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ARTICLE INFO ABSTRACT 
 Introduction: This paper proposes two new reverse converters for balanced and well-

formed five-moduli set {2n+1, 2n-1-1, 2n, 2n+1-1, 2n-1}. The converters are planned in a two-
level architecture while appreciating adder base structures without utilizing any ROM, 
which results in an efficient implementation in VLSI circuits.  
Materials and Methods: To design both levels of the proposed reverse converters, 
Mixed-Radix Conversation (MRC) algorithm is employed.  
Results and Discussion:  Unit gate delay and area estimation demonstrate the 
proposed reverse converter (DC1) is faster than other alternatives, the similar five moduli 
reverse converter, under distinctive dynamic ranges while the second design (DC2) 
requires less hardware cost.  
Conclusion: The synthesis results on Xilinx Virtex-7 FPGA illustrate that, comparing to 
the latest five moduli set reverse converters, the proposed converter (DC1) has achieved 
11%, 12% and 11% improvement in speed for n = 12, 16 and 20, respectively. 
 
Keywords: residue number system (RNS); reverse converter; mixed radix conversion; 
computer arithmetic. 

 
INTRODUCTION 

 
Characterized by a set of moduli, Residue Number System (RNS) is a non-weighted number system. The most 
prominent advantage of this system could be the absence of the carry propagation between RNS channels. 
Accordingly, parallel execution of arithmetic operations, addition, subtraction, and multiplication of smaller 
numbers, for instance, can be realized in the applications requiring arithmetic operation on large numbers [1]. 
Unlike addition, subtraction and multiplication operations, dividing, sign detection, and comparing values are 
difficult to do in RNS. This system is broadly utilized in special-purpose processors to run applications such as 
public key cryptography algorithm [2-4], RSA [5-8], Elliptic Curve Cryptography (ECC) [9-14], digital signal 
processing (DSP) [15-19], digital filters [20-23], image processing [24-26], and error correction systems [27-
30]. The primary operation in cryptography algorithms such as RSA and ECC, is the modular multiplication on 
large numbers [12, 31, 32]. Since calculations are performed on residues, applying RNS in these algorithms will 
result in higher efficiency in terms of fast VLSI implementation and reduced power consumption. RNS 
comprises three principal parts: binary-to-residue converter (forward converter), which converts a weighted 
binary number to its equivalent residue number, arithmetic unit including addition, subtraction, and modular 
multiplication, and finally the residue-to-binary (reverse converter), which converts residues to its equivalent 
weighted number. The reverse converter is an essential part of the RNS since the speed gain of the RNS 
arithmetic unit should not be reduced by this part. The complexity of the reverse converter is determined by 
the selected moduli set as well as the conversion algorithm(s) used in the design of the reverse converter.  
3n-bit dynamic range moduli sets has been reported by many works. The most famous RNS moduli set is {2n-
1, 2n, 2n+1} [33] due to its simple and well-formed balanced moduli. In terms of complexity, arithmetic 
operation in moduli 2n+1 are more complex than moduli 2n and 2n-1. Therefore, 3n-bit dynamic range RNS 
moduli sets {2n-1-1, 2n-1, 2n} [34], {2n-1, 2n, 2n+1-1} [35] and {22n+1-1, 2n, 2n-1} [36] are reported by many 
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researchers. The latest papers that consider reverse conversion using 3-moduli sets are [37-40]. As applications 
which require operation on larger numbers grow up, the provided dynamic range by this moduli sets will not 
be sufficient. Hence, 4n-bit dynamic range four-moduli sets {2n-3, 2n+1, 2n-1, 2n+3} [41] {2n-1,2n, 2n+1, 2n+1-1}, 
{2n-1, 2n, 2n+1, 2n+1+1} [42], {2n-1, 2n, 2n+1, 22n+1} [43], {2n+1, 2n-1, 2n, 2n+1+1} [44] and {2n,2n–1−1,2n–1,2n+1−1} 
(n Even) [45] have been presented by researchers. 
In order to attain a higher degree of parallelism and dynamic range, balanced five moduli set {2n-1, 2n, 2n+1, 
2n-1-1, 2n+1-1} [46] has been proposed. The moduli set benefits from arithmetic friendly moduli using fast and 
efficient arithmetic operation together with high dynamic range. The dynamic range and parallelism ensued 
from this moduli set make it suitable for the applications in which operations on large numbers are required, 
such as public key cryptography algorithms [5, 9, 12]. Nevertheless, as the number of modules increases, the 
selected moduli set results in a more complex reverse converter. The studies [47] and [48] present efficient 
reverse converters for five moduli set {2n-1, 2n, 2n+1, 2n+1+1, 2n-1+1} and {2n-1, 2k, 2n+1, 2n-1-1, 2n+1-1}, 
respectively, to extend the efficiency of reverse converter. The authors in [48] used the multiplication by 
constant reported in [49] to increase the efficiency.  
In this paper, we introduce two fast and area efficient reverse converters for the five-moduli set {2n+1, 2n-1-1, 
2n, 2n+1-1, 2n-1} offering a high-speed arithmetic unit because of its balanced moduli in the form 2k and 2k±1. 
To have five moduli set pairwise relatively prime, n should be an EVEN positive integer greater than 2. These 
reverse converters are designed in a two-level structure using Mixed Radix Conversion (MRC) algorithms for 
both of the levels. High accuracy in choosing the appropriate moduli for these two levels brings about a fast 
and area efficient reverse converter.  
The remains of this paper is organized as follows. Section 2 presents several useful attributes of residue 
arithmetic are presented. Section 3 illustrates the proposed reverse converter for five-moduli set {2n+1, 2n-1-1, 
2n, 2n+1-1, 2n-1}. Section 4 explains hardware implementation and performance evaluation with state-of-the-art 
works in literature. Finally, section 5 concludes the paper. 
 

RELATED BACKGROUND 
 

RNS Background 
The RNS is determined in terms of relatively prime moduli set {𝑃1, 𝑃2, . . . , 𝑃𝑛} that is gcd{(𝑃𝑖 , 𝑃𝑗)} for{𝑖 ≠ 𝑗}. A 

weighted number X can be represented as{𝑋 = (𝑥1,  𝑥2, . . . , 𝑥𝑛)}, where, 
(1)       𝑥𝑖 = 𝑋 𝑚𝑜𝑑 𝑃𝑖 = |𝑋|𝑃𝑖

 ,   0 ≤ 𝑥𝑖 < 𝑃𝑖   

 
Such a representation is inimitable for any integer X in the range[0, 𝑀 − 1], where M is the dynamic range of 
the moduli set{𝑃1 , 𝑃2, . . . , 𝑃𝑛}, which is equal to the product of {𝑃𝑖} terms(𝑀 = 𝑃1 ×  𝑃2 × . . .×  𝑃𝑛). 
 
 Mixed-Radix Conversion 
By MRC, which is calculated sequentially, the weighted number X is obtained from its corresponding residues, 
i.e.,(𝑥1,  𝑥2, . . . , 𝑥𝑛), based on the moduli set {𝑃1, 𝑃2, . . . , 𝑃𝑛} as follows [1]: 

(2)     
1

1 2 1 3 2 1
1

...
n

n i
i

P P P PX v v v v
−

=

+= + + +    

Equation (2) for 3-moduli set in MRC can be shown as 

(3)     1 2 1 3 1 2X x v P v PP= + +  

The coefficients vis can be gained from residues by 

(4)       1 1v x=  

(5)      
2
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2 2 1 1( )
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Pv x v
−

= −  

3 3
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1 1

3 3 1 1 2 2(( ) )
p P
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v x v P v P− −= − −                                                 (6) 

In general case: 

1 1 1

1 1 2 2 1 1((( ) ) )
n n

n

n n n n nP P
P

v v v P v P P v P− − −

− −= − − − −                                  (7) 

Note that 1
2

1 P
P − is the multiplicative inverse of P1 modulo P2. 

  
Proposed Reverse Converter 
As shown in figure 1, two level design using MRC are employed to realize fast and area efficient reverse 
converter for the moduli set {2n+1, 2n-1-1, 2n, 2n+1-1, 2n-1}. Considering moduli set {P1, P2, P3, P4, P5} = {2n+1, 2n-

1-1, 2n, 2n+1-1, 2n-1} and corresponding residues (x1, x2, x3, x4, x5), in first and the second levels of the design, 
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converters for the subset {2n+1, 2n-1-1, 2n} and {2n+1×(2n-1-1)×2n, 2n+1-1, 2n-1} are designed using MRC. In the 
following the proposed two level design will be detailed.  
Initially at first level, a reverse converter for the subset {2n+1, 2n-1-1, 2n} is designed according to its represented 
residues (x1, x2, x3) for obtaining RNS number Y. Then, at the second level a reverse converter for subset {(2n+1) 
(2n-1-1) (2n), 2n+1-1, 2n-1} is designed with respect to the result of first level (Y) and RNS number x4 and x5 to 
calculate the final weighed number X. 

{2n+1, 2n-1-1, 2n}

{(2n+1)(2n-1-1)2n, 2n+1-1, 2n-1}

x1

Y

x5

X

x3 x4

Level 1

Level 2

x2

 
Figure 1. Two level designs of the reverse converter using MRC 

 

Converter using MRC for subset {2n+1, 2n-1-1, 2n} 
Consider the subset {P1, P2, P3} = {2n+1, 2n-1-1, 2n} with corresponding weighted number Q = (x1, x2, x3) and 
using MRC, we have.  

(8)     1 2 1 3 1 2Y v v P v PP= + +  

Where  

(9)       1 1v x=  

(10)      1
1

2
2

2 2 1
( )

P
P

P

xv x −−=  

3 3
3

1 1

3 3 1 1 2 2(( ) )
p P

P

v x v P v P− −= − −                                                          (11) 

In Eq. (10), 
2

1

1
P

P
−

 is the multiplicative inversion of (2n+1) modulo (2n-1–1), which can be determined as
 

     
 

(12)     
2

1

1

2 4 21(2 1) (1 2 2 ... 2 )12 1P

P
nn

n
− −−= + = + + + +− −

 

By substituting Eq. (12) in Eq. (10), we have 
 

 (13)     
1

2 2

2 2 1 2 1
( )(1 2 2 )

n

nv x x
−

−

−
= − + + +   

In order to simplified operation in modulo 2k-1, two lemmas are employed as follows [50]. 
 
Lemma 1. The residue of a negative residue number (−v) in modulo (2k − 1) is the one’s complement of v, 

where 0   v < 2k − 1. 
 
Lemma 2. The multiplication of a positive residue number v by 2P in modulo (2k − 1) is carried out by P bit 
circular left shift, where P is a natural number. 
 
Using lemma 2 in Eq. 13 results 
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In order to calculate v3 we have: 

(16)       
3 3

3

1 1

3 3 1 1 2 2(( ) )
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v x v P v P− −= − −   

In Eq. (16), 
3

1

1
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−

 and 
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2
3P
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−

are the multiplicative inverse of (2n+1) modulo 2n and (2n-1-1) modulo 2n, 
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3
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1
P

P
−

 and 
1

2
3P

P
−

can be determined as 
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By substituting Eq. (17) in Eq. (16), we have 
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1

3 3 1 2 2
( ) 1 )( (2 1))

n
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                (19)   

1 1

3 3 1 2 1 2 32 2
( )( (2 1)) ( )(2 1)
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Two cases can be considered for v2 in Eq. 19 
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Using lemma 1 and 2 in Eq. (19) results 

                               (21)      
3 31 32 33 34 35 2nv v v v v v= + + + +      
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After calculation of v2 and v3, in order to calculate Y, we have 
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Eq.22 can be simplified as 
 
(23)      

1 2 3 4Y Y Y Y Y= + + +    
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1 1
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3 3
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3 34
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In order to achieve faster implementation, Y in Eq. (23) will not calculated in this level and the intermediate 
results of 

1 2 3 4,  ,   and Y Y Y Y will sent to next level. 
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Operand Preparation Unit 1 (OPU 1)

n-bit CSA 2

n-bit CSA 3

n-bit CSA 4

n-bit CPA 2

(n-1)-bit CSA 1 with EAC

n/2 levels of (n-1)-bit CSA 5 
with EACL1 L2 L3

v2 v3

v31 v32 v33 v34 v35

x1 x2 x3

Operand Preparation Unit 3 (OPU 3)

Y1 Y2 Y3 Y4

Calculation of CSA tree 1

1

Mux 2-1
(n/4) levels of (n-1)-bit CSA 5 

with EAC

(n-1)-bit CPA 1 with EAC

(b)

(c)

v21v22

V*21V*22

OPU (2)
...

(a)  
Figure 2. (a) First level design of the reverse converter, (b) calculation of CSA tree 1 (first 

design-DC1), (c) calculation of CSA tree 1 (second design-DC2) 

 

First level design of the reverse converter including calculation of v2 and v3 are shown in figure 2. Hardware 
Implementation for performing the first level of the proposed reverse converter is specified based on Eqs. (14) 
and (21). Equation (14) is implemented by a (n-1)-bit carry save adder (CSA) with end around carry (EAC), n/2 
levels of (n-1)-bit carry save adder (CSA) with (EAC) in DC1, (n/4) levels of (n-1)-bit CSA with EAC in DC2, two 
(n-1)-bit carry propagate adder (CPA) and a multiplexer. Eq. (21) is implemented by three n-bit CSA and one 
n-bit carry propagate adder. It should be noted that some full adders (FAs) in these CSAs can be replaced with 
the couple gates of XOR/AND or XNOR/OR due to some stable values 0 or 1, respectively [51-52].  
Table 1 displays the hardware details and delay of each ingredient for the first level design of the proposed 
reverse converter.  
  

Table 1. Detailed of each component for the first level design of the reverse converter 
Component FA XOR AND XNOR OR MUX2-1 Delay 
CSA1 2 n-4 n-4 - - - tFA 

CSA 5 (DC1) (n-
2)(n-
1) 

- - - - - n/2 tFA 

CSA 5 (DC2) (n/2-
2)(n-
1) 

- - - - - n/4 tFA 

CPA1 (DC2) n-1 - - - - - (2n-2) tFA 
CSA2 1 2 2 - - - tFA 
CSA3 n-1 1 1 - - - tFA 
CSA4 n - - - - - tFA 
CPA2 n - - - -  n tFA 
CPA3 n-1 - - - - - (n-1) tFA 
CPA4 n-1 - - - - - (n-1) tFA 
MUX - - - - - n-1 1tFA 

 
3.2 Converter design using MRC for subset {2n× (2n-1-1) × (2n+1), 2n+1-1, 2n-1} 
In order to calculate X from subset {P123, P4, P5} = {2n× (2n-1-1) × (2n+1), 2n+1-1, 2n-1} with corresponding 
residues (Y, x4, x5) by using MRC, we have  

(24)                  1 123 2 123 4 3X v P v P P v= + +  

(25) 
1 1 1

1 2 3(2 1)(2 1)2 (2 1)(2 1)2 (2 1)n n n n n n nX v v v− − += + + − + + − −  

(26)                   1 1 2 3 4v Y Y Y Y Y= = + + +  
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(27)                           
4 14
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2 4 1 2 3 123
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−

= − + + +  

(28)    
5 5
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1 1

3 5 123 2 4(( ) )
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The required multiplicative inverses in Eq. 27 and 28 are  
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Equation (27)  can be rewriten as 

(30)         
14

1

2 4 1 21 22 23 31 32 41 42 123
2 1

( )
nP

v x Y Y Y Y Y Y Y Y P
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−

−
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Where 

21 2,0 2, 2 2,0

22 3,2 3,1 3,0 2, 2 2,1

23 3, 1 3,3

31 3,1 3,0

2

32 3, 1 3,2
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42 3, 1 3,1
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In order to simplified Eq. 30, (n+1)-bit CSAs with EAC are employed. As shown in figure 4, after using four 
levels of (n+1)-bit CSA with EAC, v21 and v22 will be resulted. Therefore Eq. (30) can be simplified as 

(31)                   
14

1

2 21 22 123
2 1

( )
nP

v v v P
+

−

−

= +   

In case n=6k+4, we have 

(32)                
1

2 3 7 8 9 13 14 15

2 21 22
2 1

( ) (2 2 2 2 2 2 2 2 )
n

v v v
+ −

= +  + + + + + + + +  

(33)                                             
1

21 21 21

2

22 22 22 2 1

( , 2) ( ,3) ( ,7)

( , 2) ( ,3) ( ,7) n

CLS v CLS v CLS v
v

CLS v CLS v CLS v + −

+ + + +
=

+ + +
 

In case n=6k+6, we have 

1

5 6 7 1

2 21 22
2 1

( ) (1 2 2 2 2 2 )
n

n nv v v
+

−

−
= +  + + + + + +                                                                (34) 

1

21 21 21 21, 1 21,

2

22 22 22 22, 1 22, 2 1

( ,0) ( ,5) ( ,6) ( ) ( )

( ,0) ( ,5) ( ,6) ( ) ( )
n

n n

n n

CLS v CLS v CLS v CLS v CLS v
v

CLS v CLS v CLS v CLS v CLS v
+

−

− −

+ + + + + +
=

+ + + + +
               (35) 

In case n = 6k+8 we have 

1

0 1 2 4 5 9 10 11

2 21 22
2 1

( ) (2 2 2 2 2 2 2 2 )
n

v v v
+ −

= +  + + + + + + + +                                              (36) 
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1

21 21 21 21

2

22 22 22 22 2 1

( ,0) ( ,1) ( , 2) ( , 4)

( ,0) ( ,1) ( , 2) ( , 4) n

CLS v CLS v CLS v CLS v
v

CLS v CLS v CLS v CLS v + −

+ + + + +
=

+ + + +
                                 (37) 

In Figure 3, the design of Eq. (31) in three cases are shown. 
 

1n +1n +

......

(a)

Operand Preparation Unit (OPU4)

(n/2) Levels CSA tree 2.1

v21 v22

CLS(v21,n-1) CLS(v21,2) CLS(v22,n-1) CLS(v22,2)

1n +1n +

......

(b)

Operand Preparation Unit (OPU4)

(n/2) Levels CSA tree 2.2

v21 v22

CLS(v21,n) CLS(v21,0) CLS(v22,n) CLS(v22,0)

1n +1n +

......

(c)

Operand Preparation Unit (OPU4)

((n-2)/2) Levels CSA tree 2.3

v21 v22

CLS(v21,n-3) CLS(v21,0) CLS(v22,n-3) CLS(v22,0)

v*21
v*22

v*21 v*22
v*21

v*22

 
Figure 3: Design Eq. (31): (a)- in case n=6k+4, k=1, 2,…, (b)-in case n=6k+6 ,k=1,2,.., (c)- 

n=6k+8,k=1,2,… 

 

For v3, we have  

(38)     
5 5

5

1 1

3 5 123 2 4(( ) )
P P

P

v x Y P v P− −= − −  

By substitution of 
5

1

123 1
P

P − = −  and 
5

1

4 1
P

P − =  in Eq. 38, we have 

(39)      
3 5 2 2 1

(( )( 1) ) 1 nv x Y v
−

= − − −   

Using lemma 1 and 2 in Eq. 39 results 

(40)      
3 1 2 3 4 5 2 2 1nv Y Y Y Y x v

−
= + + + − −  

Two cases can be considered for v2 in Eq. 40 
 

(41)      
1

1

* * * * 1

21 22 21 222 1

2 * * * * 1

21 22 21 222 1

 2

1  2

n

n

n

n

v v if v v
v

v v if v v

+

+

+

−

+

−

 + + 
= 

+ + + 

 

By considering Yis in binary representation as
1 1, 1,0nY Y Y= , 2 2,3 2 2,0nY Y Y−= , 3 3,2 2 3,0nY Y Y−= , 

4 4,2 1 4,0nY Y Y−=  and using Lemma 1, Eq. 40 can be rewritten as 

(42)     
3 11 12 21 22 23 31 32 41 42 5 51 52 2 1nv Z Z Z Z Z Z Z Z Z x Z Z

−
= + + + + + + + + + + +  

Where 

11 1, 1 1,0

12 1,

1

21 2, 1 2,0

22 2,2 1 2,

23 2,3 2 2,2

31 3, 1 3,0

32 3,2 1 3,

41 4, 1 4,0

42 4,2 1 4,

51 2, 1 2,0

52 2,

1

00 0

0

0

1 1

n

n

n

n

n n

n n

n

n n

n

n n

n

n

n

Z Y Y

Z Y

Z Y Y

Z Y Y

Z Y Y

Z Y Y

Z Y Y

Z Y Y

Z Y Y

Z v v

Z v

−

−

−

−

−

−

−

−

−

−

−

=

=

=

=

=

=

=

=

=

=

=
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Finally, X can be calculated as 
 

(43)  1 1 1

1 2 3(2 1)(2 1)2 (2 1)(2 1)2 (2 1)n n n n n n nX v v v− − += + + − + + − −  

(44)    2 3 1 2 1

2 3( 2 2 ) ( 2 2 )n n n nX v v+ += − − + − −  

Eq. 44 can be simplified as 

(45)    1 2 3 4 5 6 7X X X X X X X X= + + + + + +  

Where 
 

1 3 2 2

3 1

2 2 3

2 1

3 3 4

1 2

4 3 1

1 1

5 3

2

6 3 2

2

7 3 2

0 0

0 0

0 010

1 1

1 1

n

n

n n

n n

n

n

n

X v v Y

X v Y

X v Y

X v Y

X v

X v v

X v v

−

−

−

− +

−

=

=

=

=

=

=

=
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Figure 4. Second level design of the reverse converter 

 

The second level design of the reverse converter including calculation of v2, v3 and X are shown in figure 4. The 
hardware cost is specified based on Eqs. (30) and (42). Equation (30) is implemented by 9 operand CSA mod 
2n+1-1, one stage CSA tree (figure 3), two (n+1)-bit carry propagate adder and a multiplexer. Eq. (42) is 
implemented by 12 operand CSA with EAC mod 2n-1, a (n)-bit CPA with EAC, after obtaining v2 and v3, 
Equation (43) is implemented by Four levels of carry save adder and (5n)-bit carry propagate adder. 
Table 2 shows the hardware details and delay of each component for the second level design of proposed reverse 
converter. 
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Table 2. Detailed of each component for the second level design of the reverse converter 
Component FA XOR AND XNOR OR MUX2-1 Delay 
CSA6 7n+3 2 2 1 1 - 4tFA 
CSA7  a:(n-2)(n+1) 

b:(n-2)(n+1) 
c: (n-4)(n+1) 

- - - - - a: n/2-tFA 

b: n/2-tFA 

c: (n/2+1)-tFA 
CPA5 (n+1) - - - - - (n+1)-tFA 
CPA6 (n+1) - - - - - (n+1)-tFA 

CSA8 9n - - - - - 5tFA 
CPA7 n - - - - - 2n-tFA 

CSA9 3n - - n n - 4tFA 
CPA8 5n - - - - - 5n-tFA 

MUX - - - - - n+1 1tFA 

 
Numerical Example 
Numeral example consider the moduli set {2n+1, 2n-1-1, 2n, 2n+1-1, 2n-1} where n = 10. Now, with due attention 
to the moduli set {1025, 511, 1024, 2047, 1023} and the given RNS numbers {12, 8, 15, 22, 3} the corresponding 
weighted number X can be calculated as follows. 
First, by putting the values of RNS numbers x1, x2, x3, and n in Eqs. (9-19) we have: 
v1= x1= 12 

v2= 
1

511 511
(8 12) 1025 169−− =  

Or 
1 2 4 6 8

511
1025 (1 2 2 2 2 )− = + + + +  

v2= 
9

2 4 6 8

2 1
(8 12)(1 2 2 2 2 ) 169

−
− + + + + =  

Or with using lemma 2: 

v2= 
9

2 4 6 8

1 2 3 2 1
( )(1 2 2 2 2 )L L L

−
+ + + + + +  

 
Where 
L1= 000001000= 8 
L2= 111110011= 499 
L3= 000000000= 0 

v2= 
511

(499 8 0) (341) 169+ +  =  

v3= 
1 1

1024 1024 1024
((15 12) 1025 169) 511 166− −− − =  

1

1024
1025 1− =  

1

1024
511 513− = −  

 
Or  

v3= 
1024

(12 169 15)(513) 166+ − =  

The number Y is obtained from Equation. (22) 

Y= 12 (1025 169) (1025 511 166) 87119887+  +   =  

Then, according to equation (26) we have v1 = Y = 87119887 and by putting the values of RNS numbers x4, x5 

and n in Eqs. (27), (29) and (39) we obtained v2 and v3. 
 

v2= 
2047

(22 87119887) 908 1693−  =  

11
4

1 10 10 9 1 2 3 7 8 9

123 2 1
((2 1)(2 )(2 1)) 2 2 2 2 2 908

P
P − −

−
= + − = + + + + =  

v3= 
1023

((3 87119887) ( 1) 1693) 1 534−  − −  =  

10
5

1 10 10 9 1

123 2 1
((2 1)(2 )(2 1)) 1

P
P − −

−
= + − = −  

10
5

1 10 1 1

4 2 1
(2 1) 1

P
P − + −

−
= − =  
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Finally, the number X can be calculated from the Equation. (43) 

X= 87119887 (1025 511 1024 1693) (1025 511 1024 2047 534) 587186422889487+    +     =  

This result is verified as follows: 

x1= 
1025

587186422889487 12=  

x2= 
511

587186422889487 8=  

x3= 
1024

587186422889487 15=  

x4= 
2047

587186422889487 22=  

x5= 
1023

587186422889487 3=  

 
Performance Evaluation 
In this section, the proposed reverse converters have been evaluated and compared with their closest 
counterparts: {2n-1, 2n, 2n+1, 2n-1-1, 2n+1-1} proposed in [46], {2n-1, 2n, 2n+1, 2n+1+1, 2n-1+1} proposed in [47], 
and also {2k, 2n-1, 2n+1, 2n+1-1, 2n-1-1} proposed in [48]. The conversion delay estimation of the proposed 
converters and other converters in literature are illustrated in Table 3. In table 3, dCSA(a) denotes the delay of 
an a-operand CSA, dCPAm(a) [dCPAp(a)] denotes the delay of an a-bit [(a + 1)-bit] adder mod 2a − 1 (2a + 1), 
whereas dADD(a) is the delay of an a-bit CPA. 
Delay and area of the proposed reverse converter and other works reported in [46-48] are calculated based on 
full adder and are included in table 4. In order to have fair comparison, delay of modulo 2k-1 and 2k+1 adder 
reported in [42] with 2k and 4(k+1) delay of full adder and ripple carry adder for CPA are considered. 
Reverse converters reported in [48] have one modulo (22n-1), one modulo (2n+1-1), one modulo (2n-1-1) adder 
and one 4n-bit CPA in its critical path. Considering the delay of modulo 2k±1 reported in [42], the reverse 
converter reported in [48] have (12n) dFA. It should be noted that delay of CSA tree and multiplication by 
constant with different inputs will be added to (12n) tFA according to version 1 and 2 reported in [48]. Therefore 

Version 1 and 2 reverse converters reported in [48] have achieved (12n+ O (
2

log ( 1))
2

n
−  + O

2
(log )

3

n
 +18) 

delay of full adder and (12n + O (
2

log (
2

n
-1)) +O (

2
log

3

n
) +10)tFA, respectively. As discussed in [48], the 

delay of constant multiplication blocks can be expressed as 
2

(log )
3

n
O is very close to the delay of equivalent 

CSA trees given by dCSA(a) ≈ O(log1.5 a) [49]. 
 

Table 3. Delay estimation for various five moduli set reverse converter 
Converter Critical path delay estimation of various reverse converters 
[46] dCSA(3)+dCPAm(2n)+dCSA(4)+dCPAm(n+1)+dCSA(

𝑛

2
)+dCPAm(n+1))+dCSA(8)+dCPAm(n-1)+ 

dCSA(
𝑛

3
)+dCPAm(n-1)+dCSA(3)+dADD(4n) 

[47] dCSA(3)+dCPAm(2n)+dCSA(3)+dCSAp(n+1)+dCSA(
𝑛

2
)+dCPAp(n+1)+dCSA(4)+dCPAp(n-1)+ 

dCSA(
𝑛

3
)+dCSAp (n-1)+dADD(4n+1) 

[48]- version1 
dCSA ( 2)

2

k

n

 
+ 

 
+dCPAm(2n)+dCSA

2
( 1)

1

n k

n

+ 
+ + 

+O(
2

log ( 1))
2

n
−

+dCPAm(n+1)+dCSA ( 7)
1

k

n

 
+ − 

+ O
2

(log )
3

n
+dCPAm(n-1)+dCSA(3)+dADD(4n) 

[48]- version2 
dCSA ( 2)

2

k

n

 
+ 

 
+dCPAm(2n)+dCSA(3)+O(

2
log (

2

n
-1))+dCPAm(n+1)+dCSA(4)+O

2
(log )

3

n
+dCPAm(n-1)+ dADD(4n) 

Proposed-DC1 dCSA(n/2) + dCPA(n-1)+ dCPA(n) + dCSA(10)+ dCSA(n/2+1)+ dCPA(n+1)+ dCPAm(n)+ 
dCPA(5n) 

Proposed-DC2 dCSA(n/4)+ dCPAm(n-1)+ dCPA(n-1)+ dCPA(n) + dCSA(10)+ dCSA(n/2+1)+ dCPA(n+1)+ 
dCPAm(n)+ dCPA(5n) 

 
The first design of the proposed reverse converter (DC1) have two n-bit CPA, one (n+1)-bit CPA, one modulo 
2n-1 adder, and 5n-bit CPA in its critical path. Considering the same assumption for modulo 2k±1 adder [42] 
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and [52], (10n+1) dFA in addition to delays of two CSA trees with (n-2) and n inputs will be resulted. The second 
design structure is the same as DC1 with one extra modulo (2n-1-1) adder in critical path and the number of 
inputs of the CSA tree 1 is reduced to (n-2)/2. Therefore, the second design has achieved to (12n) tFA in addition 
to delays of two CSA trees with ((n-2)/2) and n inputs. It can be seen that DC1 converter has achieved a faster 
conversion compared to converters reported in [48]. DC2 converter has approximately the same delay 
compared to [48].    
 
Table 4. Hardware costs and delay estimation for various five moduli set reverse converter in 

terms of delay and area of Full adder 
Converter Hardware Requirement Conversion Delay in tFA 
[46] ((5n2+43n+m*)/6+16n-1)AFA+ 

(6n+1)ANOT 
(18n+L*+7)tFA 

[47] Inv., n=6k+1: (5n2+150n+65)/12 
Inv., n=6k+3: (5n2+146n-3)/12 
Inv., n=6k+5: (5n2+130n+65)/12 
 

dCSA(3)+dCPAm(2n)+dCSA(3)+dCSAp(n+1)+dCSA

( )
2

n
+dCPAp(n+1)+dCSA(4)+dCPAp(n-1)+dCSA ( )

3

n

+dCSAp (n-1)+dADD(4n+1) 

[48]- ** version1 
 

3. (n+1)+n+(n+1).

2(2log ( 1))
2

n
− + (n-1)+(n-1).

2(2 log )
3

n
+24n-6 

 (12n+ O(
2

log ( 1))
2

n
−  + O

2
(log )

3

n
 +18)tFA 

[48]- ** version2 
  (n+1)+n+(n+1).

2(2log ( 1))
2

n
 −

+3.(n-1)+ (n-1).
2(2log )

3

n


+30n-2 

 (12n + O(
2

log (
2

n
-1)) +O(

2
log

3

n
)+10)tFA 

Proposed-DC1 
 

a: (2n2+28n+5)AFA+ 
(n+1)AXOR+(n+1) 
AAND+(n+1)AXNOR+(n+1)AOR+ 
(2n)AMUX2-1 

b: (2n2+28n+5)AFA+ 
(n+1)AXOR+(n+1) 
AAND+(n+1)AXNOR+(n+1)AOR+ 
(2n)AMUX2-1 
c:(2n2+26n+3)AFA+ 
(n+1)AXOR+(n+1) 
AAND+(n+1)AXNOR+(n+1)AOR+ 
(2n)AMUX2-1 

 

 

 

a: (10n+ dCSA(n/2)+ dCSA(n/2+1) + 13)tFA+ 2tMUX 
b: (10n+ dCSA(n/2)+ dCSA(n/2+1) + 13)tFA+ 2tMUX 

c: (10n+ dCSA(n/2)+ dCSA(n/2+1) + 15)tFA+ 2tMUX 

Proposed-DC2 a:(1.5n2+29.5n+4)AFA+(n+1)AXOR+ 
(n+1)AAND+(n+1)AXNOR+(n+1)AOR+ 
(2n)AMUX2-1 

b:(1.5n2+29.5n+4)AFA+(n+1)AXOR+ 
(n+1)AAND+(n+1)AXNOR+(n+1)AOR+ 
(2n)AMUX2-1 
c:(1.5n2+27.5n+2)AFA+(n+1)AXOR+ 
(n+1)AAND+(n+1)AXNOR+(n+1)AOR+ 
(2n)AMUX2-1 

 

a: (12n+ dCSA(n/4)+ dCSA(n/2+1)+ 12)tFA+ 2tMUX 
b: (12n+ dCSA(n/4)+ dCSA(n/2+1)+ 12)tFA+ 2tMUX 

c: (12n+ dCSA(n/4)+ dCSA(n/2+1)+ 15)tFA+ 2tMUX 

 
*m=n-4 for n=6k-2, m= 9n-12 for n=6k and m=5n-8 for n=6k+2. L is the number of the levels of a CSA tree 
with ((n/2)+1) inputs. 

**Big-omega ( ) impression is used for the lower bound of the area complication of multiplication by the 
multiplicative inverse [54]. 
To have a supreme analogy and concluding area and delay assessment, the unit gate model [53-54] is used. 
According to this model, each FA, half adder (HA), 2×1 MUX, XOR, XNOR, AND, OR gates considered as 7, 3, 
3, 2, 2, 1, 1 gates in area and 4, 2, 2, 2, 2, 1, 1 gates in delay, respectively. Table 5 displays the unit gate area (A) 
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and unit gate delay time (T) for all converters. To provide a more precise analysis, for different values of n the 
unit gate delay, area and area × time (AT) are computed as shown in figure 5. It can be seen that the proposed 
converter-DC2 has attain less hardware requirements and the first design (DC1) has attain better efficiency in 
delay and AT metric compared to the other converters in the literature. 

Table 5. Unit gate delay and area comparison for various reverse converter 
converter Unit gate area Unit gate delay 
[46] (5n2+43n+m*)7/6+118n-6 72n+4L*+28 
[47] - - 
[48]-version1 (35/3)n2+(574/3)n-42 (50n+4n/3+68)tFA 
[48]-version2 (35/3)n2+(700/3)n-42 (50n+4n/3+36)tFA 
Proposed-DC1 a: 14n2+208n+41 

b: 14n2+208n+41 
c: 14n2+194n+27 
 

a:(44n+56)tFA+ 4tMUX 
b: (44n+56)tFA+ 4tMUX 

c: (44n+64)tFA+ 4tMUX 

Proposed-DC2 a: 10.5n2+218.5n+34 
b: 10.5n2+218.5n+34 
c: 10.5n2+204.5n+20 
 

a:(51n+52)tFA+ 4tMUX 
b: (51n+52)tFA+ 4tMUX 

c: (51n+64)tFA+ 4tMUX 

 
*m=n-4 for n=6k-2, m= 9n-12 for n=6k and m=5n-8 for n=6k+2. L is the number of the levels of a CSA tree 
with ((n/2) +1) inputs. 
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(c) 

Figure 5. Unit gate comparison: a) Unit Gate Area, b) Unit Gate Delay, C) Unit Gate AT 

 

Table 6. FPGA Virtex-7 synthesis results for moduli {2n+1, 2n-1-1, 2n, 2n+1-1, 2n-1} reverse 
converters 

Converter Platform n= 12 
 

n=16 
 

n=20 
 

Delay (ns) Area 
(LUTs) 

Delay (ns) Area 
(LUTs) 

Delay (ns) Area 
(LUTs) 

[46] Virtex7 27.901 677 30.542 948 34.147 1372 
[48]-version 1 Virtex7 19.489 526 23.894 821 26.721 1116 
[48]-version 2 Virtex7 18.515 598 22.903 907 25.546 1240 
Proposed- DC1 Virtex7 16.422 625 20.112 917 22.674 1298 
Proposed-DC2 Virtex7 19.252 558 23.451 853 25.878 1187 

 
In order to study the effect of different reverse converters for five moduli set {2n+1, 2n-1-1, 2n, 2n+1-1, 2n-1} in the 
FPGA implementation, the converters of [46] and [48] with the same configurations reported in [42] are 
described with VHDL and also has been synthesized using FPGA, namely, Xilinx Virtex 7 (part xc7vx415t). The 
Xilinx ISE (version 14.7) tool are used for the synthesis. Table 6 presents experimental results for the FPGAs 
Virtex 7, from Xilinx. The results show that compared to fastest report in [48]-version2, DC1 reverse converter 
has achieved 11%, 12% and 11% improvement in speed for n=12, 16 and 20, respectively.   
 

CONCLUSION 
 
This paper proposes two efficient reverse converters for five-moduli set {2n+1, 2n-1-1, 2n, 2n+1-1, 2n-1}.  The 
converters are designed in a two-level structure and offer a high-speed arithmetic unit due to its balanced 
moduli in the form 2k and 2k-1. Furthermore, MRC algorithm is used to design both levels of our novel reverse 
converters which results in ROM free and adder based structures. According to unit gate delay and area 
estimation, the first design (DC1) is faster than the similar five moduli reverse converters in literature for the 
different dynamic range, ensuing a minor penalty in hardware requirement while the second design (DC2) 
requires less hardware cost. In comparison with state-of-the-art studies, the first design (DC1) has achieved 
higher performance in delay and AT metric. The proposed converters and recent similar works in literature are 
described with VHDL and synthesized on Xilinx virtex 7 FPGA. The results show that, comparing to the latest 
work in literature, the DC1 design has achieved 11%, 12% and 11% improvement in speed for n=12, 16 and 20, 
respectively.   
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