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ARTICLE INFO ABSTRACT 
 Background: neural toxicity can be mediated by several agents including the 

accumulation of heavy metal. Neural toxicity could cause deviating behaviors and 
violent actions. 
Study objectives: the main objectives of the present study were to review the 
literature regarding the impacts of neural toxicity on deviating behaviors and violent 
actions and to explore the impacts of heavy metals including lead (pb) on violent 
actions. 
Methodology: literature was reviewed for articles involved in the neural toxicity 
and their impacts on deviating behaviors such as violence. Articles were studied and 
summarized to extract the appropriate information, this helped in making up the 
current study. 
Results: reviewed literature showed that exposure to heavy metals is associated 
with violent behaviors and deviating actions. Previous studies indicated that 
prisoners had higher levels of lead (pb) compared with their counter controls. It was 
also shown that schoolchildren who had poor academic achievement and committed 
to violent actions has higher levels of lead (pb). 
Conclusions: violent actions and deviating behaviors have their environmental 
origin such as exposure to heavy metals. assessment of heavy metals may be a future 
indicator to evaluate persons with violent attitudes. 
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1. Introduction 

 
Heavy metals (HMs) are prevalent in the environment and may accumulate in the body unnoticed until they 
cause a chronic illness. Evidence suggests that metal toxicity can impact all age groups and organs, but in 
developing and adult brains, the central nervous system is most severely affected and the effects persist for a 
prolonged period of time. There is a lack of clinically validated treatments for HM toxicity (1). 
The increasing prevalence of HMs on a global scale has become a substantial concern (2). The  contamination 
of HMs can arise from a multitude of sources, including waste disposal, contaminated chemical fertilizers and 
pesticides, and contaminated water sources like rivers (3). 
Due to their elevated atomic mass and density, HMs such as cadmium, zinc, mercury, arsenic, silver, chromium, 
copper, iron, and platinum can cause damage to both human health and the environment (4). A significant 
environmental concern that affects plants, animals, and humans is the contamination of water with HMs  (5). 
HMs present risks even at low concentrations due to their non-biodegradable nature (6). 
 

2. Environmental toxins and their health impacts 
 
Certain chemical constituents found in human sustenance are hazardous in number in the hundreds. Both 
heavy metals and organophosphates (OPs) are toxic. Fuel and water are contaminated by compounds that 
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readily accumulate in the ecosystem. After entering the body, OPs and heavy metals are capable of influencing 
the CNS and immune system. By augmenting oxidative stress and diminishing antioxidant defenses, these 
chemicals induce neurotoxicity. Neurodegenerative and developmental disorders may result from exposure to 
heavy metals and OP. Persistent alterations in behavior may result from exposure to these hazards. On account 
of CNS redundancy, which may compensate for initial injuries, early exposures may not become apparent until 
much later in life. Antioxidant-rich diets have demonstrated unexpected therapeutic benefits. According to 
numerous studies, neurodegenerative diseases caused by environmental pollution can be mitigated by 
antioxidant foods. (7). 
 

3. Industrial revolution and chronic diseases resulting from exposure to HMs 
 
Heavy metal exposure has been linked to a constant increase in acute and chronic health problems since the 
industrial and agricultural revolutions. Socioeconomic and environmental factors contribute to the prevalence 
of this issue in developing nations (e.g., China, India, Africa, South America), but it also impacts developed 
nations (e.g., the Flint catastrophe in the United States). Mental disabilities, cognitive and neurological 
abnormalities, and mental disorders that are caused by HMs are frequently chronic, progressive, and 
permanent. The accumulation and impact of heavy metals on organisms, species, and biosystems, which may 
result in irreversible harm to physical and mental health, have been the subject of numerous studies (8-10). 
The impact of heavy metal bioaccumulation on the central nervous system (CNS) and peripheral nervous 
system (PNS) in human beings has been demonstrated to be more pronounced (1). 
 

4. Developmental impacts of exposure to heavy metals 
 
The immature blood-brain barrier and blood-cerebrospinal fluid interfaces permit heavy metal compounds to 
penetrate the central nervous system (CNS) via bypass or sequestration mechanisms during prenatal and 
neonatal development. This results in chemical-induced neurotoxicity. Certain toxic metals are transported by 
ligands across the developing body, while others pass through calcium and zinc membrane channels in the 
form of free ions. There were detected levels of mercury, lead, arsenic, nickel, copper, and iron in the bodily 
fluids (such as urine, saliva, and perspiration) and tissues of infants and developing embryos (11). 
Recent studies have provided confirmation that mental neurotoxicity can occur as a consequence of mercury 
exposure during pregnancy. This neurotoxicity manifests as malformations of the central nervous system (12-
14). These studies indicate that early-life neurotoxicity induced by HMs may have long-lasting consequences. 
Extensive research has determined that lead, a heavy metal, contributes to neurotoxicity during development 
(15). During development, low lead concentrations (5 mg/dL) were associated with changes in brain volume, 
decreased IQ, shorter stature, behavioral issues, and hearing loss; at 75 mg/dL, coma and mortality were 
observed (16). Although there has been a gradual reduction in acceptable lead levels in children, concentrations 
below 5 mg/dL continue to be associated with adverse effects such as impulsive behaviour, speech impairment, 
delayed reaction times, compromised non-verbal reasoning, attention deficit disorder, and low academic 
performance (17 ). This is supported by recent assessments conducted on thousands of children across different 
continents (18-20 ). There may come a time to declare that there is no clinically tolerable level of lead in infants 
and pregnant women. Ingestion of endocrine disruptors such as lead, cadmium, mercury, and arsenic during 
pregnancy may result in adverse long-term consequences for both the mother and the fetus, including 
spontaneous miscarriage and CNS injury, respectively (21). According to research (22), children whose 
drinking water contained manganese levels exceeding 0.24 mg/mL exhibited diminished levels of school 
readiness, anxiety, melancholy, and ADHD.  Prenatal mercury and lead exposure was found to have a 
significant positive correlation with early neurodevelopmental performance in children aged 1 to 2 years 
(mental, psychomotor, social, and behavior assessment scores), according to a comprehensive South Korean 
study (23). 
 

5. Exposure to heavy metals and deviating behaviors 
 
A study was conducted by Alkhatib et al (24) to investigate lead levels in two prisons located in Northern Jordan 
and to ascertain whether there was a correlation between lead levels and crime-related characteristics. The 
study employed a methodology that involved conducting in-person interviews with 46 detainees, visiting two 
institutions in Jordan, and collecting blood samples. A 27-person reference group was also investigated. The 
assessment of blood lead levels was conducted utilizing atomic absorption spectroscopy. Inmates had elevated 
blood lead levels (0.924±1.79 μg/dL) in comparison to the control group (0.570 ±0.560 μg/dL), according to 
the study. There was no statistically significant variation observed among the research groups (P=0.480). 
Convict lead exposure was positively correlated with congested traffic, according to the study (P = 0.038). 
Additionally, monthly income, blood lead levels, and family size were all positively correlated (P=0.000). 
Although no significant correlation was found between the blood lead concentrations of prisoners and reference 
participants, the concentration of lead in the blood of prisoners is approximately double that of reference 
participants; therefore, these results may lend credence to the environmental hypothesis that lead removal 
from gasoline reduces crime rates in the United States. 
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The United States experienced a progressive increase in violent crime rates until the mid-1990s, at which point 
they reportedly began to decline by 3-4% annually. A 13% decline was documented in 2010 (24). 
The sudden decline in violent crime defied the explanations put forth by crime scientists, who relied on 
demographic, cultural, economic, and law enforcement theories (25). The environmental hypothesis was 
formulated in lieu of the unexpected decline in violent crime rates. It is consistent with the neurotoxicity 
hypothesis, which posits that aggressive and violent behavior is caused by lead (Pb) exposure and impacts 
neurotransmitter and hormonal systems (24). A correlation between adolescent antisocial behavior and early 
lead exposure was identified by Dietrich et al. (26). 
 
Alalawneh and Alkhatib (27) recently undertook a study in response to the growing body of evidence linking 
lead (pb) exposure to mental disorders and violence. In Qatari institutions, the researchers sought to determine 
the prevalence of lead (pb) and the impact of that element on academic achievement and attitudes toward 
violence. It was a case-control investigation. On the basis of their academic performance, 170 candidates were 
selected at random. A tailored questionnaire was developed specifically for the purpose of this inquiry. Urine 
lead (pb) was quantified using atomic absorption across a spectrum. Pb content, slumber duration, and 
preservative utilization exhibited an inverse correlation with grades. Additionally, student performance was 
correlated with foul and violent conduct. Strong performers have lower grades (50-60) which are significantly 
correlated with lower concentrations of Pb in their urine. Further, this research demonstrates that academic 
achievement can be predicted by quantitative physiological indicators and observable behaviors. A correlation 
is established between the number of hours students slumber and their consumption of preservatives in an 
effort to educate students, school administrators, and the general public. Academic performance and conduct 
may be adversely affected by toxins such as Pb, necessitating increased validation and public health standards. 
Lead exposure is, in general, a social concern. 
The neurological system is adversely affected by lead (Pb), a substance that is commonly found in the 
environment (27). Elevated concentrations of lead (Pb) in the subclinical range have been found to induce 
encephalopathy, which has profound consequences for social behavior and cognitive, affective, and 
motivational functions (27). After adverse exposure, lead (Pb) is absorbed and retained in the blood and bones. 
Exposure to lead (Pb) has the potential to induce modifications in bodily systems, such as the central nervous 
system, which may result in academic underachievement and heightened attitudes towards school violence. 
Numerous studies conducted in the United States have discovered that children who have dangerously high 
levels of Pb in their bloodstream experience stunted development, learning challenges such as difficulties with 
reading and writing, and hearing impairments. Children 1-2 years of age and black (non-Hispanic) children 1-
5 years of age who have toxic levels of Pb are more likely to experience delays in the development of their 
nervous systems and consume non-nutritional foods, according to CDC data (27). Aggression and criminal 
activity are associated with dangerously high Pb blood levels (28).  Furthermore, it gives rise to cardiovascular 
issues and mental cognition impairments in 16.8 million individuals (29). 
A substantial correlation was discovered between cumulative air Pb levels and cognitive impairment and 
delayed brain development in children, according to one study. The study investigated the correlation between 
urinary Pb concentrations and violent tendencies. The correlation was confirmed and a correlation was 
established by the study. Poisonous urine in infants is caused by an excess of Pb. 250 individuals were examined 
by Wrieht et al (30).  A correlation was discovered between Pb exposure and violent behavior and criminal 
activity. In addition, hostile behavior increases by 50% for every six years that the decimeter rate increases by 
50 micrograms. Pregnant rodents that were provided water containing 10μg/ml of Pb throughout gestation, 
nursing, and weaning exhibited neurobehavioral impairments in their severely obese young (31). 
Between 1921 and 1936, James and Christopher (32) described how Pb pipelines affected homicides. They 
discovered that Pb exposure from these pipelines is the leading cause of homicides. 
 

6. Impacts of Prenatal Exposure to Heavy Metals on Infant Development 
 
Prenatal development is susceptible to neurotoxicity due to environmental flexibility and intensive fetal brain 
development (33).  The DOHaD hypothesis posits that prenatal and perinatal environmental adversity may 
have long-lasting detrimental effects on health and development via a variety of mechanisms (34). First, heavy 
metals can cause damage to both the mother and fetus through epigenetic modifications to the genome (35).  
Secondly, certain heavy metals can cause fetal neurotoxicity by crossing the placental and blood-brain barriers 
(36). Furthermore, the transfer of nutrients may be impeded or perinatal endocrine function compromised by 
heavy metals (37). The emotional development of children could potentially be adversely affected in the long 
run by these practices (7). 
The emotional development of children in relation to perinatal heavy metal exposure has been the subject of a 
single study. Stroustrup et al. (38) investigated the impact of lead and mercury in the prenatal blood and bone 
of the mother on the emotion expression and management of 500 infants. Prenatal lead exposure was 
associated with more intense emotional reactions and difficulty regulating them in children, but not mercury 
exposure. 
Prenatal heavy metal exposure may have detrimental effects on the neurocognitive development and mental 
health of children, according to research. Prenatal lead and cadmium exposure in cord blood was associated 
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with behavioral and emotional problems, such as aggression and depression, in children aged 7 to 8 years, 
according to a study (N = 270) (39). An additional investigation (N = 233) discovered that one-year-olds' 
psychomotor development was impeded by elevated levels of mercury in the umbilical cord and maternal blood 
(40). Prenatal methylmercury exposure in cord blood and mother hair predicted difficulties with attention, 
expressive language, and long-term memory in 7-year-olds (41). ADHD and autism spectrum disorders have 
also been associated with prenatal heavy metal exposure (42). 
Metal accumulation can occur within the body, despite the fact that the majority of research focuses on the 
developmental effects of particular metals (43). Seven heavy metals (cadmium, chromium, cobalt, lead, 
mercury, nickel, and silver) negatively impacted the health and cognitive development of infants whose 
mothers were pregnant, according to an American study (N = 92). The children of the exposed mother exhibited 
elevated rates of infections, ailments, as well as deficits in language, perception, and motor skills. In particular, 
heavy metals emitted by contemporary weaponry may co-occur. Tissues obtained from war wounds are 
composed of carcinogenic, teratogenic, and noxious elements such as uranium, mercury, vanadium, chromium, 
and strontium (44). The researcher  investigated the effect of perinatal heavy metal exposure on the emotional 
development of infants, with a particular emphasis on heavy metals that may be associated with weapons. 
In recent decades, contamination of animal-based commodities with heavy metals and trace elements has 
posed a worldwide threat to food safety (45). Heavy metals pose significant environmental and health hazards 
as a result of their persistent nature, toxicity, and capacity to accumulate in ecosystems; furthermore, they can 
infiltrate human bodies via the food chain (46). Hazardous chemical contaminants include arsenic, cadmium, 
lead, mercury, chromium, and nickel; possibly essential contaminants include vanadium; and essential 
contaminants include copper, zinc, iron, manganese, selenium, and cobalt (47). Depending on their nature, 
quantity, and level of exposure, heavy metals can cause both beneficial and detrimental effects on the body; 
therefore, their presence must be investigated (48). Extended exposure to these metals has the potential to 
induce a range of adverse health effects, such as mutagenic and teratogenic consequences, bone and 
cardiovascular disorders, infertility, neurotoxicity, renal complications, depression, hypertension, 
psychological disorders, gastrointestinal cancer, gastric ulcers, sideroblastic anemia, liver dysfunction, and 
sensory impairments (e.g., loss of taste, smell, and appetite). The contamination of food, particularly feed and 
feed additives in poultry products, with metals has become a matter of concern due to the escalation of 
environmental pollution caused by industrialization, deforestation, and waste disposal (49, 50). 
 

7. Impacts of heavy metal toxicity 
 
The globalization of heavy metal contamination is occurring. Heavy metals are capable of being absorbed by 
fish via the gills, body surface, and digestive tract (51). 
HMs have the potential to deplete energy and cause damage to various organs, including the liver, brain, lungs, 
kidneys, and blood (43). Extended periods of exposure may induce degenerative processes in bodily tissues, 
nerves, and tissues, emulating the symptoms of various diseases such as Alzheimer's, Parkinson's, muscle 
dystrophy, and multiple sclerosis (52). Acute lead (Pb) exposure has the potential to induce a range of adverse 
effects, including but not limited to nausea, vomiting, renal failure, fatigue, insomnia, arthritis, hallucinations, 
and vertigo (53). Acrodynia, also known as pink disease, is brought on by mercury poisoning. Mercury exposure 
has the potential to induce structural changes in the brain, which may manifest as cognitive impairment, 
irritability, timidity, tremors, vision or hearing problems (54). Excessive levels of metallic mercury vapors can 
induce lung damage, vomiting, diarrhea, vertigo, skin rashes, and hypertension in individuals exposed to them 
for a brief period of time. Headache, depression, memory loss, palpitations, fatigue, and hair loss are symptoms 
of organic mercury toxicity. Identification of these symptoms may present a difficulty owing to their 
concomitant presentation with other disorders (55). 
Manganese, an essential element, is involved in numerous bodily physiological processes. Acute exposure has 
the potential to mitigate apoptotic cell death and exert a neuroprotective effect. However, overexposure can 
lead to neurological complications such as Alzheimer's and Parkinson's disease, which are characterized by cell 
death and disruptions in homeostasis (56). To maintain cellular Mn homeostasis, sufficient cellular uptake, 
storage, and excretion via ion channels and receptors are necessary. Homeostatic processes downregulate 
metal uptake receptors and upregulate cell discharge receptors in response to excessive Mn exposure. 
Nonetheless, prolonged manganese accumulation contributes to mitochondrial dysfunction by increasing ROS 
production. Cytochrome c, which is liberated by dysfunctional mitochondria, induces caspase-9 activation and 
caspase-3 cleavage. The fragment of cleaved caspase-3 interacts with pro-apoptotic PKCd. Caspase-3 cleaves 
PKCd, resulting in DNA fragmentation and death (55). 
Central nervous system cognitive impairment is the result of arsenic ingestion. It is correlated with a range of 
neurologic disorders, such as neurodegenerative diseases and neurodevelopmental abnormalities. Synaptic 
transmission and neurotransmitter equilibrium are both altered by arsenic poisoning (58). Neurotoxicity 
caused by arsenic is associated with multiple apoptotic mechanisms. Following mitochondrial apoptosis, 
arsenic and its methylation metabolites induce caspase-mediated death in brain cells via MAPK signaling 
pathways including ERK2, JNK, and p38. Arsenic also induces an increase in intracellular calcium, a factor 
that controls apoptosis. Conversely, inhibition of mTOR and stimulation of AMPK can induce autophagy and 
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result in cellular demise. Autophagy is a homeostatic process in which cellular components are released by 
double-membraned autophagosomes for lysis (58). 
Amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, and multiple sclerosis are 
neurodegenerative disorders induced by cadmium neurotoxicity (59). Cadium significantly impairs the 
functions of the peripheral nervous system (PNS) and central nervous system (CNS), as evidenced by 
preclinical research. Symptoms observed in adults and children include peripheral neuropathy, olfactory 
dysfunctions, neurological disturbances, learning disabilities, mental retardation, motor function impairment, 
and behavioral changes (60). Furthermore, numerous biological processes are affected, such as cell 
proliferation, differentiation, and mortality. Cadmium induces apoptosis-induced death of brain cells, which 
has been found to have neurotoxic effects on endocrine function, gene expression, neurogenesis, and 
epigenetics (61). Pathological investigations have revealed that thallium poisoning causes damage to the brain 
and peripheral nerves in both animals and humans. Certain regions of the brain develop necrosis, vascular 
engorgement, cerebellar edema accompanied by Purkinje cells, and edema (62). 
In addition to cadmium, arsenic, and manganese, numerous heavy metals pose risks. Similar to iron, excessive 
amounts of copper and zinc in the brain can impede neurodegeneration (63). Wilson's disease, an inherited 
malady that induces neurobehavioral difficulties similar to those of schizophrenia, is attributed to an 
overabundance of copper retention. Neurodevelopment is adversely affected by zinc deficiency, whereas the 
consequences of zinc excess remain uncertain (64). Copper exacerbates the neurotoxicity induced by zinc, as 
demonstrated in the research of Tanaka and Kawahara (65). 
 

8. Conclusions 
 
Deviating behaviors may be caused by the accumulating effects of heavy metals such as lead and mercury.   
Increased levels of heavy metals impacts various systems in the body including nervous system.The crime rates 
have been lowered when heavy metals such as lead (pb) had been removed or their existence reduced in 
environment. Classical theories of social impacts in criminology could not explain the lowering rates of crimes 
and accordingly the environmental theory of crime committing found acceptance. The studies in schoolchildren 
and prisons showed that the existence of lead (pb) to be associated with violent actions. According to this 
context, we recommend testing of heavy metals to be considered in analysis and understanding of crimes and 
violent actions. 
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