389938058131267
P m

Z =

 Hardware implementation of the sum of residues reduction algorithm
Three different architectures for implementation of the SOR algorithm discussed in Section 2 are introduced
in [27], named non-pipe-lined (SOR_1M_N), pipe-lined (SOR_1M_P), and two parallel pipelined (SOR_2M).
In this paper, these architectures are implemented using the proposed 8-moduli set. Table 4, shows a
comparison between the implementation of SOR algorithm using the proposed moduli set and the most
advanced RNS-based modular multipliers.

Table 4. Comparison of 256-bit Modular Multipliers
Design Platform Latency

(ns)
Area
(KLUTs), (DSP)

(MM-PA-P) [25] VIRTEX-6 14.20 (36.5), (2016)
(MM-PA-N) [25] VIRTEX-6 47.25 (34.34), (2016)
(MM-PA-P) [26] VIRTEX-7 48.3 (29.17), (2799)
(MM-SPA) [26] VIRTEX-7 239.2 (11.43), (512)
(SOR-1M-N) [27] VIRTEX-7 241 (8.17), (140)
(SOR-1M-P) [27] VIRTEX-7 173 (8.73), (140)
(SOR-2M) [27] VIRTEX-7 140 (10.11), (280)
[23] VIRTEX-7 120.16 (9.21), (248)
 (SOR-1M-N) with Proposed Moduli set VIRTEX-7 197.2 (7.16), (116)
 (SOR-1M-P) with Proposed Moduli set VIRTEX-7 132.6 (7.57), (116)
 (SOR-2M) with Proposed Moduli set VIRTEX-7 105.7 (8.93), (232)

In the designs proposed in [25-26], the SOR algorithm introduced in [24] was used to perform the modular
reduction. Barrett reduction [47], was used in these two designs for modular multiplication at any channel. As
stated in [27], the Barrett reduction involves two multiplications and one subtraction, which isn’t an optimal
solution for high-speed designs. The design in [25] has a simultaneous structure to execute the modular
reduction in one clock cycle. The hardware needed in this design is presented in [26], which is equal to (34.34
KLUTs, 2016 DSP) for Modular Multiplier Parallel Architecture (Non-pipelined) (MM_PA_N) and (36.5
KLUTs, 2016 DSPs) for Modular Multiplier Parallel Architecture (Pipelined) (MM_PA_P).
 The design in [27] is more effective than previous works [25-26], because it consumes less hardware resources
and has lower latency. The amount of hardware area needed in this work [27], for the sum of residues reduction
non-pipe-lined (SOR_1M_N) design, the sum of residues reduction with pipe-lined (SOR_1M_P) design, and
the sum of residues reduction using two parallel pipe-lined (SOR_2M) design is equal to (8.17 KLUTs, 140
DSPs), (8.73 KLUTs, 140 DSPs) and (10.11 KLUTs, 280 DSPs), respectively. The hardware needed for the
parallel architecture of the RNS Montgomery multiplier reported in [23] is equal to (9.21 KLUT, 248 DSP),
showing its improvement over previous work [27].
As mentioned in literature, a lot of works are introduced about modular multipliers for high-speed
performance, but due to the dissimilar implementation technology, a direct comparison is not always
conceivable. In this paper, to have a straight comparison, SOR algorithm using the proposed moduli set is
implemented on the Xilinx Virtex-7 FPGA similar the previous works. Finally, from the results presented in
table 4, it can be concluded that the using proposed moduli set in the implementation of the modified SOR
algorithm proposed in [27], it is more efficient in terms of latency and area compared to the previous works
[23,27].
In comparison with the most advanced implementations on Virtex-7 FPGA, presented in [23], SOR_2M
architecture using the proposed moduli set has achieved 32.5% and 13.7% faster than SOR_2M architecture

2315 3278),5(30Kuey, / et.al Danial Alvani

proposed in [27] and [23], respectively. Further, SOR_1M_N using the proposed moduli set, has achieved
14.1% improvement compare to SOR_1M_N [27] in terms of area.

CONCLUSION

This paper presents an efficient implementation of modular reduction. A new balanced and well-formed eight-
moduli set {2d+6-1, 2d+4-1, 2d-1, 2d-2-1, 2d-3-1, 2d-4-1, 2d-6-1, 2d-8-1} is selected and employed in the implementation
of the improved sum of residues algorithm. SOR algorithm using the proposed moduli set is described in VHDL
language and synthesized by the ISE14.7 software on Xilinx virtex7 FPGA. The synthesis results illustrated that,
compared to the latest work in literature, SOR_2M using the proposed moduli set has achieved 13.7%
improvement in speed and SOR_1M_N with proposed moduli set, uses less hardware resources compared to
the best work in literature.

Conflict of interest

The authors declare that there are no conflict of interests.

REFERENCES

1. Malik M, Dutta M, Granjal J. A survey of Key bootstrapping protocols based on Public Key Cryptography

in the Internet of Things. IEEE Access 2019
2. Kavitha K, Alphonse PJA, Reddy YV. An improved authentication and security on efficient generalized

group key agreement using hyper elliptic curve based public key cryptography for IOT health care
system, J. Med. Syst. 2019 Jul;43.

3. Navi K, Molahosseini A, Esmaeildoust M. How to Teach Residue Number System to Computer Scientists
and Engineers, IEEE. 2011.54: 156–163.

4. Rivest RL, Shamir A, Adleman LM. A method for obtaining digital signatures and public-key
cryptosystems, Commun. ACM. 1978.21 (2): 120–126.

5. Bajard JC, Imbert L. A full RNS implementation of RSA. IEEE Trans. on Compute. 2004 June; 53(6): 769-
774.

6. ELGamal T. A public key cryptosystem and a signature scheme based on discrete logarithms,’’ IEEE Trans.
Inf. Theory. 1985 Jul; 31(4): 469–472.

7. Miller VS. Advances in Cryptology – CRYPTO ’85 Proceedings, Springer Berlin Heidelberg, Berlin,
Heidelberg, Ch. Use of Elliptic Curves in Cryptography. 1986:417–426.

8. Koblitz N. Elliptic curve cryptosystems. Math. Compute. 1987. 48:203-209.
9. Esmaeildoust M, Schinianakis D, Javashi H, Stouraitis T, and Navi K. Efficient RNS implementation of

elliptic curve point multiplication over GF (p). IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2013
Aug; 21 (8):1545-1549.

10. Asif S, Hossain M, Kong Y,and Abdul W. A fully RNS based ECC processor", Integr. VLSI J. 2018. 61:138-
149.

11. CChang CH, Molahosseini AS, Zarandi AAE, and Tay TF. Residue number systems: A new paradigm to
datapath optimization for low-power and high-performance digital signal processing applications. IEEE
Circuits Syst. Mag. 2015. 15 (4): 26–44.

12. Cardarilli GC, Nannarelli A, and Re M. RNS applications in digital signal processing in Embedded Systems
Design with Special Arithmetic and Number Systems, Cham, Switzerland: Springer.2017: 181-215.

13. Veligosha AV, Linets GI, Kaplun DI, Klionskiy DM, and Bogaevskiy DV. Implementation of non-positional
digital filters", Proceedings of the XIX IEEE International Conference on Soft Computing and
Measurements (SCM).2016 May; 148-150.

14. Cardarilli GC, Nunzio LD, Fazzolari R, Nannarelli A, Petricca M, and Re M. Design space exploration based
methodology for residue number system digital filters implementation. IEEE Trans. Emerg. Topics
Comput. 2020. May.

15. Younes D, Steffan P. Efficient image processing application using residue number system. Proc. 20th Int.
Conf. Mixed Design Integr. Circuits Syst. (MIXDES). 2013 Jun; 468-472.

16. Chervyakov N, Lyakhov P. RNS-Based Image Processing" in Embedded Systems Design with Special
Arithmetic and Number Systems, Cham, Switzerland: Springer. 2017: 217-245.

17. Chu J, Benaissa M. Error detecting AES using polynomial residue number systems. Microprocessors
Microsyst. 2013 March; 37(2): 228-234.

18. Veligosha AV, Kaplun DI, Klionskiy DM, Bogaevskiy DV, Gulvanskiy VV, and Kalmykov IA. Error
Correction of Digital Signal Processing Devices using Non-Positional Modular Codes", Automatic Control
and Computer Sciences.2017. 51 (3): 167-173.

19. Montgomery PL. Modular multiplication without trial division. Mathematics of Computation.1985. 44:
519–521.

20. Bajard JC, Didier LS, and Kornerup P. An RNS Montgomery modular multiplication algorithm,” IEEE
Trans. Comput. 1998 Jul; 47 (7): 766–776.

2316 Danial Alvani et.al / Kuey, 30(5), 3278

21. Schinianakis D, Stouraitis T. A RNS Montgomery Multiplication Architecture. In Proceedings of the IEEE
International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil. 2011 May; 15-18.

22. Bajard JC, Eynard J, and Merkiche N. Montgomery reduction within the context of residue number system
arithmetic. J. Cryptogr. Eng. 2018. 8: 189–200.

23. Ahsan J, Esmaeildoust M, Kaabi A, and Zarei V. Efficient FPGA of RNS Montgomery multiplication using
balanced RNS bases, Integration. 2022 May; 84: 72-83.

24. Phillips BJ, Kong Y, and Lim Z. Highly parallel modular multiplication in the residue number system using
sum of residues reduction. Appl. Algebra Eng. Commun. Comput. 2010. 21(3):249–255.

25. Asif S and Kong Y. Highly Parallel Modular Multiplier for Elliptic Curve Cryptography in Residue Number
System. Circuits Syst. Signal Process. 2017. 36: 1027–1051.

26. Asif A. High-Speed Low-Power Modular Arithmetic for Elliptic Curve Cryptosystems Based on the Residue
Number System. Ph.D. Thesis, Macquarie University, Sydney, Australia. 2016.

27. Mehrabi M. Improved sum of residues modular multiplication algorithm. Cryptography. 2019. 3 (2): 1-16.
28. Mehrabi MA, Doche C, and Jolfaei A. Elliptic curve cryptography point multiplication core for hardware

security module. IEEE Trans. Comput. 2020. 69: 1707–1718.
29. Taylor FJ. Residue Arithmetic: A Tutorial with Examples", Computer. 1984 May; 50-62.
30. Guan G and Jones EV. Fast conversion between binary and residue numbers. Electron. Lett. 1988. 24 (19):

1195–1197.
31. Vergos HT, and Efstathiou C. On the design of efficient modular adders. J. Circuits, Syst., Comput. 2005.

41 (5): 965–972.
32. Soderstrand MA, Johnson TG, and Clark GA. Use of generalized quadratic RNS arithmetic in adaptive

filters. In Proc. IEEE Asilomar Conf. Circuits, Syst., Comput. Pacific Grove, CA. 1985 Nov; 102–106.
33. Hosseinzadeh M, Molahosseini AS, and Navi K. A fully parallel reverse converter. Int. J. Elect., Comput.

Syst. Eng.. 2007. 1 (3):183–187.
34. Molahosseini AS, Navi K, and Rafsanjani MK. Efficient forward and reverse converters for a new high-

radix moduli set. In Proc. 3rd IEEE Int. Symp. Inf. Technol. 2008: 1–4.
35. Chakraborti N, Soundararajan J, and Reddy A. An implementation of mixed-radix conversion for residue

number applications", IEEE Trans. Comput 1986 Aug; 35: 762-764.
36. Van Vu T. Efficient implementations of the Chinese reminder theorem for sign detection and residue

decoding. IEEE Trans. Comput. 1985 Jul; C-34: 646-651.
37. Arhami B. Computer Arithmetic: Algorithms and Hardware Design. Oxford, U.K.: Oxford Univ. Press.

2000.
38. Cao B, Chang CH, and Srikanthan T. An efficient reverse converter for the 4-moduli set {2n-1, 2n, 2n+1,

22n+1} based on the new chinese remainder theorem. IEEE Trans. Circuits Syst. I, Reg. Papers.2003 Oct;
50 (10): 1296–1303.

39. Wang y. Residue-to-binary converters based on new Chinese remainder theorems. IEEE Trans. Circuits
Syst. II, Exp. Briefs. 2000 fEB; 47 (2):197–205.

40. Wang Y, Song X, Aboulhamid M, and Shen H. A new algorithm for RNS magnitude comparison based on
new chinese remainder theorem II,” in Proc. 9th Great Lakes Symp. VLSI. 1999: 362–365.

41. Omondi A, and Premkumar B. Residue Number Systems: Theory and Implementations, Imperial College
Press. 2007.

42. Mohan PVA. Residue Number Systems: Theory and Applications, Cham, Switzerland: Birkhäuser. 2016.
43. Kawamura S, Koike M, Sano F, and Shimbo A. Cox-Rower Architecture for Fast Parallel Montgomery

Multiplication", Advances in Cryptology Proc. EUROCRYPT. 2000 May; 523-538.
44. Bajard JC, Kaihara M, and Plantard T. Selected RNS bases for modular multiplication. 19th IEEE

Symposium on Computer Arithmetic. IEEE. 2009: 25-32.
45. Abdallah M and Skavantzos A. On multimoduli residue number systems with moduli of forms r/sup a/, r/

sup b/-1, r/ sup c/+1, IEEE Trans. Circuits Syst. I Reg. Papers. 2005 Jul; 52 (7): 1253-1266.
46. Skavantzos A, Abdallah M, Stouraitis T, and Schinianakis D. Design of a balanced 8-modulus RNS", Proc.

IEEE 16th Int. Conf. Electronics Circuits Syst. 2009: 61-64.
47. Barrett P. Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard

Digital Signal Processor. In Proceedings of the Conference on the Theory and Application of Cryptographic
Techniques, Linkoping, Sweden. 1986 May 20–22.

