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1.INTRODUCTION 

 
A potent multidimensional information acquisition technique for detecting both spectral and spatial 
information of the Earth's surface is hyperspectral remote sensing. The technology is widely employed in 
many different industries, including as resource extraction, urban building, and agricultural monitoring. 
 A crucial area of study in hyperspectral remote sensing is HSI categorization. Over the last five years, the 
majority of hyperspectral remote sensing research papers have dealt with classification. The practice of 
utilizing both spatial and spectral data to assign semantic classes to individual pixels is known as HSI 
classification. Accurately classifying HSI remains a challenging undertaking for several reasons, despite the 
rapid development of related research. First, there are non-negligible drawbacks to correct classification 
resulting from the HSI acquisition method. Aircraft aberrations and alignment variations can also negatively 
impact imaging; on the one hand, scattering can result in spectrum mixing between various classes of nearby 
image elements. Because of these factors, samples belonging to the same class can occasionally display 
distinct spectral characteristics, which definitely makes categorization more challenging.  
A significant problem limiting classification accuracy is the small quantity of labeled samples, in addition to 
the difficulty of classification brought about by the features of HSI itself. The remote sensing community has 
made extensive use of hyperspectral imagery (HSI) to exploit the hundreds of spectral channels that make up 
a single scene. However, in order to extract the information from the image, HSI requires reliable and precise 
classification systems. Due to the complex nature of the image scene—that is, a lot of data, mixed pixels, 
and few training samples—the classification of HSI has been regarded as a particularly challenging problem. 
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As a result, numerous attempts have been made to solve this problem over the past few decades. Spectral 
domain classifiers, including random forest (RF), multinomial logistic regression (MLR), and support vector 
machines (SVMs), have made significant progress in the early stages of HSI classification. 
The latest advancements in technology offer more promising methods for handling HSI classification. For 
instance, sparsity signal-based techniques (e.g., joint sparse models) and morphological profiles (MPs) were 
introduced to enhance the comprehension of visual scenes by the use of spatial and contextual features.  
These techniques use both spectral and spatial information to try to categorize HSI. A joint sparse model, for 
example, integrates data from a few test pixel's nearby pixels, which has been shown to be a useful method 
for enhancing classification performance. With the rapid advancement of Earth observation and imaging 
technology, there has been a noticeable growth in the use of hyperspectral remote. Through the use of 
narrow spectral bands, hyperspectral photographs offer abundant information on the land objects. Although 
the additional dimensionality of the data offers rich information, it presents challenges (the curse of 
dimensionality) to traditional methods for accurate analysis of hyperspectral pictures, such as classification. 
Numerous applications, including target detection, crop categorization, and environmental monitoring, use 
hyperspectral pictures. Despite the fact that hyperspectral photographs offer extensive and vital information 
about terrestrial objects, among the hundreds of bands are certain noisy and redundant spectral bands that 
could cause problems with categorization. It is imperative to employ dimension reduction techniques in 
order to eliminate these redundancies from the hyperspectral data.  
(HSIs) record ground object radiation data across hundreds or even thousands of continuous spectral 
channels. It is able to acquire spectral properties that capture the distinct qualities of the targets.  
HSIs combine the spectral and spatial characteristics of the ground objects, which allows them to capture 
more subtle variations between them than real photos that simply contain RGB three channels. Because of 
this benefit, HSIs are very valuable in applications like resource management and usage and environmental 
monitoring. 
It is generally acknowledged in the field of machine learning that the quantity of labeled samples a model has 
positively correlates with its effectiveness. This is because the model's inadequate capacity to infer regularity 
from the small sample size leads to a poor generalization ability. It seems sense that having more examples 
available will probably result in more knowledge that can be learned during classifier training, making it 
simpler to create a high-performing classifier. Particularly with deep learning's quick advancement, more 
academics are becoming aware of how crucial a large quantity of labeled data is for model training. It is well 
known that deep learning models are data-hungry, needing a vast quantity of labeled data in order to fit their 
massive parameter space.  
The abundance of labeled data available is a major factor in the success of deep learning. Even the greatest 
model could struggle to demonstrate full performance in the absence of enough labeled data. However, in 
many domains, including hyperspectral remote sensing, getting tagged data is a challenging undertaking. The 
irreconcilable tension between spectral resolution and spatial resolution typically limits the spatial resolution 
of high-spatial intensity imaging. Unlike most data labeling in computer vision, the labeling of HSI in this 
instance cannot be finished only by looking at the photos. Generally speaking, this task needs training 
samples—the classification of HSI has been regarded as a particularly challenging problem. As a result, 
numerous attempts have been made to solve this problem over the past few decades. Spectral domain 
classifiers, including random forest (RF), multinomial logistic regression (MLR), and support vector 
machines (SVMs), have made significant progress in the early stages of HSI classification. 
The latest advancements in technology offer more promising methods for handling HSI classification. For 
instance, sparsity signal-based techniques (e.g., joint sparse models) and morphological profiles (MPs) were 
introduced to enhance the comprehension of visual scenes by the use of spatial and contextual features. These 
techniques use both spectral and spatial information to try to categorize HSI. A joint sparse model, for 
example, integrates data from a few tests pixel's nearby pixels, which has been shown to be a useful method. 
 

2. LITERATURE SURVEY 
 
In Yigang Tang, Xiaolan Xie, and Youhua Yu's 2022 publication, "Hyperspectral Classification of Two-
Branch Joint Networks[1] Based on Gaussian Pyramid Multiscale and Wavelet Transform," they present an 
effective method for classifying hyperspectral images. This method makes use of Gaussian pyramid multi-
scale transformation to collect multi- scale spatial information and wavelet transform to reduce data 
redundancy in hyperspectral remote sensing. The approach collects spectral characteristics from one branch 
and multi-scale spatial data from another using a dual-branch feature extraction network. Accurate 
categorization is made possible by the merging of these information in a complete connection layer, which 
captures minute nuances and interactions between spectral and spatial variables. Large-scale situations 
provide issues due to the system's restricted scalability, error-prone nature, and time-consuming nature, 
notwithstanding its efficacy. 
The ear identification technique presented by Matthew Martin Zarachoff, Akbar Sheikh-Akbari[2], and 
Dorothy Monekosso in their 2022 work, "Non-Decimated Wavelet Based Multi-Band Ear Recognition Using 
Principal Component Analysis," is quick and effective. The 2D Wavelet based Multi-Band PCA (2D-
WMBPCA) technique divides the input picture into sub bands by using a non-decimated wavelet transform. 
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The technique finds the intersection of the total eigenvector energies and the number of features in each 
generated frame to get the best matching performance. Each sub band is subjected to normal PCA in order to 
extract eigenvectors. Experiments conducted on benchmark ear image datasets show that the suggested 2D-
WMBPCA strategy outperforms alternative approaches such as eigenfaces and Single Image PCA. 
The 2021 paper by Bishwas Praveen and Vineetha Menon presents a deep learning framework for 
categorization of robust hyperspectral data. The framework achieves better classification performance by 
effectively combining spectral and spatial information[3]. The system applies supervised classification with a 
3-D convolutional neural network, using sparse random projections for spectral feature extraction and Gabor 
filtering for spatial feature extraction. The framework performs better in experiments than traditional 2-D 
CNN-based methods. All things considered, the suggested framework simplifies the process of analyzing 
hyperspectral data and promises higher classification accuracy for uses in remote sensing. An HSI 
classification technique based on the weight wavelet kernel JSR ensemble and the -Whale Optimization 
Algorithm is presented in a work by Mingwei Wang et al[4]. from 2021.  
The method makes use of ensemble learning and the wavelet function as the JSR kernel to enable thorough 
decision-making. The experimental findings provide a 95% overall classification accuracy for hyperspectral 
pictures, which is outstanding performance compared to previous approaches. The suggested method 
successfully separates comparable items and gets rid of noise and incorrect categorization. It also adjusts the 
weights of the sub classifiers to improve classification accuracy. 
A SAR image change detection technique based on data optimization and self-supervised learning is 
presented in a 2020 paper by Wenhui Meng et al. They improve the quality of the first difference image (DI) 
by using an adaptive gamma correction technique. In order to reduce noise and provide a saliency map for 
the DI, a novel method based on popular ranking is implemented.  
Pre classification accuracy is increased by using the fuzzy[5] local information c-means clustering technique 
(FLICM) with structural tensor integration. For increased detection accuracy, they train structure maps of 
the original pictures using convolution wavelet neural networks (CWNN). The experimental findings show 
better performance than previous approaches, particularly for very noisy SAR photos. 
A streamlined 2D-3D CNN architecture for hyperspectral image categorization is presented in Chunyan Yu et 
al.'s 2020 paper. The technique integrates a 2-D CNN with a streamlined 3-D convolution layer to 
concurrently extract both spatial and spectral data. While the 3-D block[6] reconstructs finer spectral 
characteristics using information from nearby bands, the 2-D CNN concentrates on extracting rich spectral-
spatial properties. The suggested model performs better on widely used testing datasets and successfully 
increases classification accuracy. Better classification outcomes derive from this strategy's reduction of 
overfitting and improvement of feature extraction efficiency. 
An HSI classification technique based on 2D3D CNN and multibranch feature fusion is presented in a 2020 
paper by Zixian Ge et al[7]. By combining 2-D and 3-D CNN, the technique addresses the underuse of 
interband correlations in HSIs for the extraction of visual   information. In the spectral dimension, a 
multibranch neural network is utilized to extract and combine three different types of information, ranging 
from shallow to deep. Using popular HSI datasets, the suggested approach outperforms other alternatives in 
classification performance by utilizing the Mish activation function. Its classification accuracy is marginally 
less accurate in some datasets than others, though. 
A hierarchical clustering-based band selection technique for hyperspectral face identification is presented in 
a 2019 paper by Qidong Chen et al[8]. The technique reduces duplicate information and mitigates the 
impact of noise by extracting features using Gabor filters and histograms of oriented gradients (HOG). 
When compared to alternative techniques, their suggested algorithm, KL-HC-HOG, exhibits reliable 
performance and temporal economy. In order to improve recognition accuracy, the study highlights the need 
of effective band selection and recommends more research into sophisticated machine learning algorithms 
for hyperspectral face recognition. A multi-resolution CNNs framework (MRCNNs) that combines CNNs 
with ridgelets for extremely high- resolution remote sensing picture categorization is introduced in a 2019 
study by Zhifeng Zheng and Jiannong Cao[9].  
Trainable convolutional filters extract high-level features, whereas ridgelet filters collect low- level data. 
These features are then combined to improve CNNs' classification performance. Three VHR remote sensing 
photos are used to assess the suggested method and show how successful it is in comparison to other 
methods already in use. The outcomes demonstrate enhanced regional coherence and superior 
documentation retention, which are especially advantageous for classifying building clusters. 
A framework of mixed sparse representations (MSRs) for remote sensing pictures is introduced in a 2017 
study by Feng Li et al. to address ill-conditioned situations. The framework represents sub images[10] of 
smooth, edge-like, and point-like components sparingly via domain transformations. Comparing 
experimental findings to standard techniques, higher classification accuracy and superior high-resolution 
picture creation are shown. MSR shows promise as a competitive option for handling a range of ill-
conditioned remote sensing issues. 
 

3. PROPOSED MODEL 
 
When the source data is accessible, transfer learning is a potent approach that may help overcome the 
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problem of small sample sizes and increase training efficiency. On the other hand, virtual samples created 
from genuine image samples can be used to address the problem of inadequate hyperspectral image (HSI) 
samples when source data is not available. The total number of training samples is greatly increased by 
combining these virtual samples with the original ones. When working with support and query sets, mapping 
modules are used to change the channel dimensionality of either the support or query samples. To confirm 
the correctness of class prototypes generated from the query samples, each sample is then mixed with 
another randomly picked sample to create synthetic query samples. This method is done without the use of 
support samples. The attention mechanism plays a major role in improving feature discrimination and is 
widely used in HSI classification, especially in convolutional neural networks (CNNs). Rich spectral and 
spatial information may be extracted from hyperspectral pictures, and doing so well is essential for precise 
categorization. In order to investigate the long-distance interactions between spatial dimensions and the 
variations in spectral band relevance, a coordinated attention mechanism is developed. Based on these 
correlations, this process produces spectral and spatial attention masks. 
CNNs are very good at extracting features, especially by using techniques like pooling and convolution that 
provide more insight into the input data. CNNs are able to prevent data loss by maintaining the correlation 
between data pixels because of the characteristics of HSIs. In HSI classification, efficient spatial and spectral 
information extraction is still crucial. Pretraining involves training the proposed network using two source 
HSI datasets, the Salinas and Pavia Center datasets, which include the greatest number of labeled samples 
among publicly available HSI datasets. 
The model is pretrained for N epochs after being initialized with a Gaussian distribution on a single-source 
HSI dataset. The feature extraction portion is then fixed, and a Gaussian distribution is used to reinitialize 
the classifier. Next, the classifier on the other source HSI dataset and the feature extraction portion are 
pretrained for N/2 epochs at a different learning rate. The whole model—aside from the classifier—is 
transferred to initialize the target HSI dataset after pretraining on the two source datasets. For training the 
second source HSI dataset, the transfer component and the new classifier are optimized at the same learning 
rate. 
Comparing the suggested method to the most recent approaches, extensive trials show that it delivers state-
of-the-art performance. Moreover, the method maintains a comparable performance in the target tasks with 
only a small number of labeled samples while pretraining on existing datasets, which broadens its 
applicability to a variety of domains. A straightforward dimensionality reduction technique is suggested to 
preserve uniform input data dimensions without the need for labeled samples from the HSIs in order to 
promote transfer learning. In order to guarantee that the number of bands in the source and target data is 
the identical, this technique involves choosing bands from the original HSI datasets. 
In conclusion, the suggested approach seeks to improve the prototype network's robustness in HSI boundary 
pixel classification. This work's primary contributions include the creation of a technique for arbitrarily 
combining two HSI patches, the emulation of boundary patches, and the use of synthetic patches to improve 
training data for few-shot HSI classification. Using a transformer as a feature extractor to pay varied 
attention to different pixels and enhance label generation for synthetic patches, a lightweight prototype 
network is created for online patch mixing. 
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Fig 1. Architecture Diagram of Proposed Model 

 
4.METHODOLOGY 

 
4.1: Multiscale Blocks 
The Multiscale Blocks structure with a channel attention module is meant to extract and choose spectral 
information. in order to fully extract noteworthy spectrum properties. The second phase uses the dense 
connection structure to appropriately extract the information and extract additional spectral attributes. The 
structure of the first convolution layer, which has a 3D-The soft pool module is used to extract additional 
spatial data, widen the receiving field of a subsequent convolution, and improve classification performance. 
In addition, several optimization strategies are used to prevent overfitting. A spectral attention mechanism is 
incorporated into each branch to generate spectral features that are more conducive to grouping. The 
spectral properties of four branches are then aggregated. 
In the second step, which is based on the Dense Net structure and the idea of recycling spectral 
characteristics, the fused features are inserted into the Dense Net. Dense blocks with three convolution 
layers are used to extract spectral and network properties. The third segment and the extraction of spectral 
features are similar. The original hyperspectral data is received by a dense block that contains a three-
dimensional soft pool. The 3D-Softpool module is used to improve the first convolution layer of dense blocks.  
In order to extract spatial attention mechanism and spatial neighborhood features. Following element-by-
element addition of the feature maps derived from the spectral and spatial branches. 
 
4.2 Spectral Self-Attention 
The first part consists of the proposed Multiscale Blocks structure with spectral self-attention mechanism. 
First, principal component analysis (PCA) is applied to the original hyperspectral picture data. P ∈ R 
pow(9×9×band), where 99 is the length and breadth of the data and band is the number of channels, is the 
remaining data after PCA. Next, a three-dimensional convolution operation is carried out on the data P ∈ R 
pow(9×9×band). The convolution kernel size of the three-dimensional convolution layer is set to (1 1 7), the 
padding to (0 0 0), and the stride to (1 1 2). With this method, the length and breadth of the data, as well as 
the number of channels, become an, meaning that an is the number of channels of the data following the 
convolution layer operation. 
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Fig 2: Sample band of Salinas dataset 

 
The four branches of the Multiscale Block module receive the output data concurrently, and each branch 
works to maintain as much of the important spectrum information as possible thanks to the spectral self- 
attention mechanism. 
The first branch of the Multiscale Blocks module uses convolution using the convolution layers with six 
convolution kernels. To ensure consistency in the amount of the input and output data, the population 
approach is applied to all branches. The batch normalization (BN) layer is employed after the convolution 
layer. To hasten the model's convergence, the BN layer has the ability to normalize and scale the channel 
linearly. 
 
4.3 Multiscale Relation Learning Network 
Six convolution kernels, each having a size of (111), are used in the first convolution layer, together with BN + 
Mish. Six convolution kernels with a size of (337) are used in the second convolution layer, together with 
BN+ Mish. At the end of the second branch, spectral self- attention is used with an input size of (9*9*a). 
Despite having the identical structure, the third and fourth branches have distinct convolution kernel sizes. 
Three (3*3*7) sized convolution kernels make up the third branch's total of six convolution kernels. There 
are six convolution kernels in total, with the fourth branch's convolution kernel size being (5*5*7). 
After the convolution layer, BN + Mish and the spectral self-attention approach are applied to avoid data 
explosion and gradient disappearance. Since data padding is used in all four branches, the output  
size is (9*9*a,6). The cube size that results from adding up the data outputs from the four branches is 
(9*9*,24).  
The Multiscale Blocks module's cube output has a wealth of relevant spectral feature information that 
provides rich spectral feature information for subsequent operations. The dense connection network is a 
crucial network for the second and third parts of the proposed approach. In order to avoid the gradient 
disappearance issue brought about by the depth of the Multiscale Blocks module, the dense connection 
module is utilized behind it to further extract the useful spectral features. The network's tiers are all directly 
linked in order to ensure full information flow between the intermediate layers.  
 
Dataset description 
The ROSIS sensor collected the hyperspectral Pavia Center dataset while conducting a flying campaign over 
Pavia, northern Italy. For Pavia Centre, there are 102 spectral bands. The picture Pavia Centre is 1096 by 
1096 pixels. There is a 1.3-meter geometric resolution. Nine classes are distinguished by image ground truths 
each. Prof.Paolo Gamba of the Telecommunications and Remote Sensing Laboratory at Pavia University 
(Italy) contributed the sceneries from Pavia. 
 

Table 1: Comparative performance of the model with  optimization and with Multiscale relation approach 
                    
 
 

 

 

 

 
Table 1. Shows a quantitative perspective, using optimization learning has shown significant   improvements 
in a range of performance indicators. Notably, the system's accuracy in the crucial area of intrusion detection 

Metric  With  
optimization 

 Without  
optimization 

 P-Value 

Accuracy  96.13%  94.12%    0.0048 
 Precision  82.68%  91.43%  0.0024 
  Recall  82.50%  69.92%  0.0000 
  F1-score  83.92%  77.63%   0.0003 
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has increased from 94.12% to 96.13%, demonstrating a noteworthy, although relatively little, gain. In 
addition, the recall rate has increased significantly from 69.92% to 82.50%, indicating a higher capacity to 
identify real threats, which is critical for protecting critical infrastructure. The precision decreased slightly, 
from 92.43% to 87.68%, but overall, the balance between accuracy and review has improved, as indicated by 
the F1 score. 0.0024, 0.0000, and 0.0003, in that order, supporting the notion that enhancement learning 
has a noteworthy impact on the framework's display metrics. Get a dataset ready so the LSTM network may 
be trained. Create sequences that symbolize possible solutions, then calculate the values of the relevant goal 
functions for each sequence. Divide the dataset into sets for validation and training. Utilizing the prepared 
dataset, train the LSTM model by fine-tuning the network weights to precisely forecast the values of the goal 
function. Keep an eye on the training process to avoid overfitting and guarantee convergence. Use the trained 
LSTM model to produce sequences that could be possible answers to the optimization issue. Sequences that 
are generated should show patterns that were picked up during training. Make sure the resulting sequences 
follow any optimization problem requirements by post-processing them. Put limitations management 
strategies into practice and adjust the solutions as necessary. 
Utilizing the objective function, assess the created solutions. To enhance the quality of the answer, iterate by 
modifying the parameters or the LSTM model as needed. Optimize hyperparameters and fine-tune the LSTM 
model to improve the multiscale relation learning algorithm's performance.  
 

 
Fig 3: comparison of metrices with and without optimization 

 
From a quantitative perspective, as shown in Figure 3, integrating optimization learning has led to significant 
improvements in a number of performance indicators. 
 

5. RESULTS AND DISCUSSION 
 
In order to assess the effectiveness and efficiency of our suggested approach, we conducted a comparable 
analysis using standard metrics in this domain: Real Benefits (TP): Handles attack events that are correctly 
identified by the Interruption Discovery Framework (IDS). Real Negatives (TN): Shows typical occurrences 
that the IDS has appropriately categorized. Bogus Up-sides (FP): Refers to common occurrences that the IDS 
mistakenly identified as attacks. False Negatives (FN): Indicates attack events that the IDS is unable to 
distinguish. Additionally, the following measurements were used for evaluation: Identification rate (DR): The 
Discovery Rate (DR) computes the ratio of the total number of occurrences to the number of occurrences that 
are appropriately classified. It considers both positive and negative instructions when examining the hit rate 
of the suggested security solutions. The DR is shown in Condition 2, where the quantity of positive and 
negative findings across all arrangements—including fraudulent pros and cons are taken into consideration. 
The ratio of all instances assigned as positive to misleading positive sides is known as the Bogus Positive Rate 
(FPR). The ratio of all examples delegated negative to misleading negatives is known as the Bogus Negative 
Rate (FNR). It assesses instances in which a request is identified as an attack even when the stream was a 
typical request or access.  
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Fig 4: Plotting of loss vs epoch for train and test 

 
In Fig :4, A deep learning model is essentially being observed as it learns throughout a sequence of epochs, or 
iterations, when the training and validation process is represented graphically on a graph. The number of 
times the model has iterated across the whole training dataset is displayed on the x-axis, which represents 
the epochs. The model adjusts its parameters at each epoch in an attempt to improve the model's fit to the 
training set, which should have the capacity to reduce the loss of it. The loss, or how well the model's 
predictions match the actual labels, is plotted on the y-axis. As the model gains knowledge from the training 
data, the loss should ideally decrease during training. This decline suggests that the model's forecast accuracy 
is increasing. But it's important to keep an eye on both the training and validation losses. The model's 
performance on a different validation dataset—one that it was not exposed to during training—is gauged by 
the validation loss.  
This is a stand-in for the model's capacity to generalize to previously undiscovered data. Overfitting of the 
model is indicated if the training loss keeps decreasing but the validation loss starts to grow. When a model 
grows too complicated and begins to learn specific patterns from the training set rather than general ones, 
this is known as overfitting. It consequently does well on training data but badly on fresh, untested data.  
In Fig: 5, The x-axis displays the epochs, while the y-axis displays the accuracy. Iterations across the 
complete training data set are called epochs. The training accuracy is shown by the red line, while the 
validation accuracy is shown by the blue line. 
As the number of epochs increases in the graph, so does the training accuracy. This indicates that the model 
is effectively assimilating the training set.  
 

Table 2: Comparative analysis of our work with other methods 

S.No. ML 
Algorithm 

Precision-
Recall Score 

ROC - AUC 
Score 

F-1 Score 

1. Isolation 
forest 

91% 94% 81% 

2. Support 
Vector 
Classifier 

76% 94.5% 80% 

3. XGBoost 
Classifier 

92.2% 96.3% 93% 

4. Multiscale 
relation model 

96% 95.2% 95.2% 

 
Isolation Forest: With a Precision-Recall Score of 91%, this algorithm is 91% accurate in its predictions of 
positive outcomes. The algorithm appears to perform effectively in differentiating between positive and 
negative cases, as indicated by the ROC - AUC Score of 94%. The balance between recall and precision is 
shown by the F1 Score of 81%; a higher number denotes greater performance.  
 
Support Vector Classifier: This method performed less precisely than Isolation Forest, with a Precision-
Recall Score of 76%. It did, however, obtain a higher ROC - AUC Score of 94.5%, suggesting improved class 
discrimination. The F1 Score of 80% indicates that memory and precision are fairly balanced.  
XGBoost Classifier: This method showed a high degree of precision in predicting positive instances, as seen 
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by its Precision-Recall Score of 92.2%. Excellent discrimination ability is suggested by the ROC - AUC Score 
of 96.3%, and a great balance between precision and recall is indicated by the high F1 Score of 93%.  
 

 
Fig 5: Plotting of accuracy vs epoch for train and test 

 
Multiscale Relation Model: This approach proved to be the most accurate in predicting positive cases, 
achieving the maximum Precision-Recall Score of 96%. With a ROC - AUC Score of 95.2%, the XGBoost 
Classifier-like performance in discrimination is suggested. It also achieved an F1 Score of 95.2%, which is 
similar to XGBoost Classifier and shows a good balance between precision and recall. 
 

 
Fig 6: Comparative analysis of proposed work with other works 

 
6. CONCLUSION 

 
The Multiscale Blocks module, 3D- Soft pool module, spatial attention module, channel attention module, 
and dense connection are all used in this method's network structure. With the Multiscale Blocks module, the 
spectrum properties of hyperspectral images may be obtained at several scales and levels. In order to filter 
out extraneous information and obtain more meaningful data, the spectral attention module is introduced to 
every Multiscale Block branch. When employing a thick connection structure, spatial features may be directly 
cut from several layers, enabling feature reuse and improving feature extraction efficiency. To tackle the 
problems caused by a dearth of annotated datasets, a simple yet much more complex architecture was 
proposed. The ability of deep learning to extract representative characteristics may be leveraged by this 
architecture. Second, the proposed AI Unit considers the properties of hyperspectral images and gives 
priority to spectral fingerprints over geographical settings. Moreover, a data-fusion transfer learning strategy 
is applied to improve the initialization and classification accuracy of the  model. 
      

7. FUTURE WORK 
 
In order to completely use the spectrum and spatial features at the edge to classification, we will investigate 
in more detail how to fuse the retrieved spatial-spectral features more successfully in future study. As a 
result, developing a fusion model that is more effective is a crucial area for our future study. 
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