Educational Administration: Theory and Practice

2024, 30(5), 3397-3404 ISSN: 2148-2403

https://kuey.net/

Research Article

Face Detection Attendance System Using Transfer Learning And Deep Neural Network

Mrs. J. Jayapradha^{1*}, S. Abdul Kalam², M. Divya Coumar³, S. Vignesh⁴

- ¹Assistant Professor, Department of Computer Science and Engineering
- 2.3.4. B. Tech, Department of Computer Science and Engineering,
- 1,2,3,4, Manakula Vinayagar Institute of Technology, Puducherry, India.
- ipanandhi@gmail.com, ak7751930@gmail.com, divyacoumar220@gmail.com, vigneshcse2002@gmail.com

Citation: Mrs. J. Jayapradha et al. (2024) Face Detection Attendance System Using Transfer Learning And Deep Neural Network, Educational Administration: Theory and Practice, 30(5), 3397-3404, Doi: 10.53555/kuey.v30i5.3463

ARTICLE INFO	ABSTRACT
	The attendance management system seamlessly combines with Arduino IDE and ESP32-CAM Video Streaming, enabling real-time capture of facial images during lectures. It employs transfer learning to enhance facial recognition accuracy, reducing the need for extensive datasets and computational demands. This approach significantly improves attendance tracking efficiency compared to manual methods. ESP32-CAM's capabilities ensure reliable video streaming, contributing to the system's robustness. By combining transfer learning, real-time facial recognition, and Arduino-based hardware, this solution revolutionizes attendance management, fostering more efficient and engaging learning environments.
	Keywords: ESP32-CAM's, Arduino IDE, deep neural networks (DNN), transfer learning.

I. INTRODUCTION

Facial attendance, at the forefront of attendance management innovation, harnesses the power of facial recognition technology to revolutionize the traditional approach to tracking attendance. This cutting-edge system operates by analyzing distinctive facial features, eliminating the cumbersome task of manual attendance marking, and introducing a highly efficient and accurate alternative. Integrated with sophisticated algorithms, facial attendance systems exhibit the capability to swiftly and securely identify individuals, presenting a seamless and time-saving solution applicable across diverse settings, including educational institutions and corporate environments. This transformative technology signifies a remarkable leap forward in attendance tracking, ensuring heightened precision and unmatched convenience when compared to conventional methods. With its potential to enhance efficiency and accuracy, facial attendance stands as a beacon of progress in the realm of attendance management, promising a streamlined and technologically advanced future for various organizational contexts.

The traditional method of manually marking attendance in educational institutions poses significant challenges, including time-consuming processes and the potential for proxy attendance. To address these issues, various alternative techniques have been explored, such as Radio Frequency Identification (RFID), iris recognition, and fingerprint recognition. However, these systems often introduce additional queues and can be intrusive, prolonging the overall time required for attendance tracking. Face recognition emerges as a promising biometric solution due to its non-intrusive nature and ease of acquisition. Unlike other biometric methods, face recognition systems are relatively unaffected by facial expressions. This paper proposes a sophisticated attendance system leveraging face recognition techniques. The system utilizes live streaming video from classrooms to detect and mark the attendance of students based on their facial features. By focusing on face recognition, the system aims to provide a more efficient, accurate, and less intrusive method for attendance management in educational settings. The growing popularity of face recognition technology further underlines the relevance and potential impact of such systems in modern attendance-tracking methodologies. However, with the advent of deep learning technologies, particularly deep neural networks (DNNs) and transfer learning, a new era in attendance management emerges. This introduction delves into the transformative potential of employing DNNs and transfer learning in the development of a cutting-edge face detection attendance system. In recent years, the proliferation of DNNs has revolutionized various fields, ranging from computer vision to natural language processing. These powerful algorithms, inspired by the structure of the human brain, excel in learning intricate patterns and features from vast amounts of data. Leveraging the capabilities of DNNs, researchers, and engineers have devised innovative solutions to complex problems, including facial recognition and detection. One such use is the creation of a face detection attendance system, which makes use of DNNs' capacity to reliably identify and validate people based just on their facial traits. Unlike traditional methods such as manual attendance tracking or biometric scanners, which often suffer from inaccuracies and time-consuming processes, a DNN-powered system offers unparalleled efficiency. The objective of the proposed attendance management system is to address the inefficiencies and limitations inherent in traditional manual attendance marking methods within higher education. The system's goal is to automate the process of tracking attendance by capturing facial images in real-time during lectures by employing ESP32-CAM Video Streaming and integrating smoothly with the Arduino IDE. Central to this objective is the utilization of transfer learning, a technique that harnesses pre-trained models to enhance facial recognition accuracy. This approach is chosen to minimize the need for extensive datasets and mitigate the computational demands typically associated with traditional deep neural networks (DNNs). The primary goal is to significantly enhance attendance tracking efficiency compared to manual methods. By leveraging the capabilities of the ESP32-CAM module, the system ensures reliable and high-quality video streaming, contributing to its overall robustness and effectiveness. Through the integration of transfer learning, real-time facial recognition, and Arduino-based hardware, the system seeks to revolutionize attendance management practices in educational institutions. Ultimately, the objective is to create a technologically advanced solution that not only streamlines attendance tracking but also promotes more efficient and engaging learning environments. This system aims to set a new standard for attendance management, offering educators and administrators a reliable and user-friendly tool to optimize their administrative processes and enhance the overall educational experience for students.

II. RELATED WORKS

In recent years, numerous authors have proposed innovative solutions to streamline attendance tracking through the integration of cutting-edge technologies. Kawaguchi's pioneering work [18] introduced the concept of continuous monitoring, utilizing strategically positioned cameras within classroom environments. By seamlessly integrating these cameras, Kawaguchi's system effectively captures student images and compares them against a centralized database, ensuring precise attendance records. While this approach represents a significant advancement, further enhancements can be explored to address potential imperfections.

Similarly, N. Kar [19] introduced an automated attendance management system leveraging face recognition techniques, specifically employing Principal Component Analysis (PCA). This system, utilizing libraries such as OpenCV and FLTK, demonstrates a comprehensive approach to attendance tracking. Despite its effectiveness, opportunities exist for refining the face detection algorithm to enhance accuracy and efficiency. Furthermore, Jyotshana Kanti [4] proposed a smart attendance marking system combining Principal Component Analysis and Artificial Neural Network algorithms. By integrating these methodologies, Kanti aims to overcome the limitations of traditional attendance systems, particularly in terms of time consumption. While promising, ongoing optimization efforts could further enhance the system's adaptability to diverse environmental conditions.

Additionally, Priyanka Thakare [22] presented a method utilizing Eigenface and Principal Component Analysis, offering a structured approach to face recognition. Thakare's system addresses image enhancement challenges through techniques such as Histogram Normalization and Median filtering. However, continuous refinement of these processes could bolster the system's robustness across various scenarios.

Moreover, recent advancements in deep learning, as highlighted by authors [2] and [5], underscore the potential for further innovation in attendance management systems. By leveraging techniques such as data augmentation and automatic re-training of deep CNNs, these approaches demonstrate a commitment to improving accuracy and adaptability over time.

In summary, while existing solutions have made significant strides in automating attendance tracking through face recognition technologies, ongoing research and development efforts are essential to address limitations and enhance overall system performance. By embracing novel methodologies and advancements in artificial intelligence, the future of attendance management holds promising prospects for increased efficiency and accuracy in diverse educational settings.

III. PROPOSED WORK

The proposed attendance management system presents a cutting-edge solution by incorporating advanced transfer learning algorithms for facial recognition. During presentations, taking pictures of students' faces in real time is made easier by the ESP32-CAM's video streaming feature and Arduino IDE interface. The use of transfer learning algorithms is a key innovation, as it capitalizes on pre-existing knowledge, reducing the need for extensive datasets and mitigating computational demands. Transfer learning, in this context, enhances the accuracy of facial recognition, enabling the system to identify individuals with higher precision. Leveraging pre-trained knowledge allows the system to grasp facial features effectively, making it more adept at recognizing faces in various conditions. This approach is particularly beneficial in educational settings where

obtaining a vast dataset for training might be challenging.

By streamlining the attendance process, the proposed system offers an efficient and time-saving alternative to traditional methods. The real-time capture of facial images during lectures ensures that attendance is accurately recorded without manual intervention, reducing the burden on educators and minimizing the chances of errors or proxy attendance. A key component of this approach is the use of technology into education, which is consistent with the larger trend of introducing creative solutions in higher education. By seamlessly merging transfer learning algorithms, Arduino, and ESP32-CAM Video Streaming, the proposed system not only addresses the challenges of traditional attendance management but also provides a sophisticated and streamlined solution.

ESP32-CAM INTEGRATION MODULE:

The integration of the module with Arduino IDE underscores its central role in harnessing the capabilities of the ESP32-CAM Video Streaming functionality within the attendance management system. Specifically designed to enhance real-time capture during lectures, this module acts as the bridge between the hardware components and the facial recognition algorithm. With a keen focus on the ESP32-CAM Video Streaming functionality, the module enables the continuous capture of facial images, generating a dynamic and uninterrupted stream of visual data. By interfacing with the Arduino IDE, this module optimizes the communication and synchronization between the ESP32-CAM module and the system's software components. The ESP32-CAM, functioning as the camera module, captures live video footage, and the module ensures a seamless transfer of this visual data for further processing by the facial recognition algorithm

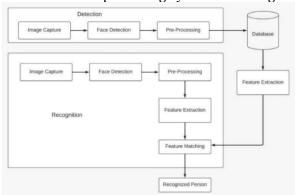


Fig 1. Flow Diagram

FACIAL RECOGNITION MODULE

The transfer learning algorithm implementation module plays a key role in the facial recognition aspect of the attendance management system. Its primary responsibility is to utilize pre-trained knowledge for efficient and accurate identification of individuals based on facial features. Leveraging transfer learning, the algorithm draws upon insights gained from a pre-existing model, adapting this knowledge to recognize facial characteristics in real-time scenarios. By leveraging pre-trained knowledge, the algorithm minimizes the need for extensive datasets specific to the current environment, making it more versatile and adaptable. This module significantly enhances the accuracy of facial recognition, ensuring reliable authentication of individuals during lectures and contributing to the overall effectiveness of the attendance management system.

DATA PROCESSING MODULE

This processing module plays a pivotal role in the attendance management system by handling the captured facial images and employing a transfer learning algorithm for facial recognition. When facial images are captured in real-time during lectures through mechanisms like the ESP32-CAM Video Streaming, this module comes into action. The transfer learning algorithm is an advanced method that matches faces to a database of known people by utilizing previously acquired information from a pre-trained model. The process involves extracting intricate facial features from the captured images and comparing them against the pre-existing knowledge stored in the algorithm. This knowledge is crucial for accurately identifying individuals, even in scenarios where the system encounters variations in lighting conditions, student orientations, or other potential challenges. By utilizing transfer learning, the system minimizes the need for extensive datasets specific to the current environment, making it more adaptable and efficient. Once the matching process is executed, the module calculates attendance based on the identified faces in real-time. Each recognized face is associated with an individual in the database, and the system keeps a dynamic tally, thereby providing instantaneous and accurate attendance metrics. This real-time functionality is instrumental in automating the attendance recording process, eliminating the need for manual intervention and ensuring a swift and precise system response.

ACCURACY ENHANCEMENT MODULE

The system is meticulously designed to incorporate robust mechanisms aimed at enhancing the accuracy of

facial recognition, taking into account various challenges that might arise in real-world scenarios. One significant challenge addressed by the system is variations in lighting conditions. Recognizing that ambient lighting can fluctuate throughout the day or in different environments, the system employs sophisticated algorithms or image processing techniques to normalize and adapt to varying lighting conditions. This ensures that facial features remain distinguishable and consistently recognizable, even under challenging lighting circumstances. To overcome this challenge, the system is equipped with algorithms that can adapt to different student orientations. These algorithms are trained to recognize facial features from various angles, allowing the system to accurately identify individuals whether they are facing forward, sideways, or at different angles. Moreover, the system accounts for additional factors that might affect recognition reliability, such as changes in facial expressions or accessories like glasses. Advanced facial recognition algorithms often include features like facial landmark detection and expression analysis to accommodate such variations, ensuring accurate identification despite these potential challenges.

INTEGRATION WITH ATTENDANCE RECORDING SYSTEM

The integration of recognized attendance data into an attendance recording system represents a crucial step in ensuring the accuracy, organization, and accessibility of attendance records. This module typically involves the incorporation of a database or cloud-based storage to securely store the attendance data collected through facial recognition. The primary objective is to establish a reliable and centralized repository where attendance information is systematically recorded and managed. By integrating the recognized attendance data into a storage system, administrators can benefit from streamlined administrative processes. The attendance recording system allows for the efficient storage of data, ensuring that each student's attendance is accurately logged. This centralization facilitates easy retrieval and management of attendance records, eliminating the need for manual record-keeping and mitigating the risk of errors. The database or cloud-based storage not only acts as a repository for attendance records but also serves as a scalable and secure solution. Cloud-based storage, in particular, offers the advantage of remote access, enabling administrators to retrieve attendance data from anywhere with an internet connection.

USER INTERFACE MODULE

The user interface module serves as the visual gateway for system administrators or instructors to seamlessly interact with the attendance management system. This graphical user interface is intended to offer a simple and easy-to-use platform that makes it possible for users to quickly explore and access key features. Administrators and instructors can use the interface to interact with attendance data, gain insights into student participation, and generate comprehensive reports. The graphical representation aids in quick comprehension, making it easier to identify patterns or anomalies in attendance. Furthermore, the module facilitates the generation of detailed reports, providing a valuable tool for data-driven decision-making.

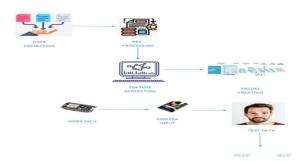


Fig 2. Architecture Diagram

The architecture diagram of the proposed attendance management system reveals a well-organized and efficient design that seamlessly integrates various components to achieve advanced facial recognition for attendance tracking during lectures The diagram showcases the integration of the ESP32-CAM Video Streaming module with the Arduino IDE, forming the backbone for real-time capture and processing of facial images. The transfer learning algorithm, depicted in the architecture, illustrates its pivotal role in optimizing the recognition process. The proposed system's architecture emphasizes a modular structure, with a clear delineation of components such as the ESP32-CAM module, Arduino IDE, and the transfer learning algorithm. Communication channels between these components are visually represented, highlighting the seamless flow of data during the attendance management process.

The use of transfer learning is particularly notable in the architecture, showcasing its ability to minimize the need for extensive datasets while maximizing recognition accuracy. Additionally, the architecture diagram portrays the system's adaptability to the educational context, where facial images are captured in real time during lectures. This real-time functionality is vital for ensuring accurate attendance records without manual intervention. Overall, the proposed system's architecture diagram provides a comprehensive visualization of

how different elements synergize to create a sophisticated, technology-driven solution for attendance management in educational settings.

IV. RESULTS AND DISCUSSION

In this system, users interact with the system through a Graphical User Interface (GUI) that offers three main options: student registration, faculty registration, and mark attendance. For student registration, users input necessary details into a form, and upon clicking the register button, the system initiates the webcam. A window appears, as depicted in facilitating face detection. The system automatically captures images until 60 samples are collected or the user presses CTRL+Q. These images undergo preprocessing and are then stored in the training images folder, presumably for subsequent use in facial recognition for attendance marking. On the faculty side, registration involves providing course codes and email addresses. This information is crucial, as the system later uses it to send a list of absentees directly to the respective faculty members. This integration of registration details with the attendance process ensures seamless communication and efficient management of attendance records.

HIDDEN LAYERS

Nestled between the input and output layers of neural networks, the hidden layer is an essential component. The network learns to extract features and representations from the incoming data during this intermediate processing step .Each node in the hidden layer computes a weighted sum of the input values, incorporating learnable parameters such as weights and biases. An activation function is then applied to introduce non-linearity, allowing the network to capture complex relationships in the data.

$$Z^{(i)} = \sigma (W^{(i)} A^{(i-1)} + b^{(i)})$$

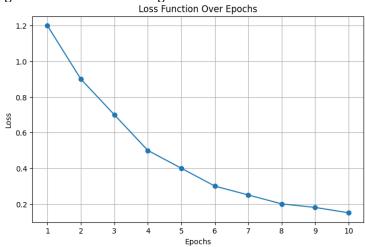
Where σ is an activation function.

 $\mathbf{W}^{(i)}$ is the weight matrix, $\mathbf{A}^{(i-1)}$ is the input from the previous layer, and $\mathbf{b}^{(i)}$ is the bias term.

The hidden layer transforms the input information into a more abstract and meaningful representation, facilitating the network's ability to generalize and make accurate predictions during training and inference phases. The architecture and depth of hidden layers significantly impact a neural network's capacity to learn intricate patterns and features in diverse datasets.

ACTIVATION FUNCTIONS

Activation functions are mathematical operations applied to the output of a node Within the realm of neural networks, a fascinating element is introduced—non-linearity. This addition serves as the catalyst, empowering the network to unravel intricate patterns beyond the confines of linear relationships. Common activation functions include ReLU (Rectified Linear Unit) for simplicity and efficiency, Sigmoid for binary classification, and SoftMax for multi-class classification.


ReLU (Rectified Linear Unit): $\sigma(z) = \max(0,z)$

$$\sigma(z) = rac{1}{1+e^{-z}}$$

These functions determine the node's output and influence the information flow through the network during both forward and backward passes, aiding in effective learning and representation of intricate data relationships.

LOSS FUNCTION

A loss function, also known as a cost or objective function, quantifies the difference between the predicted output of a machine learning model and the actual target values.

It serves as a measure of how well the model is performing on a specific task during training.

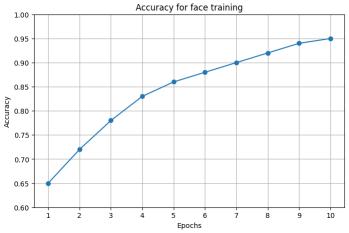
Categorical Cross-Entropy Loss =
$$-\frac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{C}y_{ij}\log(p_{ij})$$

The goal is to minimize this function, indicating a closer match between predictions and true values. Mean Squared Error (MSE) is a commonly used loss function in regression projects. Cross-entropy loss is a commonly used loss function in classification issues. Custom-defined loss functions are designed to meet particular goals.

BACKWARD PASS (BACKPROPAGATION)

An essential phase in neural network Training involves executing the backward pass, often known as backpropagation. This entails figuring out the gradients of the loss function in relation to the model's parameters. These gradients are then used to update the weights and biases in the network using optimization algorithms like stochastic gradient descent.

$$\begin{split} \mathbf{W}^{(i)} &= \mathbf{W}^{(i)} - \alpha \frac{\partial \mathcal{L}}{\partial \mathbf{W}^{(i)}} \\ \mathbf{b}^{(i)} &= \mathbf{b}^{(i)} - \alpha \frac{\partial \mathcal{L}}{\partial \mathbf{b}^{(i)}} \text{, where } \alpha \text{ is the learning rate.} \end{split}$$


Backpropagation works iteratively, propagating the error backward through the layers, adjusting parameters to minimize the loss, and improving the model's ability to make accurate predictions during subsequent forward passes.

ACCURACY GRAPH:

Accuracy in face training refers to how well a system can correctly identify faces. Achieving high accuracy requires training the system with diverse facial data, including various expressions, poses, and lighting conditions. This process enables the algorithm to learn distinct facial features accurately.

$$Accuracy = \frac{Number\ of\ correctly\ identified\ faces}{Total\ number\ of\ faces} \times 100\%$$

Continuous refinement is essential to improve accuracy further, but ethical considerations like privacy and bias must be addressed for responsible deployment.

V. CONCLUSION

In conclusion, the proposed attendance management system represents a technologically advanced and streamlined solution for the educational setting. By integrating transfer learning algorithms for facial recognition with the ESP32-CAM Video Streaming functionality through Arduino IDE, the system achieves real-time capture and processing of facial images during lectures. The transfer learning algorithm, with its reliance on pre-trained knowledge, enhances accuracy and adaptability, addressing challenges such as variations in lighting conditions and student orientations. The incorporation of a user interface module ensures user-friendly interactions for administrators and instructors, allowing seamless access to attendance data, reports, and system settings. Furthermore, the integration of recognized attendance data into a dedicated recording system enhances organizational efficiency. This system not only overcomes The constraints of conventional attendance approaches. but also provides a sophisticated, contactless, and time-saving approach to attendance management in educational institutions. Overall, the proposed system aligns with the evolving landscape of educational technology, promising to significantly optimize attendance processes and contribute to a more efficient and technology-integrated learning environment.

REFERENCE

- A. Ahmedi and S. Nandyal, "An Automatic Attendance System," pp. 1–8, 2015. 1.
- V. Shehu and A. Dika, "Using real-time computer vision algorithms in automatic attendance management systems," Inf. Technol. Interfaces (ITI), 2010 32nd Int. Conf., pp. 397-402, 2010.
- J. Joseph and K. P. Zacharia, "Automatic A system for managing attendance through face recognition 3. technology.," Int. J. Sci. Res., vol. 2, no. 11, pp. 327-330, 2013.
- J. Kanti and A. Papola, "Smart Attendance using Face Recognition with Percentage Analyzer," vol. 3, no. 4. 6, pp. 7321-7324, 2014.
- T. H. Le, "Applying Artificial Neural Networks for Face Recognition," Adv. Artif. Neural Syst., 2011.
- P. Mehta, "An Efficient Attendance Management Sytem based on Face Recognition using Matlab and Raspberry Pi 2," Int. J. Eng. Technol. Sci. Res. IJETSR, vol. 3, no. 5, pp. 71–78, 2016.
- S. Jeng, H. Y. M. Liao, C. C. Han, M. Y. Chern, and Y. T. Liu, "Facial feature detection using geometrical face model: An efficient approach," Pattern Recognit., vol. 31, no. 3, pp. 273-282, 1998.
- P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, "Eigenfaces vs. fisherfaces: Recognition using class 8. specific linear projection," IEEE Trans. Pattern Anal. Mach. Intell., 1997.
- T. Ojala, M. Pietikainen, and D. Harwood, "Assessing texture measure performance through classification utilizing Kullback discrimination of distributions.," in Pattern Recognition, 1994. Vol. 1 - Conference A: Computer Vision amp; Image Processing., Proceedings of the 12th IAPR International Conference on,
- T. Ojala, M. Pietikäinen, and D. Harwood, "A A study comparing texture measures with classification employing feature distributions," Pattern Recognit., 1996.
- G. J. Edwards, C. J. Taylor, and T. F. Cootes, "Interpreting face images using active appearance models," Proc. Third IEEE Int. Conf. Autom. Face Gesture Recognit., 1998.
- T. F. Cootes, G. J. Edwards, and C. J. Taylor, Active appearance models. 1998. M. Turk and A. Pentland, "Eigenfaces for Recognition," J. Cogn. Neurosci., vol. 3, no. 1, pp. 71–86, 1991.
- W. Haider, H. Bashir, A. Sharif, I. Sharif, and A. Wahab, "A Survey on Face Detection and Recognition Techniques," Res. J. Recent Sci., 2014.
- D. L. Swets, "Using discriminant eigenfeatures for image retrieval," IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 8, pp. 831-836, 1996.
- 16. L. C. Paul and et AL, "Facial recognition employing the Principal Component Analysis technique.," vol. 1, no. 2012, pp. 135-139, 2012.
- I. Dagher, "Incremental PCA-LDA algorithm," in CIMSA 2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, Proceedings, 2010.
- Y. Kawaguchi, "Face Recognition-based Lecture Attendance System," 3rd AEARU ..., no. October, 2005.
- N. Kar, M. K. Debbarma, and et.Al "Exploring the implementation of an automated attendance system utilizing face recognition technology.," Int. J. Comput. Commun. Eng., vol. 1, no. 2, pp. 100-103, 2012.
- 20. Fuzail, Muhammad & Noman, Fahad & Mushtaq, Muhammad Omer & Raza, Binish & Tayyab, Awais & Talib, Muhammad. (2014). Face detection system for attendance of class students.
- Hapani, Smit, et al. authored "Automated Attendance System Utilizing Image Processing" which was presented at the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA) hosted by IEEE.
- 22. Akbar, Md Sajid, et al. presented a paper titled "Attendance System Verified by Face Recognition and RFID" at the 2018 International Conference on Computing, Electronics & Communications Engineering (iICCECE) organized by IEEE.
- Okokpujie, Kennedy O., along with colleagues, introduced a paper detailing the "Development and Deployment of a Student Attendance System Utilizing Iris Biometric Recognition" at the 2017 International Conference on Computational Science and Computational Intelligence (CSCI), hosted by
- Rathod, Hemantkumar, et al. "Automated attendance system using machine learning approach." 2017 International Conference on Nascent Technologies in Engineering (ICNTE). IEEE, 2017.
- Siswanto, Adrian Rhesa Septian, Anto Satriyo Nugroho, and Maulahikmah Galinium introduced a paper focusing on "Implementing a Face Recognition Algorithm for a Biometrics-Driven Time Attendance System" at the 2014 International Conference on ICT For Smart Society (ICISS) organized by IEEE.
- 26. Lukas, Samuel, et al. "Student attendance system in classroom using face recognition technique." 2016 International Conference on Information and Communication Technology Convergence (ICTC). IEEE,
- https://becominghuman.ai/face-detection-using-opency-with-haarcascade-classifiers-941dbb25177
- https://www.superdatascience.com/blogs/opency-face-recognition
- Salim, Omar Abdul Rhman, Rashidah Funke Olanrewaju, and Wasiu Adebayo Balogun presented a paper titled "Utilizing Face Recognition for Class Attendance Management System" at the 2018 7th International Conference on Computer and Communication Engineering (ICCCE) organized by IEEE.
- 30. Jenifer D Souza, Jothi S, and Chandrasekar A authored a paper titled "Facial Recognition-based Automated Attendance Marking and Management System utilizing Histogram" presented at ICACCS

- 2019. [Ref: https://ieeexplore.ieee.org/document/8281895]
- 31. Nandhini R, Duraimurugan N, S.P Chollalingam "Face Recogn:\ [Ref: https://www.ijeat.org/wpcontent/uploads/papers/v8i3 S/C]
- 32. E Varadharajan, R Dharani, S. Jeevitha, B Kavinmathi, and S. Hemalatha presented a paper titled "Facial Detection-based Automatic Attendance Management System" at ICGET 2016, organized by the Department of Information Technology in 2020. [Ref: https://ieeexplore.ieee.org/abstract/document/7916753]