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ARTICLE INFO ABSTRACT 

 This research paper delves into the intriguing realm of Roman domination and 
its inverse counterpart within various graph structures. Initially defining Roman 
domination as a graph theory concept where vertices are covered by distinct 
dominating sets, and inversely, inverse Roman domination as a novel extension 
where vertices outside the dominating set are considered, the study progresses 
to explore these concepts across a spectrum of graph families. The investigation 
begins with cubic graphs, exploring their Roman and inverse Roman 
domination numbers, followed by an analysis of cubic symmetric graphs, 
Platonic graphs, Holt graphs, Folkman graphs, Frucht graphs, and culminating 
with the Levi graph. For each graph family, meticulous calculations and 
comparisons are conducted to ascertain the Roman Domination number and 
inverse Roman domination numbers, shedding light on their inherent 
characteristics and relationships. 
 
Keywords: Domination number; Roman domination number, Inverse Roman 
domination number. 

 
1. Introduction: 

 
Inverse Roman domination is a theoretical framework inside graph concept, focusing on the identity of a 
minimum subset of vertices which can be unaffected by way of domination from every other vertex within the 
graph, rather than the conventional approach of identifying a minimum dominating set. The usage of this 
concept extends throughout numerous domain names including network safety, social community 
evaluation, and Social networks. 
 
Definition 1: 
In ordinary Roman domination, for instance, each vertex is assigned a weight of zero, 1, or 2. The constraint 
is that any vertex with a weight of zero need to be adjacent to a vertex with a weight of two. The minimum 
general weight required to fulfill this condition is the Roman domination range of the graph. 
Cockayne Cockayne, Dreyer, Hedetniemi, Hedetniemi, and Mcrae (n.d.) defined Roman 
dominating function of a graph G = (V,E) as a function f : V → {0, 1, 2} where each vertex u, with f(u) = zero, is 
connected to at least one vertex v with f(v) = 2. the weight of a 
actual-valued function f : V → R is calculated because the sum of f(v) for all v ∈ V. The Roman domination 
number (RDN), represents the minimum weight manageable among all 
RDFs in G. it is denoted by γR(G), In other words, a Roman dominating feature corresponds to a vertex 
coloring of a graph using the colours {0, 1, 2} in this kind of way that every vertex coloured as "0" shares an 
side with at the least one vertex colored as "2". 
 
Definition 2: 
Inverse Roman dominating feature is the function equal to a Roman dominating feature Coxeter (1973), 
below the situation that the set V − D includes a Roman dominating characteristic f1 : V → {0, 1, 2}, in which 
D represents the vertices v, that satisfy f(v) > zero. in the end, f1 is recognized as an Inverse Roman 
Dominating feature (IRDF) on a 
graph Kumar and Murali (2014) G with respect to f. The inverse Roman domination wide variety (IRDN), 
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symbolized as γ’ IR(G), corresponds to the least weight among all IRDF in G 
 

2. Cubical graph 
 
The Platonic graph that corresponds to the cube’s connectedness is called the cubical graph. It’s far 
isomorphic to the subsequent graphs: crown graph , grid graph G2,2,2, prism graph, hypercube graph Q3, 
bipartite Kneser graph H(1,four), and generalized Petersen graph GP(4,1). Several embeddings (e.g., Knuth 
2008, p. 14) illustrate it above. Twelve specific (directed) Hamiltonian cycles make up its particular order of 
four. There are 12 edges, 3 vertex and 8 nodes connections, three edge connections, three graph diameters, 
three graph radiuses, and 4 girths within the cubical graph Grunbaum (1967). 
 
Lemma 2.1: 
Let G be the cube then γR(G) = γ’IR(G) = 4. 
Proof: 
Let G represent the stable platonic cube [13], with 8 vertices and 12 edges, G is a three normal graph. allow 

D1 = (V-D) be the Inverse Roman dominating set of G. Let D be the Roman dominating set. in keeping with 
Fig. 1, in order to dominate G, each the Roman dominating set and the inverse Roman dominating set 
require vertices. 
 

 
Figure 1 : Cube 

 
Dominating set D ={v1,v7} has 2 vertices that have degree three. So label the vertices of D with f(v1)=2 and 
f(v7)=2. With the aid of definition of RDF its adjoining vertices will have label zero. As a result γR(G) = 

2(2)+0=4. Let D1 ={v2,v6} has 2 vertices that have degree three. So label the vertices of D with f(v2)=2 and 
(v6)=2. By definition of IRDF, its neighbouring vertices might have label zero. So f(v’)=2. Subsequently 
γ’IR(G)=2(2)+0=4. 
Hence, γR (G)= γ’ IR(G) = 2. 
 
Lemma 2.2: 
If G is a cubic symmetric graph. Then γR(G) = γ’IR(G) = 4. 
Proof : 
The cubic symmetric graph Harary (1975) G, with 8 vertices of degree three each, is tested. To dominate all of 
the other vertices in G, only vertices are required. Whilst D is the Roman dominant set and V is the set of all 
of its vertices, then those 2 vertices may have label 

2. By means of definition of Roman dominating function its adjoining vertices may have label 
 

 
FIGURE 2:  Cubic symmetric graph 
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zero. For this reason f(v)= 2 and its adjoining vertices could have label zero. consequently f(u)=0. So γR(G) = 

2 (2)+0 =4.  Any other set, D1, nevertheless has dominance over G’s vertices. With cardinality 2, D1 is the 
Inverse Roman dominating set. D’s vertices will bear label 2. So f(v)=2 and its adjoining vertices can have 
label 0. As a result γ’IR(G) = 2(2)+0=4. 
  Consequently γ R(G) = γ’IR(G) = 4. 
 
3. Platonic graph: 
A graph with the skeleton of one of the Platonic solids is called a Platonic graph in the subject of graph idea. 
There exist five Platonic graphs, all of which are polyhedral, ordinary, and Hamiltonian graphs Harary (1975) 
(by necessity, vertex-transitive, area-transitive, additionally three-vertex-connected and planar graphs). 

• Tetrahedral graph: 4 edges and 6 vertices 

• Octahedral graph: 12 edges and six vertices 

• Cubical graph: 12 edges and 8 vertices 

• Icosahedral graph with 30 edges and 12 vertices 

• A dodecahedral graph with 30 edges and 20 vertice 
 
Lemma 3.1: 
Let graph G be the octahedron, then γR(G) = γ’IR(G) = 3. 
 
Proof: 
Consider the graph G, the octahedron of platonic solid graph. G is then a four-regular graph with twelve 
edges and six vertices Harary (1975), 
Consider the dominating set D. It has 2 vertices, which has max degree 4. Label these vertices with f(v)=2 , by 
definition of RDF its adjacent vertices will be f(u)=0 and one more vertex will be f(v)=1 , so γIR function has 
|V2| =2 and |V1| =1. Hence γR (G) = 2(1)+1=3. 
Consider  the inverse dominating set of G,  D1 = (V - D).  It has 2 vertices which has max degree 4.  Label 
these vertices with f(v’)=2, by definition  of IRDF its adjacent vertices will be f’(u)=0 and one more vertex will 
be f’(v)=. so  γIR function has |V2| =2 and |V1| =1. 
So γ' IR(G) = 2(1)+1=3. Hence γR(G) = γ'IR(G) = 3. 
 
Lemma 3.2: 
 If G is  the dodecahedron. Then γR(G) = γ'IR(G) = 12. 
Proof: 
Consider the graph G, the dodecahedron platonic solid. G is a three-dimensional regular graph with 20 
vertices and 30 edges [2]. permit D constitute the dominant set. Six vertices[5] make up the dominating set D  
in Figure 4.  

 
FIGURE 4: Dodecahedron 

 
D has 6 vertices which has degree three. Label those vertices with f(v)=2  subsequently by  definition of RDF 
its adjacent vertices might be f(u)=0 so  γIR function has |V2| =6 and    |V1| =0. So γR (G) =  2(6)+0=12. 
Assume that G's inverse dominant set is D1 = (V - D). Six vertices also are required for D1, the inverse 
dominating set, to dominate G.  Label these vertices with f’(v)=2. For this reason by definition of IRDF  its 
adjoining vertices can be f’(u)=0 so  γIR function has |V2| =6 and |V1| =0. So γ'IR(G) = 2(6)+0=4, for this 
reason γR(G) = γ'IR(G) = 12. 
  
Lemma  3.3: 
Let  G be a Icosahedral graph, then γR(G) = γ'IR(G) = 4 
 
 
Proof: 
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Consider an icosahedral graph G, which has 12 vertices of degree 5, each. Given two sets of vertices, V = {v1, 
v2,..., v6} and U = { u1, u2,..., u6}, represent G. We require just two vertices to dominate G. As seen in Figure 
5, all it takes to dominate the entire set of vertices is two.   
 

 
FIGURE 5: Icosahedral graph 

 
Let D be the dominating set. It has 2 vertices with label 2 with f(v)=2 by definition of RDF and its adjacent 
vertices will be f(u)=0 so a γIR function has |V2| =2 and |V1| =0.So γR (G) =  2(2)+0=4. D1 be the inverse 
dominating set .D'  has 2 vertices with label 2 with f(v)=2.  Hence by definition of IRDF f’(v)=2 and its 
adjacent vertices will be f’(u)=0.  so a γIR function has   |V2| =2 and |V1| =0. Therefore γ' IR(G) = 2(2)+0=4. 
Hence 
γR(G) = γ' IR(G) = 4. 
 
Lemma 3.4: 
If G is the Cayley graph, then γR(G) = γ'IR(G) = 6.  
Proof: 
The truncated tetrahedron, sometimes known as the Cayley graph [4], is a graph with 12 degree three vertices 
and 18 edges total. Suppose V is the set of all vertices, the three vertices  lying between the inner cycle and 
outer cycle dominates the entire graph.   

 
FIGURE 6:  Cayley graph 

 
Let D be  the Roman dominating set, Label the vertices of the set with 2.  Then  f(v)=2 and its adjacent 
vertices will have f(u)=0. So  γR(G) = 2(3)+0=6. There exists another set D' which have one vertex in the 
inner cycle and two vertices at the outer cycle continues to control V-D's vertices. Thus D1 is the Inverse 
Roman  Dominating set of cardinality again 3.  These vertices of D1 will have label 2.  So f(v)=2 and its 
adjacent vertices will have label 0.  So f(u)=0. So  γIR (G) = 2(3)+0=6.   Thus γR(G) = γ'IR(G) = 6. 
 
Proposition3.1: 
A graph with 27 vertices is called the Holt graph [6]. Another name for the Holt graph is the Doyle graph. 
Assume that Cn is a Doyle graph. After that, γ(Cn) = 9. 
 
Lemma 3.5: 
Let G be a Doyle graph, then γR(G) = γIR(G) =18 
Proof: 
 Consider a  Doyle graph G with 27 vertices. Let V = {v1, v2... vn}, be the set of vertices of the graph. 
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FIGURE 7:  Doyle graph 

 
Three vertex sets (V1,V2,V3), each with nine vertices and four degrees per vertex, can be formed from the 
vertex set V. Figure 7, displays the graph. γ(G) = 9 is obtained if V1 is considered as the dominating set, with 
its vertices dominating the other two sets. Vertices of V1 take the label 2. So f(V1)=2, and its adjacent vertices 
will have label 0. Hence γR(G) = 9(2)=18. Then (V - D) contains another two vertex sets V2 and V3 which 
dominates the remaining vertices of (V - D). Consider V2 as the inverse roman dominating set. Hence γ'(G) = 
9.  Vertices of V2 take the label 2. So f(V2)=2, and its adjacent vertices will have label 0. Hence  γIR(G) = 
9(2)=18. 
 
 
 
 
Lemma 3.6: 
Let  G be a Folkman graph, then γIR(G) =12 and  γR (G) =12. 
 
Proof : 
Examine the Folkman graph [4] G, which has 20 vertices having degree 4. Let V = {a0, a1, a2, a3, a4, b0, b1, b2, 
b3, b4, c0, c1, c2, c3, c4, d0, d1, d2, d3, d4} be the graph's vertices. To control the complete graph, we require six 
vertices. A Roman dominant set of G is formed by the vertices {a1, a2, b0, b3, c3, d2}, as seen in Fig 7.  These 
vertices will have label 2. 
 

 
FIGURE 8:  Folkman graph 

 
 So there exists a γR function such that f (a1)= f(a2)=f(b0)=f(b3) =f(c3)=f(d2)= 2. Hence γR(G) = 6(2)=12. An 
inverse roman dominating set of G is formed by another dominating set, D1, which has the same number of 
vertices as V-D and These vertices will have label 2.  so there exists a γR function such that f(v)=2 at these 
vertices and f(u)=0 at the adjacent vertices. Hence γ'IR(G) = 6(2)=12 
 
Proposition3.2: 
The Frucht Graph has 12 vertices and 18 edges, making it a 3-regular graph. The graph is Hamiltonian and 
planar cubic. Consider the Frucht graph as G. Consequently, γ(G) = 3. 
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Lemma 3.7:  
Let G be the Frucht graph. Then γR (G) =6 and γ'IR(G) =8. 
Proof : 
Let G represent the Frucht  graph [4], a cubic graph with 18 edges and 12 vertices. Let V = {v1, v2, ... , v7} and 
U = {u1, u2, ... ,u5} be the two sets of vertices of G. 
 

 
FIGURE 9:  Frucht Graph 

 
Assume that the dominating set is D, and its inverse is D1. After that, there exists one D1, resulting in one 
inverse roman dominating set in (V - D). To dominate G, we need three vertices which can take label 2. So γR 
(G) = 3(2)=6. Figure 8 shows that for D1 to dominate the complete collection of vertices, four vertices are 
required.  So these vertices take label 2.  Hence γ'IR(G) = 4(2)=8. 
 
Proposition3.3: 
In the Levi graph , there are 30 nodes and 45 edges. 
Lemma 3.8:  
Let  G be a Levi Graph, then  γR(G) = γ'IR(G) = 20. 
Proof: 
Let  G be a  Levi graph, with 30 vertices and forty five edges. Let  V = {v1, v2, ... , v10},  U = { u1, u2, ..., u10} and 
W = {w1, w2, ..., w10}  are the vertices of V,U and  W with degree 3. To dominate the graphG,  10 vertices are 
needed. Figure 10, shows U = {u1, u2, ..., u10}  are the vertices adjacent to V and W.    
 

 
                                                                                  FIGURE 10:  Levi graph 
 
Label these vertices as 2. Hence f(u)=2. By definition of Roman dominating function its adjacent vertices 
could have label 0. Subsequently γR(G)  = 10. Allow D1 has 5 vertices + five vertices in V-D. Those vertices 
could have label 2. Its adjoining vertices can have label 0. So γ'IR(G) = 20.  For this reason γR(G) = γ'IR(G) = 
20.  
 

Conclusion: 
 
When  the number of elements in the dominating set and its inverse dominating set are equal, so too are their 
Roman domination numbers and Inverse Roman domination numbers. The outcomes of this investigation 
unveil captivating observations regarding the interaction between Roman and inverse Roman domination 
numbers within diverse graph families, offering a comprehensive comprehension of their structural 
attributes and intrinsic intricacies. These insights not only enrich the theoretical foundations of graph theory 
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but also have practical implications in various domains, such as network design, optimization and algorithm 
development. 
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Figure 1. 

 

 
Figure 2: cubic symmetric graph 

 

 
Figure 3 : Octahedron 


