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ARTICLE INFO ABSTRACT 
 Introduction: Due to the importance of public-key cryptography in information and 

communication security, it is widely employed in various applications for secure 
communication.  
Materials and Methods: multiplication and exponentiation of large numbers are used 
in cryptography algorithms such as RSA, ElGamal, and elliptic curve cryptography. 
Results and Discussion: The residue number system in these algorithms is very 
efficient since calculations are performed on small residues, resulting in a fast arithmetic 
operation, as well as lower power consumption. The modular reduction of large numbers 
is one of the main operations in most public-key cryptography systems, which includes 
large computations in finite fields. This paper presents an efficient implementation of 
modular reduction. To this end, arithmetic-friendly moduli were selected and employed 
in the implementation of the improved sum of residues reduction algorithm. The SOR 
algorithm using the proposed moduli set was described in VHDL language and 
synthesized on the Xilinx virtex7 FPGA family using ISE14.7 software.  
Conclusion: The results showed that, compared to the recent similar works, the 
implementation of the improved sum of residues algorithm using the proposed moduli 
set has achieved higher speed and uses less hardware resources.  
 
Keywords: residue number system (RNS); modular reduction; modular multiplication; 
sum of residues (SOR) reduction; arithmetic residue. 

 
INTRODUCTION 

 
Public key cryptography algorithms have an important role in information and communication security and 
are widely employed in various applications [1-2]. Modular addition and multiplication are the most basic 
components of these algorithms. With the growth of the complexity of algorithms, computational cost 
dramatically increases. Nowadays, with the proliferation of portable computers and electronic devices as well 
as the use of general-purpose or special-purpose processors, low-power and high-speed computing are very 
much needed. The Residue Number System (RNS) is a non-weighted number system [3], which provides 
parallel and fast computational operations with high accuracy. In this system, calculations are performed on 
residues. Many works used RNS for implementing public-key cryptography algorithms such as RSA [4-5], 
ElGamal [6], and ECC [7-10] where modular multiplication and exponentiation are used for very large 
numbers. Therefore, one of the ways to significantly increase the speed and decrease the computing power in 
these algorithms is to utilize the residue number system. RNS usually is used for applications such as digital 
signal processing [11, 12], digital filters [13, 14], image processing [15, 16], and error correction systems [17, 18]. 
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The Montgomery modular multiplication [19] is one of the efficient methods for modular multiplication and 
exponentiation in public-key cryptography algorithms. For simultaneous use of the advantages of the residue 
number system and Montgomery modular multiplication, RNS Montgomery modular multiplication is 
presented in [20]. A new algorithm and VLSI architecture for RNS Montgomery modular multiplication are 
stated in [21] and a survey of Montgomery reduction in the context of RNS arithmetic is reported in [22]. In 
[23] a modern architecture which comes with two new well-formed 4-moduli RNS bases {2n-2+1, 2n-3-1, 2n-3+1, 
2n-5-1}, {2n+1, 2n, 2n-1-1, 2n-1+1}, for performing RNS Montgomery modular multiplication is offered. The main 
advantage of the RNS Montgomery modular multiplication method is the efficiency of this procedure in using 
hardware resources. The sum of residues algorithm is one of the new and important methods to perform 
modular reduction which was first introduced in [24]. Hardware implementation of the sum of residues 
algorithm was proposed later in [25]. The proposed implementation in [25] is very large in terms of area. In 
[10], the sum of residues algorithm [24] was employed to perform modular reduction, and general RNS moduli 
were chosen to implement the ECC processor. Further, by modified series/parallel implementation of the sum 
of residues, the proposed ECC processor has become more effective. In [10], the absence of balanced RNS 
moduli set was observed significantly.  In [27], by introducing the correction factor k to obtain an accurate 
result, the sum of residues algorithm was improved. Furthermore, by using a balanced and efficient 8-moduli 
set {266-1, 266-22-1, 266-23-1, 266-24-1, 266-25-1, 266-26-1, 266-28-1, 266-29-1}, a new design was represented for 
improving the area compared to [25], as well as the timing of its design, was improved compared to the RNS 
Montgomery modular multiplication. In addition, in [27], two implementations were performed for the 256-
bit prime field of the elliptic curve SEC2P256K1 and the 255-bit prime field of the ED25519 elliptic curve. In 
[28], a hardware architecture based on the residue number system that supports quick elliptic curve point 
doubling, point tripling, and point addition, based on the chosen 8-moduli set in [27], is presented.  
Moduli in the forms of 2n and 2n±1 can reduce the required arithmetic operations, leading to an efficient 
implementation of hardware in the reside number system [3]. The use of well-formed and balanced moduli in 
the forms 2n and 2n±1 can significantly improve the system performance. In [9], parts of RNS bases were chosen 
in the forms 2n and 2n±1 for achieving higher efficiency. In this paper, to obtain the advantages of the moduli 
in the forms 2n and 2n±1 and the hardware implementation of the improved sum of residues reduction 
algorithm, the new 8-moduli set is selected as {2d+6-1, 2d+4-1, 2d-1, 2d-2-1, 2d-3-1, 2d-4-1, 2d-6-1, 2d-8-1} where d = 

6b+1, b= 2, 3, 4, …, 13, and 
5

0,2,3b  . 

The novelties of the article are as follows: 
1- Selection of the new and balanced 8-moduli set {2d+6-1, 2d+4-1, 2d-1, 2d-2-1, 2d-3-1, 2d-4-1, 2d-6-1, 2d-8-1}. 
2- Hardware implementation of improved sum of residues reduction algorithm with new 8-moduli set. 
The rest of this paper is organized as follows: In section 2, the related mathematical background is presented. 
Section 3 explains the proposed RNS moduli selection for SOR. In section 4, a performance evaluation with 
recent works is presented. Finally, section 5 concludes the paper. 

 
MATHEMATICAL BACKGROUND 

 
RNS background 

The RNS is described in terms of relatively prime moduli set 1 2{ , , , }nm m m where gcd ( , ) 1i jm m = for

i j . A weighted number X can be displayed as 1 2( , , )nX x x x= , where, 

 mod  ,       0 .
i

i i i im
x X m X x m= =                                             (1) 

Such a representation is unique for any integer X in the range [0, M-1], where M is the dynamic range of the 

moduli set 1 2{ , , , }nm m m , which is equal to the product of mi terms 1 2( )nM m m m=     [29]. The 

RNS generally includes three sections: the forward converter, arithmetic unit, and reverse converter [3]. In 
RNS, the weighted numbers are converted to their equivalent residue numbers by a forward converter [30]. 
The arithmetic unit of the residue number system includes the modular adder, multiplier, and subtractor for 
each modulus channel [31-32]. The residue numbers are converted to their weighted equivalents in the binary 
system by a reverse converter to utilize the outcomes of arithmetic operations [33-34]. Reverse converter 
algorithms are basically based on the mixed-radix conversion (MRC) [35], Chinese remainder theorem (CRT) 
[36-37], new Chinese remainder-1 [38-39], and new Chinese remainder-2 [40].  
 
Chinese remainder theorem 
The Chinese Remainder Theorem (CRT) [41] may be considered as one of the most fundamental results in the 
theory of residue number systems. Computing weighted number X from its RNS representation, i.e., 

1 2( , , , )nx x x , based on the moduli set 1 2{ , , , }nm m m  is as follows: 

1
i

n

i i im
i M

X x N M
=

=                                                    (2) 
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Where 
1

1 2 ,  / ,  
i

n i i i i m
M m m m M M m N M −=    = =  is the multiplicative inverse of Mi , 

1,2, , .i n=  

 
Sum of residues reduction background 
Sum of residues RNS modular multiplication algorithm is a novel algorithm to perform modular multiplication 
in the residue number system [24-25]. In SOR, calculations are performed in RNS modules. SOR [24] is a rival 
to Montgomery modular multiplication [19]. CRT [41] is used to Conclude a RNS algorithm for the sum of 
residues reduction [10,24]. A brief description of the sum of residues reduction is provided for understanding 
[24].  

Display of the integer X, 0X<m, using CRT is given in Eq. (2). Assume two l-bit integers, X and Y. Then the 
multiplication outcome Z= X×Y is a 2l-bit integer.  
The presentation of Z in the residue number system is: 

 1 2( ) , , , NRNS Z z z z=                                               (3) 

 

Where, .
i

i i i m
z x y= , and N is equal to the number of moduli. 

The CRT performs condition Z<M. otherwise, the N-tuple RNS set in Eq. (3) doesn’t display integer Z. Defining
1

i
i i i m

z M −= , the integer Z can be offered as:  

1

N

i i

i M

Z M
=

=                                                           (4) 

 
The α is an integer coefficient, which can be computed such as follows [42]: 

1

N

i i

i

Z M M 
=

= −                                                      (5) 

 
The reduction of Z by the modulus p is shown as follows: 

1

mod .
N

i ip p
i p

Z p Z M M 
=

= = −                               (6) 

The computation of α has been debated in [25-43]. It is shown that selecting suitable constants q,  and 
performing boundary condition of Eq. (7), α can be computed using Eq. (8). 

0 (1 ) .X M  −                                                           (7) 

1

1
2 .

2 2

N
qi

q n q
i




−
=

  
= +   

  
                                                       (8) 

In Eq. (8), Δ is a constant-point rectification term and q is an integer constant that determines the number of 
bits shorted of γi terms in the sum.  
 
Improved Sum of residues reduction algorithm 
The improved sum of residues reduction algorithm [27] is presented to compute the accurate value of “X mod 
p” straightly in the RNS representation of an integer. 

Algorithm 1 shows the RNS modulus p multiplication 1 2 1 2{ , ,..., } { , ,..., }modN Nx x x y y y p over chosen 

moduli set using improved sum of residues manner [27].  
 
Algorithm 1: improved sum of residues reduction 
 

1 1 2 2 1

2

Require: , ,  ,  = { ,..., },  ,  log

2
log , ,

N Np q m m m m m n m

W
W p T N

n

    =   

 
=     

 

 

1

ˆRequire:  , (1 ) ,  for 1 to N
N

i i

i i

M
M m M M M i

m=

= = − = =  
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1 1

22

1 1
1

1

2

1

2

Require: pre-computed tables , ,  and       
         

2N
N

p
m m W T

mm

N p

W TmN m

M
M p

M p

M
pM

−

−

−

−
−

     −            −                   −             

 

1

2Require: pre-computed table  for 1 to .

       

N

i p m

i p m

i p m

M

M
i N

M

 
 
 
 

= 
 
 
 
 

 

1

2

.

.
Require: pre-computed table  for 1 to 1

          

.
N

p m

p m

p m

M

M
N

M








 −
 
 

− 
= − 

 
 

− 
 

 

1 1

1

ˆinput : Integers  and ,  0 ,   in form of RNS: { , , } and { , , }.

output : presentation of .  mod  in RNS: { , , }.

N N

N

X Y X Y M x x y y

Z X Y p z z

 

=
 

1

1. for 1 to  do

   . .  

end

2. for 1 to  do

 . . 

end

i

i
i

i i i m

i i i m
m

i N

xy x y

i N

x y M −

=



=



 

3. for 1 to  do

for 1 to  do

   Y  . 

  end  

end

j

ij i i p m

i N

j N

M

=

=

  

1

1

4. for 1 to  do

1
4.1  ( 2 ) .

2 2

1
4.2   .

2 2

end

N
qi

q n q
i

N
i p

iT W T
i

i N

M
k






−
=

−
=

=

  
 +   

  

  
   
    




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1

5. for 1 to  do

  5.1 Calculate . .

  5.2 Read  from the table.

  5.3 sum   .

end

i
i

i

i

m
m

p m

N

i ji

j m

i N

k p

M

Y



=

=

−

−

 

 

6. for 1 to  do

    .

end

ii i

i i P mm m

i N

z sum M k p

=

 + − + −  

 
RNS moduli selection for SOR 
As discussed in section 1, many works are done to select efficient RNS moduli set for effective implementation 
of SOR. In the work reported in [25], the N general moduli are chosen with same word length. This shows that 
dynamic range of the residue number system is equally dispensed into N moduli. The SOR implementation of 
[25], later is employed in the implementation of elliptic curve point multiplication reported in [10]. This work 
only concentrated on general moduli to show that rapid implementation of modular multiplication and missed 
the special attributes of the well-formed moduli. In [27], for efficient implementation of the SOR, moduli set 

in form of 2 2 1itn − −  (n=66) are selected. Moduli in the form of 2 2 1itn − − , first presented in [44] and 
modular reduction in RNS addition and multiplication can be realized in a adder base structure.   
In order to improve efficiency of SOR implementation and employ the property of moduli in the form of 2n-1, 
a new 8-moduli set, namely β = {2d+6-1, 2d+4-1, 2d-1, 2d-2-1, 2d-3-1, 2d-4-1, 2d-6-1, 2d-8-1} where, d = 6b+1, b= 2, 3, 

4, …, 13, and 
5

0,2,3b  , are selected. With substituting b = 11, moduli set {273-1, 271-1, 267-1, 265-1, 264-1, 

263-1, 261-1, 259-1} is resulted which provides 523- bit dynamic range. Since RNS modular multiplication in the 
256-bit prime field requires a dynamic range of at least 512 bits, the provided 523- bit dynamic range makes it 
suitable for RNS modular multiplication in 256- bit prime field. The selected moduli set for 256- bit prime field 
are shown in Table 1. 
 
In the following, theorem to prove that the selected modules are relatively prime is included.  
Theorem 1. Let a, b ∈ ℤ. If there exist integers x and y such that ax+by=1 then gcd (a, b) = 1.  

Proof. Let a, b ∈ ℤ such that d= gcd (a, b). Then d a  and .d b  

Hence ( )d ax by+ , thus 1d . Which implies 1d =  , since gcd is the greatest, d=1.  

Because modules are large numbers, a Python program is coded for calculations and verification. 
Due to the fact that the selected modules are in the form 2n-1, it leads to fast and simple arithmetic operations 
in RNS [45-46] compared to the modules provided in [25] and [27].  
 

Table 1. Co-prime moduli set β 

265-1 267-1 271-1 273-1 

259-1 261-1 263-1 264-1 

 
Proposed RNS adder and multiplier circuits 
Modular addition is basic operation in residue number system, since the modular adders are essential building 
blocks for sketching modular multipliers and as well as modular subtraction can be perform by using modular 
adders [3]. 
Figure. 1-(a), shows the design of a n-bit RNS adders. 
The formula for performing the (A+B mod 2n-1) is [3]: 
 

( 1) mod  2   if 1 2
( ) mod  (2 1)

                        if 1 2

n n

n

n

A B A B
A B

A B A B

 + + + + 
+ − = 

+ + + 
                          (9) 

Due to the condition 1 2nx y+ +  , both additions in Eq. (9) are performed in parallel, and the correct answer 

is selected by a multiplexer as shown in figure 1-(a).  
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In this paper, n = 73 is considered. 
 

n bits Addern bits Adder

MUX

0

(a)

R

A B

Mult 

Addition with delay of RNS Adder

S

R

2n

n

S1S2

A

(b)

1
A B

n

B

 
Figure 1. a)  Modulus 2n-1 RNS adder, b) Modulus 2n-1 RNS multiplier 

 

 Figure. 1-(b), shows the design of a n-bit RNS multiplier circuit.    
The formula for performing the multiplication circuit is 
                                                                              S = A × B                                                                       (10) 
The result S has 2n-bit length and divided into two n-bit as S1 and S2.  
Since moduli in the form of 2n-1 are selected, RNS adders and multiplier circuits are less complex compared to 

the circuits employed in [27] for moduli in the form of 2 2 1itn − −  (n = 66). RNS adder and multiplier for n 
=73 (largest selected moduli) are implemented on the different Xilinx FPGAs family which is shown in Table 
2. The results are listed based on maximum logic, net and combinational delays of the RNS adder and 
multiplier. Although the selected moduli set have higher bit length compared to moduli set selected in [27], the 
simple hardware results in noticeable improvement in delay of RNS addition and multiplication.  
 

Table 2. Implementation results of SOR components on ARTIX7 & VIRTEX7 FPGAs series. 
Unit Device Max. Logic Delay 

(ns) 
Max. Net Delay 
(ns) 

Combinational 
Delay (ns) 

RNS Multiplier 
[27] 

ARTIX 7 16.206 5.112 21.318 

RNS Multiplier (n 
=73) 

ARTIX 7 14.987 2.790 17.777 

RNS Adder [27] ARTIX 7 6.017 2.303 8.32 

RNS Adder (n 
=73) 

ARTIX 7 3.724 1.550 5.274 

RNS Multiplier 
[27] 

VIRTEX 7 11.525 3.793 15.264 

RNS Multiplier (n 
=73) 

VIRTEX 7 10.58 2.499 13.079 

RNS Adder [27] VIRTEX 7 3.931 1.469 5.4 
RNS Adder 
(n=73) 

VIRTEX 7 2.087 1.393 3.481 

 
In order to achieve efficient modular multiplication on FPGA, DSP modules are used for implementation of 
73×73-bit, 71×71-bit, 67×67-bit, 65×65-bit, 64×64-bit, 63×63-bit, 61×61-bit and 59×59-bit multipliers, that are 
followed by a combinational reduction logic to construct the RNS multiplier. The total number of 116 DSP 
resources are used for a RNS multiplier. Table 3 presents number of DSP 48E1s for multipliers. 
 

Table 3. Number of DSP 48E1s for multipliers 
Multiplier DSP 48E1s 
73×73-bit 20 

71×71-bit 20 

67×67-bit 16 
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65×65-bit 12 

64×64-bit 12 

63×63-bit 12 

61×61-bit 12 

59×59-bit 12 

 
Numerical Example 
The algorithm 1 can be more clarify with the help of a numerical example with the following inputs and pre-
computations. The python program is used to attain algorithm outputs. 
Inputs: 
T = 72, q = 8, Δ = 1/24, n = 73 (largest moduli in selected RNS moduli set), N = 8, w = 256, 
 p = 2256 - 232 - 977  
⇒p=115792089237316195423570985008687907853269984665640564039457584007908834671663 
X = 2256 - 235 – 977 
⇒X=115792089237316195423570985008687907853269984665640564039457584007878769900591 
Y = 2256 - 237 - 977 
⇒Y=115792089237316195423570985008687907853269984665640564039457584007775690685487 
Z=X×Y=134078079299425970995740249982058461274793658205923933777235614437018711003908977
68745943162383372889379037440209302592119473661603124793281120775636422817 
Moduli = {2d+6-1, 2d+4-1, 2d-1, 2d-2-1, 2d-3-1, 2d-4-1, 2d-6-1, 2d-8-1} when d = 67 
As a result, the moduli set is equal to 
Moduli = (9444732965739290427391, 2361183241434822606847, 147573952589676412927, 
36893488147419103231, 18446744073709551615, 9223372036854775807, 2305843009213693951, 
576460752303423487) 
Pre-computations: 
M = m1 × m2 × … × m8 
⇒M=2745919064052243879497438743837295873473890447693293058976068002372244984762364133
4027717419099877483026047907644978036993241544937013360639638063158042558465 
Mi = M / mi (for i = 1 to 8) 
⇒Mi= 
(290735489718242755532041383758754419085916617778029030286083872547310368094371070395504
6783110345933712589679553395256573968815400943615,, 
476341026354368931489966129570222603465809396611818480749376067491939917886178414208430
36101050378169680592236974730005947115434580373405695) 

1

i
i m

M −
= (5386417757290016831506, 930500703993780264455, 18803160785300071733, 

20472618723068709026, 3400417297457863576, 3683224619310100934, 540231240598819487, and 
308591480262646799) 

xi = 
im

X  

xi = (103079214127, 8761733282863, 36028762659224623, 2305842974853954607, 
18446744039349812271, 9223372002495036478, 2305842974853958702, 576460717944732718) 

yi = 
im

Y  

yi = (9444732965739290426414, 8658654067759, 36028659580009519, 2305842871774739503, 
18446743936270597167, 9223371899415821374, 2305842871774743598, 576460614865517614) 
Step1: 
for i=1 to N 

.
i

i i i m
xy x y  

1

2

3

9444732865030898225312

2361166221716380126754

77173859857994780864

xy

xy

xy







 

4

5

6

7

8

32426085153653035174

167675524188672

165098543782273

2305307169103575200

396485711994204320

xy

xy

xy

xy

xy










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Step 2:  
For i=1 to N 

1

i
i

i i i m
m

xy M −  

1

2

3

4

5

6

7

8

2409161764343951463886

1135107945428528244106

135899592520116905117

7898225949981137849

5936354770407377172

865739859861763338

1313261649358731301

83291400022900075

































 

Step 3:  
For i= 1 to N  
For j=1 to N 

j

ij i i p m
Y M  

11 12

21 22

31

681867765270114117420133393408490086262906,   1411099900061574858572502791209519202960572

2659261440602693086991442234037531836892694, 1376784949087910930072503697665873703143752

980

Y Y

Y Y

Y

 

 

 32

41 42

51

204674115271573830804255676847542450458,   4704508928771512517554345298023264500134

5974525928778090626338736042222879520850,       6219390423963401984858197943939689922946

3613829521572

Y

Y Y

Y



 

 52

61 62

71

0298353205959812939100460008,     5607603186449701501359797610557855591304

1852740078360359150364953302955205235416,       1499065839605647225112824798436085160056

5039251287888810431290

Y

Y Y

Y



 

 72

81 82

568139652218946652,       1283872360271851651556491573291643483678

491689769989300091524375965533261748475,         124500195025441885003600682916015173875

Y

Y Y



 

 

 

13 14

23 24

33

277156753878887700315594671133777148147854, 60314557050672044604549194671628986198936

11321320756411111666047826669757276652514,   14676688015072631794298638578584883620874

161346961

Y Y

Y Y

Y

 

 

 34

43 44

53

47550311472725944718296707584618,   3691070020767749267947470135952686755595

677586882989888266168461548581148359269,       272764828939575537301832998281487018274

7095629195915895439147

Y

Y Y

Y



 

 54

63 64

73

50498317486374284,       40821924589764152034223438594242314364

28674200848581737311716771794162061462,         1929369805947675906628147180441585638

874129340875037853725036826571716955

Y

Y Y

Y



 

 74

83 84

8,           20811565554527299913474943197756653721

611119128411221256767698377804925825,             671741546367635644410234554027195900

Y

Y Y


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15 16

25 26

35

2777544291298458401581887747504380829296 , 13367058360951236737018307614526970075440

1308633779771579521369180221195667489768,  1063276267409231305401892130362762706924

2036758186019

Y Y

Y Y

Y

 

 

 36

45 46

55

779579201711235058398273323,  9731768706953119432203237321469874064

36404778208831538842653845239177292619,      38690366755093959725440597010117517681

3099130368167116439847095760223557

Y

Y Y

Y



 

 56

65 66

75 76

2376,      3413446951590187223582237943761751396

15967564895952950879738963026865732760,      6114140002827327687978607407424477548

24221431625966887939302915687296292463,      60542

Y

Y Y

Y Y



 

 

85 86

63937375943593673675653646583405

1536200930104473728887011569798006725,        768094022801397229756427280912258175Y Y 
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17 18

27 28

37

2256773885564848812199077039693822416028, 867990622203321764436991473908291277512

1063300957183257316768953115869437506490, 408963162271874569983906377861602484362

166457106877758086

Y Y

Y Y

Y

 

 

 38

47 48

57

352824464925257441561,   9788219425522819515980685954231047919

2273825193658014948271037477183515169,       2275830807378412276399269514910278397

3419832367256666925818465835841140384,  

Y

Y Y

Y



 

 58

67 68

77 78

     3421509475336408602479721576496915776

997786237018025833654249540432449978,         498978312413921098839608395114602468

670642552681730895134624976157078795,         7569074294

Y

Y Y

Y Y



 

 

87 88

54713464804174183322887736

192022288185827710460559323881629025,         32784220094420210358569677415064275Y Y 

 

Step 4: 
For i=1 to N 

1

1
4.1  ( 2 ) .

2 2

N
qi

q n q
i




−
=

  
 +   

  
  

0   

1

1
4.2   .

2 2

N
i p

iT W T
i

M
k 

−
=

  
   
    

  

1846402278694734677477k   

Step 5: 
For i=1 to N 

 5.1 Calculate . .
i

i
m

m

k p−  

Phase 1.1 = 8283466596510442787559, phase 1.2 = 374180066768676362797 
Phase 1.3 = 92393689274398591882, phase 1.4 = 20282568479059962491 
Phase 1.5 = 16356846318752536699, phase 1.6 = 8885520965668475841 
Phase 1.7 = 1215072663256523127, phase 1.8 = 428518828954403760 
 

5.2 Read  from the table.
i

p m
M −  

phase 2.1=0, phase 2.2=0, phase 2.3=0, phase 2.4=0, phase 2.5=0, phase 2.6=0, phase 2.7=0, phase 2.8=0 
 

1

 5.3 sum   .

i

N

i ji

j m

Y
=

   

1

2

3

4

5

6

7

8

sum 5217897958331825282912

sum 1761286061702129779386

sum 75136033434331914086

sum 13053621835770138398

sum 17138598910088346420

sum 2195256151132184606

sum 531093517150379851

sum 271871109103727507

















 

Step 6: 
For i=1 to N 

   .
i

i i

i i p mm m

z sum M k p + − + −  

 
z1 = 13501364554842268070471, z2 = 2135466128470806142183, z3 = 167529722708730505968 
z4 = 33336190314830100889, z5 = 33495445228840883119, z6 = 11080777116800660447 
z7 = 1746166180406902978, z8 = 700389938058131267 
The results are verified as follows: 
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1

2

13501364554842268070471

2135466128470806142183

P m

P m

Z

Z

=

=
 

3

4

5

167529722708730505968

33336190314830100889

33495445228840883119

P m

P m

P m

Z

Z

Z

=

=

=

 

6

7

11080777116800660447

1746166180406902978

P m

P m

Z

Z

=

=
 

8

700389938058131267
P m

Z =  

 
 Hardware implementation of the sum of residues reduction algorithm 
Three different architectures for implementation of the SOR algorithm discussed in Section 2 are introduced 
in [27], named non-pipe-lined (SOR_1M_N), pipe-lined (SOR_1M_P), and two parallel pipelined (SOR_2M). 
In this paper, these architectures are implemented using the proposed 8-moduli set. Table 4, shows a 
comparison between the implementation of SOR algorithm using the proposed moduli set and the most 
advanced RNS-based modular multipliers.  
 

Table 4. Comparison of 256-bit Modular Multipliers 
Design Platform Latency  

(ns) 
Area 
(KLUTs), (DSP) 

(MM-PA-P) [25] VIRTEX-6 14.20 (36.5), (2016) 
(MM-PA-N) [25] VIRTEX-6 47.25 (34.34), (2016) 
(MM-PA-P) [26] VIRTEX-7 48.3 (29.17), (2799) 
(MM-SPA) [26] VIRTEX-7 239.2 (11.43), (512) 
(SOR-1M-N) [27] VIRTEX-7 241 (8.17), (140) 
(SOR-1M-P) [27] VIRTEX-7 173 (8.73), (140) 
(SOR-2M) [27] VIRTEX-7 140 (10.11), (280) 
[23] VIRTEX-7 120.16 (9.21), (248) 
 (SOR-1M-N) with Proposed Moduli set VIRTEX-7 197.2 (7.16), (116) 
 (SOR-1M-P) with Proposed Moduli set VIRTEX-7 132.6 (7.57), (116) 
 (SOR-2M) with Proposed Moduli set VIRTEX-7 105.7 (8.93), (232) 

           
In the designs proposed in [25-26], the SOR algorithm introduced in [24] was used to perform the modular 
reduction. Barrett reduction [47], was used in these two designs for modular multiplication at any channel. As 
stated in [27], the Barrett reduction involves two multiplications and one subtraction, which isn’t an optimal 
solution for high-speed designs. The design in [25] has a simultaneous structure to execute the modular 
reduction in one clock cycle. The hardware needed in this design is presented in [26], which is equal to (34.34 
KLUTs, 2016 DSP) for Modular Multiplier Parallel Architecture (Non-pipelined) (MM_PA_N) and (36.5 
KLUTs, 2016 DSPs) for Modular Multiplier Parallel Architecture (Pipelined) (MM_PA_P). 
 The design in [27] is more effective than previous works [25-26], because it consumes less hardware resources 
and has lower latency. The amount of hardware area needed in this work [27], for the sum of residues reduction 
non-pipe-lined (SOR_1M_N) design, the sum of residues reduction with pipe-lined (SOR_1M_P) design, and 
the sum of residues reduction using two parallel pipe-lined (SOR_2M) design is equal to (8.17 KLUTs, 140 
DSPs), (8.73 KLUTs, 140 DSPs) and (10.11 KLUTs, 280 DSPs), respectively. The hardware needed for the 
parallel architecture of the RNS Montgomery multiplier reported in [23] is equal to (9.21 KLUT, 248 DSP), 
showing its improvement over previous work [27].  
As mentioned in literature, a lot of works are introduced about modular multipliers for high-speed 
performance, but due to the dissimilar implementation technology, a direct comparison is not always 
conceivable. In this paper, to have a straight comparison, SOR algorithm using the proposed moduli set is 
implemented on the Xilinx Virtex-7 FPGA similar the previous works. Finally, from the results presented in 
table 4, it can be concluded that the using proposed moduli set in the implementation of the modified SOR 
algorithm proposed in [27], it is more efficient in terms of latency and area compared to the previous works 
[23,27]. 
In comparison with the most advanced implementations on Virtex-7 FPGA, presented in [23], SOR_2M 
architecture using the proposed moduli set has achieved 32.5% and 13.7% faster than SOR_2M architecture 
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proposed in [27] and [23], respectively. Further, SOR_1M_N using the proposed moduli set, has achieved 
14.1% improvement compare to SOR_1M_N [27] in terms of area.  

 

CONCLUSION 
 
This paper presents an efficient implementation of modular reduction. A new balanced and well-formed eight-
moduli set {2d+6-1, 2d+4-1, 2d-1, 2d-2-1, 2d-3-1, 2d-4-1, 2d-6-1, 2d-8-1} is selected and employed in the implementation 
of the improved sum of residues algorithm. SOR algorithm using the proposed moduli set is described in VHDL 
language and synthesized by the ISE14.7 software on Xilinx virtex7 FPGA. The synthesis results illustrated that, 
compared to the latest work in literature, SOR_2M using the proposed moduli set has achieved 13.7% 
improvement in speed and SOR_1M_N with proposed moduli set, uses less hardware resources compared to 
the best work in literature.  
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