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ARTICLE INFO ABSTRACT 
 Abstract. The Karl Pearson differential equation stands as a cornerstone in classical 

statistics, yielding pivotal distributions that underpin  statistical analysis. This paper 
presents a significant extension of the  Pearson equation, embracing the paradigm of 
nonextensive statistics and  harnessing the power of the q-logarithm. Through this novel 
approach,  a family of previously unexplored q-distributions emerges, demonstrating the 
profound interplay between classical and nonextensive statistical  concepts. The practical 
implications of these newfound distributions are  highlighted through their application 
to real-world datasets, which undergo rigorous scrutiny using both the Akaike and small 
sample Akaike information criteria. This comprehensive analysis underscores the 
versatility and effectiveness of the proposed framework, fostering a deeper  
understanding of statistical behavior across diverse scenarios. 
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1. Introduction 

 
The Karl Pearson differential equation, renowned for generating key distributions in classical statistics, plays 
a pivotal role in the framework of statistical theory. Recent advances in nonextensive statistics, as pioneered 
by Tsallis in 1988 [10], have expanded our comprehension of statistical mechanics in complex systems. 
 

 

• Motivation and Objectives: This paper stands at the crossroads of historical statistical foundations and 
contemporary advancements in nonextensive statistics. Our primary objectives are twofold:  firstly, to explore 
the assimilation of Pearson’s differential equation  within the framework of Tsallis statistics, probing the 
possibility  of bridging classical and nonextensive statistical realms. Secondly,  we introduce a new perspective 
by incorporating the q-logarithm  into the Pearson equation, resulting in the unveiling of novel qdistributions 
that offer fresh insights into statistical modeling. 

• Addressing Fundamental Questions: In this journey, we address fundamental questions: Does 
Pearson’s equation encompass  Tsallis statistics, encompassing familiar q-distributions such as qexponential, 
q-gamma, and q-normal distributions? Furthermore,  can the integration of the q-logarithm within Pearson’s 
equation lead  to the emergence of new q-distributions, akin to the q-exponential  type 2 (qexp2) distribution? 

 
2. Tsallis statistics 

 
The q-exponential and q-logarithm functions are defined as [9] 
 

expq(x) = {

exp(x) ,       q = 1,

[1 + (1 − q)x]
1

1−q    ,   q ≠ 1 , 1 + (1 − q)x ≥ 0,

0, q ≠ 1,   1 + (1 − q)x < 0  ,
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and 
 

Inq(x) = {

In(x),   x > 0,   q = 1,
x1−q −1

1−q
 , q ≠ 1, x > 0,

undefined, x ≤ 0.

 

 
The mathematics of nonextensive statistical mechanics are the q-operations: 
  
 
  x +  q y = x + y + (1 − q)xy ,   
 

  x − q y =  
x −y

1 +(1−q)y
 , 

  x × q y = max {(x1−q  +  y1−q  − 1)
1

1−q , 0} ∶=  (x1−q + y1−q  − 1)
+

1

1−q , 

        x ÷ q y =  (x1−q  −  y1−q  + 1)
+

1

1−q . 

 
 
We know that the solution of the differential equation dy  dx = y is the exponential function exp x. In [1, 11], 
the author proposed the following equation 
 

dy

dx
=  yq 

 
whose solution leads to the q-exponential, y = expq  (x). In [1] also introduced the operator for q-derivative as 
follows 
 

(2.1)             
df(x)

dq (x)
 = lim

y→x

f(x)−f(y)

x − y 
 =  [1 + (1 − q)x]

df(x)

d(x)
 ,  

 
Where      

 

       x − q y = x +  q (−qy) = 
x−y

1+(1−q)y
  (y ≠  

1

q−1
). 

 
3. Exploring Pearson’s Equation and q-Distributions 

 
In this section, we outline our motivation for exploring the extension of  Pearson’s differential equation within 
the realm of Tsallis statistics and the  incorporation of the q-logarithm. We pose fundamental questions about  
the connection between Pearson’s equation and well-known q-distributions,  paving the way for our subsequent 
investigation. 
At the end of the 19th century, Karl Pearson presented the classic Pearson  differential equation. Most of the 
famous families of continuous probability  distributions, such as normal distributions, beta distributions, and 
gamma  distributions, are derived from the Pearson equation. For more details on  the Pearson system of 
continuous probability distributions, the interested  readers are referred to [2, 3, 7], and their references. 
In paper [8], researchers derived a new family of distributions based on  the generalized Pearson differential 
equation, which is a natural extension  of the generalized inverse Gaussian distribution. 
In this article, we examine the following Pearson’s differential equation 
 

(3.1)                           
df(x)

dx
 =  

α0−x

α1+α2x+α3x2  f(x). 

 
By proper choice of the parameters α0, α1, α2, and α3, the most of important  distributions of statistics can be 
generated from the equation (3.1). 
(a) the exponential distribution when α0 = α1 = α3 = 0 and α2 > 0; 
(b) the gamma distribution when α1 = α3 = 0, α2 > 0, and α0 > −α2; 
(c) the normal distribution when α0 = α2 = α3 = 0 and α1 > 0. 
 
In this paper, we will expand Pearson’s equation (3.1) by using non-extended  q-distributions from the Tsalis 
statistics. 
The first goal of this paper is to present the q-distributions of the Pearson  equation such as q-exponential, q-
gamma and q-normal distributions. 
Now, for α0 = α1 = α3 = 0, and α2 = 1, we have 
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(3.2)                             
df(x)

dx
= −f(x). 

 
Clearly, the solution of (3.2) is the exponential distribution f(x) = exp (−x).  If we use the q-derivative, i.e., 

df(x)

dq(x)
=  −f(x), 

 
then due to (2.1), we have 

df(x)

dx
=

−f(x)

(x − qx + 1)
. 

 
So, 
 

ln f(x) =  ln(1 + (1 − q)x)
1

q−1
 
 + C , 

 
therefore, if x > 0 and C = ln q, we have 
 

f(x) = q(1 + (1 − q)x)
−1

1−q  =
q

expq(x)
 , 0 < q < 1. 

 
 
The above equation is the q-exponential distribution. If  q́ = 2 − q, then 
 
 

f(x) =  (2 − q́)(1 + (q́ − 1)x)
1

1−q ́  =  (2 − q́) expq ́ (−x) , 1 < q́ < 2, 

 
which was introduced by Tsallis [9] 
Now, look at (3.2) again. It is easy to see that 
 

df(x)

dx
=  −f(x)  ↔

d ln f(x)

dx
 =  −1. 

 
Our second goal in this paper is to investigate the existence of new qdistributions. In other words, our goal is 
to use the following q-logarithm,  i.e., 
 

(3.3)          
d Inq  f(x)

d(x)
 =  −1,    

which leads to the extraction of new q-distributions. In the next section, we  will prove our claims. 
 We formulate the following questions that guide our exploration: 

•  First question: Does Pearson’s equation (3.1) yield the well-known  q-distributions in Tsallis statistics, 
such as q-exponential, q-gamma,  and q-normal distributions? We address this query in the subsequent  
section. 

•  Second question: For specific parameter values, can we extract  new q-distributions by incorporating the 
q-logarithm into Pearson’s  equation (3.1)? The answer to this question unfolds in the forthcoming section. 
 

4. Main Result 
 
4.1. Answering the First Question.     
The following propositions show  that Pearson’s equation (3.1) yield the well-known q-distributions of Tsallis  
statistics such as q-exponential, q-gamma and q-normal distribution. 
Proposition 1. Assume that α3 = q−1, α0 = α1 = 0 and α2 = b > 0,x ≥ 0,  q < 2, then (3.1) reduces to 

df(x)

dx
 =  −

1

b +  (q − 1)x
 f(x) 

 
which yields the probability density function of q-exponential distribution 
 

f(x) =  
2 − q

b
 expq  (−

1

b
 x). 

 

In partcular, if q =  
α+2

α+1
 , α > 0 and b =  β(q − 1), β > 0, 1 < q < 2 , then 
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f(x) =
α

β
(1 +  

α

β
)

−α−1

 , 

 
which is called the probability density function of Lomax distribution. 
Proof. Since 
 

df(x)

dx
=  −

1

b − x + qx
 f(x), 

 
then 
 
 

𝐝 𝐥𝐧 𝐟(𝐱)

𝐝𝐱
 =  −

𝟏

𝐛 + 𝐱(𝐪 − 𝟏)
. 

Therefore, 

ln f(x) =   
1

1 − q
 ln [

1

q − 1
 (b − x + qx)] + C 

=   
1

1 − q
 ln [

1

q − 1
 (b − x + qx)] −

ln
b

q − 1

1 − q
+

ln
b

q − 1

1 − q
+ C 

=     
1

1 − q
 ln [

1

q − 1
 (b − x + qx)] + Ć 

=   ln expq (−
1

b
x)  +  Ć 

 

therefore, for Ć  = ln (
2−q

b
) , we have 

       
        f(x) =  exp

q (−
1

b
 x)∙exp(Ć)= 

2−q

b
 expq  (−

1

b
 x).

 

 

if q =
α+2

α+1
 , α > 0 and b = β(q − 1), β > 0, 1 < q < 2, then 

  

        f(x) =
2−q

b
expq (−

1

b
 x)  

 

         =   
2−

α+2

α+1

β(
α+2

α+1
 −1)

expα+2

α+1

(−
x

β(q−1)
) 

 

       =   
2−

α+2

α+1

β(
α+2

α+1
−1)

 (1 − (1 −
α+2

α+1
)

x

β(q−1)
)

1

1 −
α+2
α+1  

   

=   
α

β
(1 +

α

β
)

−α−1

 ,    

 
 
which is the probability density function of Lomax distribution. 
 

Proposition 2. Assume that α0 =
bd

b+d−dq
 , α1 = 0, α2 =

b2

b+d−dq
 and α3 =

(q−1)b

b+d−dq
 , b > 0, d > −b, x ≥

0 then (3.1)reduces to 
       

         
df(x)

dx
 =  

bd

b+d−dq
 −x

b2x

b+d−dq
 + 

(q−1)b

b+d−dq
 x2

 f(x) 

 
which yields the probability density function of q-gamma distribution as follows 
 

         f(x) = kx
d

b  ∙  expq −
x

b
 , 

 
where k is constant. 
 
Proof. Since 
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df(x)

dx
=

bd
b + d − dq

− x

b2x
b + d − dq

+
(q − 1)b

b + d − dq
x2

f(x), 

Then 
 

d ln(f(x))

dx
=

d(b − x + qx) − bx

bx(b − x + qx)
 

 
Therefore 
 

ln(f(x)) =
1

1 − q
 ln [

1

1 − q
(b − x + qx)] +

d

b
ln(x) + c 

 

=  ln [expq (−
1

b
 x)] + ln (x

d
b) + c 

 

=   ln [x
(

d

b
)
expq (−

1

b
 x)] +  ć . 

 
 

Therefor, for c ́ =  ln [
(

1

b
)

d
b

+1
Γ(

1

q−1
) (q−1)

d
b

+1

Γ(
d

b
+1)Γ(

1

q−1
−(

d

b
+1))

] , we have 

 
 

f(x) = exp(ć)x
d
b ∙ expq (−

x

b
) = kx

d
b ∙ expq (−

x

b
), 

 
 
where k is constant. This yields the q-gamma distribution 
 
 

Proposition 3. If α0 = 0, α1  = a, α2  = 0 and α3  =
q−1

2
 , x ∈  (−∞, ∞), a > 0, q < 3 then(3.1) reduces to 

 
 

df(x)

dx
=

−x

α +
q − 1

2
 x2

 f(x) 

 
 
which yields the probability density function of q-normal distribution as follows 
 
 

f(x) =  
1

√2acq

expq (−
x2

2a
). 

 
Proof. Since 
 

df(x)

dx
=

−x

α +
q − 1

2
 x2

 f(x) 

 
Then 
 

d ln(f(x))

dx
 =

−2x

2a + qx2 − x2
 

 
Therefore 
 

ln(f(x)) =  
1

1 − q
 ln

1

1 − q
(2a + qx2  − x2)  + c 
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=  
1

1 − q
 ln (1 + (q − 1)

x2

2a
) +  ć 

=  ln (expq (−
x2

2a
)) +  ć , 

 

therefore,for  ć  =  ln (
1

√2acq
)  we have 

 

f(x) =
1

√2acq

 expq  (−
x2

2a
) 

 
 
which yields the q-normal distribution. 
 
4.2. Answering the Second Question. 
Theorem 4. The equation (3.3) yields the probability density function of  the following q-exponential 
distribution 

f(x) =  expq (−x +  lnq  (2 − q
1

2−q)) , 1 ≤ q < 2. 

Proof. Since 
 

d

dx
 lnq (f(x))  =  −1, 

 
Then 
 

lnq (f(x)) =  −x + C . 

 
 

 if C =  
(2−q)

1−q
2−q−1

1−q
 =  lnq  ((2 − q)

1

2−q) , we have 

 

f(x)  =  [1 + (q − 1) (x −
2 − q

1−q
2−q − 1

1 − q
)]

1
1−q

 

   

=  expq (−x +  lnq  (2 − q
1

2−q)). 

 
 
Definition 5. A random variable X is said to have the q-exponential distribution (type 2) or expq2 with 
parameter q, λ, denoted by X ∼ qE (q, λ),  if its pdf is given by 
 

fqE(q, ) =   expq (−x + lnq ((2 − q)
1

2−q)) , x > 0 ,  > 0, 1 ≤ q ≤ 2 . 

 
The graphs of the probability density function of q-exponential distribution  (type2) are presented for different 
values of parameters q, λ and shown in  figure1. 
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Figure 1. Graphs of Probability density function for qexponential distribution(type2) with parameters q, λ. 

 
5. Simulation and Comparative Analysis 

 
To assess the effectiveness of the qexp2 distribution, we employ the MetropolisHastings algorithm to generate 
a random sample of size n = 100. The generated data follow the qexp2 distribution with parameters q = 1.4 and 
λ = 1.  This simulated dataset is presented in Table 1. 
Furthermore, we evaluate the performance of various distributions in fitting the simulated data. Specifically, 
we consider the Weibull, Gamma,  Lomax, qexp, and qexp2 distributions. To guide our comparison, we utilize  
the Akaike Information Criterion (AIC) as a measure of goodness-of-fit. The  calculated AIC values for each 
distribution are presented in Table 2. 
Notably, the results reveal intriguing insights. The AIC values for the  qexp and qexp2 distributions are 
remarkably similar, differing only in the  fifth decimal place. This intriguing similarity underscores the 
effectiveness  of the qexp2 distribution in modeling complex phenomena. 
 

Table 1. Simulated data (n = 100) following the qexp2 distribution with parameters q = 1.4 and λ = 1 
0.592 3.047 3.407 5.938 2.484 4.01 2.146 0.36 0.94 2.639 
4.335 4.195 2.179 2.763 1.554 0.784 0.707 1.644 4.41 2.15 
7.904 8.211 8.482 10.283 6.412 6.037 3.98 5.659 3.047 3.939 
0.397 0.946 0.335 1.658 1.34 3.834 5.503 5.399 9.611 10.952 
11.807 12.469 14.42 12.225 10.391 7.973 5.071 9.322 11.677 14.805 
6.835 0.909 1.357 2.322 2.99 6.645 7.466 8.539 8.95 7.091 
0.882 1.351 3.007 4.57 5.77 1.12 0.011 4.066 6.452 8.099 
2.468 0.527 0.119 2.297 0.954 1.664 1.498 0.345 2.168 3.433 
10.928 9.791 6.705 7.167 6.573 6.3 3.705 4.046 5.95 7.089 
15.418 13.826 18.287 18.212 18.126 15.39 14.133 14.4 10.669 8.243 

 
Table 2. The AIC and AICc values for all fitted distributions, considering the simulated data 

 expq expq2 Lomax Gamma weibull 

AIC 548.47898 548.47895 556.69 554.67 553.33 
AICc 548.60269 548.60266 556.81 554.79 553.46 

 
6. Application to Real-world Data 

 
In this section, we present a comprehensive application of the qexp2 distribution using the Akaike Information 
Criterion (AIC) to assess its performance in real-world scenarios. We analyze two distinct datasets, employing  
rigorous statistical methodologies to determine the distribution that best  characterizes the underlying 
phenomena. 
 
Dataset 1: Air Conditioning System Failure Times 

We begin by examining a dataset derived from Linhart and Zucchini  (1986), which records failure times of an 
aircraft’s air conditioning system.  This dataset, presented in Table 3, serves as an illustrative case for our  
analysis. 
 

Dataset 2: WTI Crude Oil Price Differences 

Our investigation extends to a second dataset obtained from Mehri-Dehnavi,  Agahi, and Mesiar (2019). 
Spanning from January 2, 1986, to July 3, 2017,  this dataset comprises absolute differences between the WTI 
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crude oil price  and its last 100 days’ moving averages. With a total of n = 7849 data points,  it provides a real-
world scenario to rigorously evaluate distribution fitting. 
 
Model Evaluation and AIC Comparison 

We evaluate the suitability of five distributions: the qexp, qexp2, Lomax,  gamma, and Weibull distributions. 
Employing the AIC as a robust criterion,  we compare the goodness-of-fit for each distribution on both datasets. 
 

Results and Insights 

 
The results of our analysis are presented in Table 4 for Dataset 1 and  Table 5 for Dataset 2. Notably, our findings 
unveil compelling insights.  The qexp2 distribution demonstrates noteworthy similarities with the qexp  and 
Lomax distributions, hinting at its potential in characterizing diverse  phenomena. 
In summary, our comprehensive application of the qexp2 distribution,  guided by rigorous statistical analysis 
and the AIC, underscores its efficacy  in modeling complex real-world datasets. This section serves as a 
testament  to the distribution’s versatility and potential across a range of applications. 
 

Table 3. Dataset 1 - Failure times of an aircraft’s air conditioning system 
23 261 87 7 120 14 62 47 225 71 246 21 42 20 5 
12 120 11 3 14 71 11 14 11 16 90 1 16 52 95 

 
Table 4. AIC and AICc values for all fitted distributions  on Dataset 1 

 expq expq2 lomax gamma weibull 

AIC 307.6749 307.6749 307.6749 308.3347 307.8738 
AICc 308.1193 308.1193 308.1193 308.7791 308.3182 

 
Table 5. AIC and AICc values for all fitted distributions  on Dataset 2 

 expq expq2 lomax gamma weibull 

AIC 37412.7242582 37412.7242581 37412.7242585 37878.039 37716.971 
AICc 37412.7257876 37412.7257875 37412.7257879 37878.04 37716.972 

 
7. Conclusion 

 
In this work, we have embarked on a journey that seamlessly bridges  classical statistical theory with the 
intricate landscape of nonextensive statistics. Our investigation has unearthed a compelling link between the  
Pearson differential equation and pivotal distributions, highlighting its role  in generating fundamental q-
distributions within the framework of Tsallis  statistics. Building upon this foundation, we have introduced a 
novel qdistribution, the q-exponential type 2 (qexp2), by extending the Pearson  equation through the 
incorporation of the q-logarithm. 
The synergy between theoretical exploration and practical application  forms the cornerstone of our study. Our 
meticulous analysis, spanning bothsimulated and real-world datasets, unequivocally demonstrates the 
applicability and potential advantages of the proposed q-distributions. The qexp2 distribution, in particular, 
emerges as a promising tool for modeling diverse phenomena, showcasing its efficacy alongside established 
distributions. 
This study ignites the spark of curiosity for future inquiries. The question  of employing q-differentiation in 
conjunction with the q-logarithm to attain  a more comprehensive q-Carl Pearson formula beckons further 
investigation.  Additionally, the prospect of unearthing novel q-distributions remains tantalizing, promising to 
deepen our understanding of statistical modeling in  complex systems. 
In conclusion, our journey has led to the harmonious fusion of theory  and application, unveiling new 
dimensions in statistical theory. As we lay  the groundwork for future explorations, we hope this contribution 
not only  enriches the mathematical landscape but also inspires meaningful strides in  the realm of statistical 
sciences. 
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