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 ABSTRACT 
 Vibration signals serve as indicators of an electrical device's condition, comprising multiple harmonics that 

elucidate its operational state. Analyzing the harmonic frequency and magnitude within the vibration 
signal enables the identification of fault locations in the machine or device. This work proposes the use of a 
fault location classification based on Fast Fourier Transform (FFT) for feature extraction and an 1D 
Convolutional neural network model to distinguish the difference between 3 types of deformation 
conditions that were collected from transformer surface. The vibration sensor data in the time-series 
domain, thus the primary reason for the development of 1D-CNNs. A reduction in the amount of 
computational work that the network needs to do is made possible by the proposed 1D-CNN model. The 
primary objective is to analyze vibration signals of the transformer core in order to diagnose fault location, 
with the data being measured in the time domain. With a classification accuracy of 96.6%, the CNN model 
that was created for the purpose of detecting faults in transformer cores displayed an amazing 
performance. 

 

1. INTRODUCTION 
 

The Power transformers play a crucial role in ensuring reliable power delivery within the power system and a 
key component responsible for voltage conversion, power distribution, and transmission. In the event of 
transformer failure, there is a high likelihood of large-scale blackouts, leading to significant direct and 
indirect economic losses[1],[2]. To minimize the incidence of unexpected failures, various diagnostic and 
monitoring techniques have been developed. According to recent studies, transformer failures can be 
categorized into three types: electrical, mechanical, and thermal defects. Thus, early detection of faults and 
evaluation of the health status of power transformers are essential. The use of vibration signals for assessing 
transformer health is a relatively new technique compared to other transformer condition monitoring 
methods, and research in this area is still in its early stages [3],[4]. As a non-intrusive online approach, 
vibration-based methods are suitable for evaluating the condition of power transformers.  
A vibration sensor is utilized in the process of vibration analysis in order to measure the vibration signal that 
is produced by the core components. For the purpose of facilitating online condition monitoring of the 
transformer, time-frequency domain characteristics are retrieved.  
Techniques that fall under the heading of external detection and analysis methods [5]-[7] include this 
particular method. However, despite these benefits, there are still substantial limits in monitoring winding 
and iron core problems. This is because there is a lack of in-depth study on the vibration characteristics of 
these components, as well as a lack of experience in this field.  
Over the course of the last few years, convolutional neural networks, also known as CNNs, have shown a great 
deal of success in the field of pattern recognition[8]. CNNs are well-known for their capacity to independently 
extract features from signals or images. It is common practice for these networks to be constructed using two-
dimensional convolutional neural networks, also known as 2D CNNs. Several  Researchers proposed different 
CNN-based neural networks models for classification. The adoption of Deep Learning (DL) techniques has 
been shown in recent research to be a viable solution to the problem of skill dependency [9].  
Compared to other models like Deep Belief Network [10],[11] Stacked Auto-encoder [12],[13]  Recurrent 
Neural Network [14], and Long short-term memory [15], convolutional neural networks (CNNs) leverage 
local receptive fields, weight sharing, and spatial subsampling. These characteristics help reduce 
computational complexity and mitigate overfitting, thus enhancing pattern recognition accuracy and 
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efficiency. In the context of rolling bearing fault identification, CNNs are typically employed in two ways. 
Firstly, the original one-dimensional vibration signal can serve as the input to the model. Alternatively, the 
signal can be transformed into a two-dimensional image representation for input.  
This paper outlines an analytical methodology for constructing a 1D CNN model designed for fault location 
identification in transformer core. The model is based on analyzing vibration modes that indicate the 
bending of limbs in the out-of-plane direction. Multiple experimental studies are under taken to simulate 
diverse critical faults in transformer operational conditions. The vibrational data recorded from these 
experiments with different load conditions are then analyzed using CNN models.    

 
2. METHODOLOGY 

 
2.1 Concept of vibration 
The interaction of two phenomena is the primary cause of core vibration. These two phenomena are as 
follows: (i) winding vibration, which is caused by the electromagnetic force generated by the interaction of the 
current in a winding with leakage flux; and (ii) magnetostriction in the silicon steel sheet and the Maxwell 
electromagnetic force [16]-[19].  
There are dimensional changes that take place in the silicon steel sheet as a result of the application of an 
external magnetic field. These changes include contraction and elongation. Following the removal of the 
magnetic field, the sheet will return to the dimensions that it had when it was first created. The magneto 
strictive effect is the name given to this particular occurrence. There has been a considerable improvement in 
the overall control over transformer core vibration as a result of the developments in lamination processes for 
making the iron core and the employment of weft-free adhesive tape for binding. The magnetostriction of the 
silicon steel sheet has been the most important component in this improvement. It is usual practice to employ 
the magnetostriction ratio to reflect magnetostriction, which can be represented as equation (1). 

𝛿 =  
∆𝐿

𝐿
                                                                                    (1) 

Where 𝛿 is the silicon steel sheet axial magnetostriction ratio, ΔL is the silicon steel sheet maximum axial 
expansion or contraction, and L is the silicon steel sheet original axial dimension. Assuming the supply 
voltage is V1 =Vs sin ωt, according to the principle of electromagnetic induction, the magnetic induction 
intensity in the core is 
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∅

𝐴
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Where φ is the core magnetic flux, A is the core cross sectional area, The magnetic field strength in the iron 
core is 
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A small-scale deformation of the SSS caused by magnetostriction satisfies the following relationship: 
𝛻𝐿

𝐿
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Where εs is the saturation magnetostriction ratio of the silicon steel sheet. Based on the above relationship, 
one can derive the maximum axial elongation of the core caused by the silicon steel sheet magnetostriction as 
follows:  
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In comparison to the alternating electromagnetic field, the variation period of magnetostriction is twice as 
long as the alternating electromagnetic field. On the other hand, the fundamental frequency of the core 
vibration that is induced by magnetostriction is twice as high as the variation frequency of the 
electromagnetic field, denoted by ω. 
 
2.2 Problem formulation 
Training datasets are often segmented into smaller portions, necessitating running algorithms on each 
fragment for predictions. This process can be time-consuming, thus to overcome this FFT optimization, we're 
streamlining these computations, reducing overall training time[20]. To enhance real-time analysis, we're 
integrating FFT algorithms to replace the conventional forward Convolution propagation in our models. The 
Fast Fourier Transform (FFT) algorithm is a fast computational method for efficiently computing the 
discrete-time signals, enabling rapid processing of signals in real-time applications. This optimization 
significantly accelerates processing for frameworks like YOLO[21], R-CNN [22], and Faster R-CNN [23], 
crucial for rapid decision-making.  
 
2.3 Proposed methodology 
The methodology entails assembling fault classification datasets and enhancing feature extraction using FFT to 
expedite diagnosis while enhancing accuracy. CNNs are then employed for the training and testing phases of 
fault diagnosis[24]-[26], ensuring efficient and precise results. Figure 1 illustrates the block diagram outlining 
the proposed  methodology for precisely identifying fault location within the transformer core. Firstly, the 
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methodology involves extracting frequency components from a signal amidst noise and determining the 
amplitudes of the specific frequencies through Fourier transform. Secondly, machine learning algorithms are 
utilized to classify the fault location. 

 

 
Figure 1. Proposed methodology 

 
3. EXPERAMENTAL SETUP 

 
In this particular investigation, a customized 2KVA-type transformer is being investigated. Table 1 presents 
the primary parameters that it possesses. There was a connection made between the output terminal of the 
transformer and a resistive load that could be adjusted at any power level between 0 and 100 kW. The 
accelerometer senther 310A is integrated to the transformer with flat magnet mounting method. Senther 
310A sensor with Digital USB signal conditioner was used for measuring vibration signals from test 
transformer tank surface under different load conditions. The sensitivity of 100 mV/g and the sampling 
frequency used to collect vibration signals was 12 KHz. To investigate the comprehensive vibration 
characteristics of the iron core, one measuring points have been positioned on the tank surface, as illustrated 
in Figure 2. These measurement locations have been carefully chosen to ensure proximity to the transformer 
core, which is securely fastened to the tank using bolts and nuts. In the testing process, the voltage regulator 
outputs the rated primary voltage, which is then applied to the transformer under examination. The load 
cabinet consists of a resistance cabinet; The load cabinet facilitates the adjustment of load magnitude. The 
platform can undergo testing under conditions of no-load, half load, and full load. 
 

Table 1. 2KVA Power Transformer Details 
 

S.L. Categories Parameter 
1 Power Rating 2 KVA 
2 High Voltage Rating 230V 
3 Low Voltage Rating 115V 
4 Operating Frequency 50Hz 
5 Service conditions Indoor 

 
The E-I core being utilized in the construction of transformers may be seen in Figure 2(a). A total of three 
limbs and two yokes make up its core. In contrast to the other cores, the central limb comes with a double 
flux, which results in it having a breadth that is twice as wide. To understand the characteristics of a 
transformer with damaged core, intentionally deformed core sheet is inserted in the core legs (Leg Left, Leg 
Middle, Leg Right). This deformation may cause because of bending, torsion and twist in the transformer 
core limbs in out of plane direction. The core deformation occurs accidentally due to mechanical stresses or 
manufacturing defects. When a deformation is introduced in the core, it affects the inductance and reluctance 
of the transformer. With a deformation in the core, the inductance of the transformer decreases, and the 
reluctance increases. In high-current transformers, such as those used in power distribution or industrial 
applications, the changing magnetic field can induce significant physical stresses in the core. These stresses 
can result in the development of cracks over time. The cracks can further propagate due to the cyclic magnetic 
forces, leading to increased core losses and potential mechanical failure if not addressed. The experimental 
setup comprises a voltage regulator, an experimental transformer, and a load cabinet shown in Figure 2(b). 
The Figure 3 depicts the E shape core sheet with deformation in structure. 
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(a)                                                                         (b) 

Figure 2. (a) EI shape transformer core  (b) Transformer Testing Lab Setup 
 

 
Figure 3. Deformed transformer core sheets 

 
 

4. RESULTS AND DISCUSSION 
 
To guarantee that the location of the core deformation, the vibrations is measured from the surface of the 
tank (as shown in Fig.2 (a)) appropriately represents the transformer internal behavior. The spectrum of 
vibration signals in time domine and frequency domine are studied as a criterion for determining the 
mechanical condition of the transformer core.  Figure 4 shows the spectrum characteristics of vibration 
acceleration under full load healthy operating conditions. It is evident from the figure that in the case of a 
healthy core, the frequency spectrum is primarily concentrated around 100Hz. 

 

 
(a)                                                                                       (b) 

Figure 4. Vibrations of the Healthy transformer in the time and frequency domains. 
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Figure 5 shows a spectrum-analysis diagram of the vibration signals with a deformed core sheet inserted in 
the left leg, the amplitudes of vibration signals at frequencies of 100 Hz, 200 Hz and 300 Hz start to rise. This 
phenomenon occurs due to the presence of the deformation, which acts as an air gap, reducing the inductance 
and increasing the reluctance of the core. As a result, the deformation of the transformer core and the Lorentz 
force combine to amplify the vibration amplitudes at higher frequencies, such as 200 Hz, 300 Hz, and 400 
Hz. Consequently, variations in core acceleration also led to changes in the noise emanating from the vicinity 
of the transformer. 
 

 
(a)                                                                        (b) 

Figure 5 Vibrations of the transformer core with Left leg deformation in the time and frequency domains. 
 
Figure 6 shows a spectrum-analysis diagram of the vibration signals with a deformed core sheet inserted in 
the middle leg, the amplitudes of vibration signals at frequencies of 100 Hz, 200 Hz and 300 Hz are reduced 
as compared to the left lag condition because from the measuring location machinal deformation point is 
shifted away.  

 

 
(a) (b) 
 

Figure 6 Vibrations of the transformer core with Middle leg deformation in the time and frequency domains. 
 
Several machine learning algorithms, including gradient-based optimization methods, exhibit faster 
convergence when the input features share a similar scale. In cases where the features have significantly 
different scales, the algorithm might experience delayed convergence or even fail to converge.  
Thus, collected vibration data is normalized between -1 and 1. Before commencing the model training, the 
dataset was partitioned into segments. Given that the data has a sampling frequency of 12 kHz, implying 
12000 data samples per second, a single sample alone lacks adequate information about the vibration signal, 
including aspects such as amplitude, peak-to-peak value, behaviour, or frequency of one cycle. To address 
this limitation, a decision was made to consider 3000 samples, equivalent to 0.25 seconds of data, as one 
segment. This choice was made to encompass approximately four cycles of the vibration signal within each 
segment. By doing so, the intention is to provide the model with a more comprehensive view of the vibration 
data, enabling it to capture essential characteristics and patterns associated with input signal. This 
segmentation strategy aims to enhance the model's ability to discern meaningful features and relationships 
within the vibration data during the training process. 
The CNN models employed for fault classification underwent training based on hyperparameters. 
Performance assessment during the training and validation processes was conducted by evaluating the 
classification accuracy. The model with the highest accuracy was identified and saved as the final model  and 
it is shown in Figure 7.The final 1D-CNN structure encompasses five convolution layers, four pooling layers, 
and two fully connected layers. Primarily, the input data are the one-dimensional signal that has a length of 
3000. First convolution layers use 128 convolution kernels of size 4 × 1, second layer use 64 of size 4 × 1 third 
layer use 32 of size 4 × 1 layer, fourth layer use 16 of size 4 × 1 and fifth layer has 8 of size 4 × 1. The output 
feature maps generated from convolution layers (layer 1 to 4) are fed into the max pooling layer as an input.  
Which carries out a 2x2 max-pooling operation. Within the flatten layer, the features extracted from the five 
convolution layers are expanded into a one-dimensional vector. The output layer comprises a four neuron. 
For this study, a softmax activation function is employed, representing classification post-training. The 
effectiveness of the proposed architecture for core fault classification is assessed through training and testing 
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processes. For this evaluation, 60% of the data is allocated to training, 20% for testing, and another 20% for 
validation. 

 
 

 
Figure 7 1D-CNN network structure for transformer core fault diagnosis[12]. 

 
A representation of the accuracy plot that corresponds to the number of iterations may be found in Figure 8. 
For the sake of this discussion, accuracy refers to the proportion of accurate predictions that the CNN model 
has produced. At first, while iterations are first being carried out, the accuracy is at a rather low level of 
roughly fifteen percent. In spite of this, there is a discernible rising trend that occurs as the iterations 
advance, culminating in a promising accuracy number of 96.33% at the conclusion of 400 iterations during 
the 40th epoch. 

 

 
Figure 8. Accuracy and loss plot of the proposed CNN Model. 

 
This rise in accuracy can be attributed to the CNN model being exposed to a greater number of scalogram 
images over the course of time, which ultimately results in classification that is more effective and exact. 
Figure 9 depicts the loss plot, which, in contrast to the accuracy plot, demonstrates an inverse relationship 
between the two. At first, the rate of loss is significantly higher than average, but it steadily decreases as the 
number of iterations (training) increases. This downward trend in loss is a natural outcome of the model's 
refinement and modification over the course of repeated iterations, which has resulted in more refined 
predictions and a reduction in mistakes. 
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Figure 9. Loss plot of the proposed CNN Model. 

 
The effectiveness of the proposed architecture for core fault classification is assessed through training and 
testing processes. For this evaluation, 60% of the data is allocated to training, 20% for testing, and another 
20% for validation. Figures 8 illustrate the training curves, showcasing the progression of validation and 
training loss, as well as validation and training accuracy throughout the training epochs. The depicted curves 
indicate that the proposed architecture effectively learns from the provided data within a few epochs without 
overfitting. Ultimately, the achieved average classification accuracy for the proposed architecture is an 
impressive 99.78%. The comparative outcomes between the proposed methodology and existing works are 
presented in Table 2. 
 

Table 2 Comparison table of related work 

S.No   Reference    Year      Method     Accuracy%                

1             [27]          2021        KNN                 93.70 
2             [28]          2019        SVM                 94 
3             [29]          2021        Fuzzy logic       93.85 
4             [30]          2020        Fuzzy+RL        99.70 
5             proposed   2024        CNN                99.78 
 

 
Figure 10 is a representation of the confusion matrix that we have developed as a result of this scientific 
investigation. This is where we can observe the four classes, which include Leg L (deformation of the left leg), 
Leg M (deformation of the middle leg), and Leg R (deformation of the right leg as well). Within the Leg L 
class, 98 out of 100 instances have been successfully classified as Leg L. Similarly, within the Leg M and Leg 
R classes, 97 and 95 out of 100 cases have been successfully classified. There is a one hundred percent success 
rate for the Normal healthy class. Consequently, the overall average success percentage of the model that was 
utilized is currently at 96.6%. 

 

 
Figure 10. Confusion matrix for detection of the classes 
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5. CONCLUSION 
 
This paper demonstrates the process of extracting features from measured data for condition monitoring and 
prognostics. These features are then utilized to develop dynamic models, which are subsequently validated 
and employed to predict the time of failures. This proactive approach allows for preemptive actions to be 
taken before actual failures occur. This paper presents an experimental investigation focused on the 
extraction of features from deformed transformer core. The study utilizes a 2 KVA transformer and examines 
the obtained results to explore the location of core deformation. Under normal conditions, the vibration 
frequency spectrum remains consistent at 100Hz and 200Hz, irrespective of the load current. However, in 
the presence of a deformed core, higher frequencies are observed alongside the changing load current and 
train a CNN neural network for classification purposes.  
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