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ARTICLE INFO ABSTRACT 
 In the field of medical science, particularly in neuroscience, recent studies have 

focused heavily on combining artificial intelligence with electroencephalography 
(EEG) for brain–computer interfaces (BCI). This area has become a crucial domain 
for research because of its potential to understand brain activity and develop new 
technologies to interpret brain signals for various applications. The goal of Brain-
Computer Interfaces (BCIs) is to help people with speaking disabilities 
communicate. BCIs connect the brain to a computer, allowing individuals to control 
devices or communicate based on their thoughts. Brain signals are usually 
measured using an EEG. EEG signals constantly change and are unique to each 
person, varying in frequency. This study aimed to explore the potential of 
electroencephalogram (EEG) signals in classifying imagined speech data, with a 
focus on understanding the brain's response to speech-related activities and its 
application in BCI. This study highlights the importance of feature extraction 
techniques, including time-domain, frequency-domain, and time-frequency 
domain analyses, in enhancing the classification of EEG-based imagined speech 
data and covering EEG signal processing and classification, including data 
acquisition, pre-processing, feature extraction, and classification. Linear classifiers, 
such as support vector machines and logistic regression, are employed alongside 
neural networks, particularly convolutional neural networks (CNNs) and artificial 
neural networks (ANNs), to analyze and classify EEG data associated with imagined 
speech and applications of EEG. Research indicates that EEG data used for 
analyzing brain activity are complex and can be gathered via different techniques 
using different devices. Multiple steps, such as preprocessing, feature extraction, 
and classification, may be necessary based on the signal collection method and 
study objectives. 
 
Keywords: Electroencephalography (EEG), electrocorticography (ECoG), Brain-
Computer Interface (BCI), Imagined Speech, Signal Processing, EEG Signal 
Classification, Machine Learning, Deep Learning. 

 
1. Introduction: 

 
A brain-computer interface (BCI) is a bidirectional communication between the brain and external devices. It 
acquires, analyzes, and translates brain signals into electric signals to take specific actions as desired by brain 
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waves. Different brain waves, such as Delta, Theta, Alpha, Beta, and Gamma waves, have unique frequencies 
and amplitudes. These waves specify the different stages of the human mind. These brain waves or signals are 
acquired using sensors placed on or within the scalp. The concept of using brain signals to control artificial 
arms began in 1971(Nirenberg, Hanley et al. 1971, Wolpaw, Birbaumer et al. 2002, Punsawad, 
Ngamrussameewong et al. 2016). Studying the brain has become important to better understand life because 
of advances in medical technology and our increasing knowledge about how the brain works(Fan, Fang et al. 
2020). Scientists have been researching the complexity of the brain since the mid-1900s, and recently, it has 
become a popular area for more research(Lane, Ryan et al. 2015). The study of electrical activity in the brain is 
a major focus in brain science. 
Speech is an important part of everyday life. This is how we connect with other people. However, sometimes 
things like mental disorders, diseases, accidents, or even hurting one’s voice can make it hard to speak. This 
can make life difficult and sometimes lead to feelings of being alone(Shah, Alzubaidi et al. 2022). EEG and 
speech are closely related in two important respects. The first benefit of EEG is its insight into how the brain 
understands the spoken language. Researchers have uncovered the brain's processes for decoding sounds, 
understanding language, and even anticipating words by monitoring electrical activity. The implications of this 
information for areas such as cognitive science and language acquisition are significant. Furthermore, EEG-
based speech creation is a relatively new area of study that investigates the potential for manipulating or even 
producing speech using brain signals. This might be a way for those who have trouble speaking to 
communicate; it entails reading the mental patterns of speech and turning them into words. There has been a 
lot of work in these fields, but obtaining EEG-based speech processing and creation to work reliably and 
accurately for practical uses is still a problem (Abdulghani, Walters et al. 2023, Puffay, Accou et al. 2023). 
BCIs are helpful to individuals who struggle to speak or are paralyzed. These systems allow users to 
communicate quickly with their environments. BCIs are computer systems that can identify and interpret brain 
signals. These signals are then converted into commands that control the output device, allowing the user to 
perform specific actions. BCI systems are used in various ways such as communication tools and controlling 
gadgets. Originally designed for severely impaired individuals, these systems are now also used by healthy 
people for communication and everyday assistance in their lives(Mohanchandra and Saha 2016). The brain is 
a complex system composed of billions of nerve cells, called neurons. It exhibits complex patterns in both space 
and time. 
Brain signals can be acquired through invasive (implanted electrodes), noninvasive (scalp electrodes), or semi-
invasive (partially implanted electrodes) methods  (Mudgal, Sharma et al. 2020, Chaddad, Wu et al. 2023). The 
invasive method involves placing sensors inside the skull to track brain activity, giving high-quality results, but 
posing a risk of scar tissue. It is helpful for paralyzed patients to control devices such as artificial arms. 
Noninvasive methods use sensors placed on the scalp to read brain signals without surgery. It is simple, 
inexpensive, and portable; however, it does not capture brain signals because of skull interference. This 
technique is prone to noise and has weaker signal quality. Semi-invasive approaches include inserting 
electrodes partly inside the skull, which provides a higher signal quality than non-invasive methods without 
being completely intrusive. They are employed in specific medical treatments and research, although they 
require surgery and pose considerable risk. 
EEG is a non-invasive method for recording electrical activity signals in the brain. This is done using electrodes 
placed on the scalp, which has a small amplitude; hence, it is measured in microvolts (mV). Studying how the 
brain's electrical signals function is a major focus in brain science (da Silva 2013). This is why scientists pay 
close attention to electroencephalograms (EEG), which help them understand the brain in many different areas 
of research (Da Silva 2023, Saibene, Caglioni et al. 2023). These brain signals, like small messengers, contain 
a wealth of information that researchers use to learn more about how our brains function in different situations, 
such as when talking, thinking, or imagining things. EEG is a safe and non-invasive brain imaging method that 
uses electrodes on the scalp to capture the electrical activity of the brain. This technology helps researchers 
understand how the brain works by analyzing these signals. It provides crucial insights into brain functions, 
helps identify different brain conditions, and explores how we perceive things, focus, remember, etc.. EEG has 
become popular because it is safe, does not require surgery, and allows for comfortable study of brain activity. 
Moreover, EEG signals can be combined with other imaging techniques, such as MRI, fNIRS, and PET, to 
obtain a clearer image of how the brain functions and its structure (Chaddad, Wu et al. 2023). 
 

Table 1: Frequency bands of EEG signals 
Frequency 
Band 

Frequency 
(Hz) 

Amplitude 
(μv)) 

Brain States Signals 

Gamma 
(γ) 

> 35 Hz < 5 Associated Concentration, 
Problem-Solving, 
Consciousness, Cognitive 
Processing. 

 

Beta 
(β) 

12-35 Hz 5-30 Associated Anxiety-
dominant, active, external 
attention, relaxed. 
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Figure 1:EEG Signal Analysis Steps 

Alpha 
(α) 

8-12 Hz 30-50 Associated with Very 
Relaxed, passive attention. 

 

Theta 
(θ) 

4-8 Hz >20 Associated Deeply Relaxed, 
inward-focused 

 

Delta (ẟ) 0.5-4 Hz >20-200 Associated Sleep  

 
EEG signals were categorized into five types of waves (alpha, beta, gamma, theta, and delta) based on their 
frequency. Table 2 shows the frequencies obtained from human EEG wave categorization.  Gamma (γ) waves 
are the fastest brain waves, with a frequency of more than 35 Hz. They had the lowest amplitude of all brain 
waves at less than 5 microvolts (μv). Gamma waves are associated with concentration, problem-solving, 
consciousness, cognitive processing, and sleep. Gamma waves are thought to play an important role in binding, 
the process of integrating information from different parts of the brain to create a unified percept. It is also 
involved in attention, memory, and language processing (Benitez, Toscano et al. 2016). 
The beta (β) wave is the second fastest of the five main types of brainwaves. This is associated with a state of 
alertness and focused attention. Beta waves are also involved in information processing, problem solving, and 
decision-making. There are two main types of beta waves: low-beta waves (12-20 Hz) and high-beta waves (21-
35 Hz). Low-beta waves are associated with a state of relaxed alertness, whereas high-beta waves are associated 
with a state of intense focus and concentration. Beta waves can be increased by activities that require focus and 
attention, such as studying, working or driving. They can also be increased by stimulants, such as caffeine or 
nicotine. Beta waves are generally considered good. They indicated that their brains were alert and engaged. 
However, excessive beta activity can also lead to anxiety, stress, and insomnia (Lan, Müller-Putz et al. 2016). 
Alpha (α) waves are brain signals occurring between beta and theta waves, with a frequency of 8 to 12 Hz with 
an amplitude ranging from 30 to 50 μv. Alpha waves are known as relaxed waves because they are dominant 
when a person is awake, but not focused on anything in particular. These are also associated with creativity, 
daydreaming, and mindfulness. Alpha waves can be increased by meditation, yoga, and spending time in nature 
(Lan, Müller-Putz et al. 2016). 
Theta (θ) waves have a frequency of 4-8 Hz and amplitude greater than 20 μv. They are associated with deeply 
relaxed and inward-focused states. Theta waves are thought to play a role in a variety of cognitive processes, 
including learning and memory, and are active during REM sleep, which is important for consolidating 
memories. They are also active during deep meditation, which enhances learning and memory. Creativity and 
problem solving: Theta waves are associated with daydreaming and imagination, which can be important for 
creative problem solving. Emotional processing: Theta waves are active during emotional states such as love 
and compassion. They may also play a role in regulating emotions and promoting emotional well-being (Madoš, 
Ádám et al. 2016). 
 
1.1 Component of EEG Signal Analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The type of brain wave that is more active depends on what we are doing, thinking, or feeling at a given time. 
To understand these brain signals, we first need to study EEG signals. Figure 1 shows the four steps involved 
in analyzing EEG signals. 
 
1.1.1 Data Acquisition: 
EEG data acquisition is the process of capturing these electrical signals and converting them into a digital 
format that can be analyzed by computers. The data acquisition process was divided into five steps: electrode 
placement, signal amplification, Filtering, Digitization, Data storage, and transmission (Li, Cheng et al. 2021). 

 

Data 

Acquisition 

 

Pre-Processing 

 

Features 

Extraction 

 

Classification 
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1.1.2 Pre-Processing: 
During pre-processing, the collected data underwent several steps to enhance its quality. This includes 
references to linked mastoid channels, applying a band-pass filter (0.5 - 50 Hz) to focus on specific frequency 
ranges, interpolating removed channels, reconstructing artifact subspaces, down-sampling to 250 Hz for 
efficiency, removing noisy or flat channels, and extracting the power spectral density to understand the 
frequency distribution of the signals(Clerc 2016, Kim 2018, Vajravelu, Jamil et al. 2021). When we study EEG 
data, we begin by using various preprocessing methods. One method is to use filters, which help us focus on 
important parts of the data to remove unwanted noise. For example, a Bessel filter smooths the data without 
distortion. The bandpass filter allows only certain frequencies to Pass through, helping us isolate specific parts 
of the signal. A large Butterworth filter eliminates the background noise. We also have a Chebyshev filter that 
helps separate the frequency bands. These filters are similar tools in a toolbox, each serving a different purpose 
to help us understand EEG data preprocessing and analysis. 
 
1.1.3 Features Extraction 
Two processes are involved in the recognition of EEG signals: feature extraction and signal classification based 
on the features that were extracted. The time-domain, frequency, and time-frequency domain are the most 
used feature extraction techniques for EEG (Mudgal, Sharma et al. 2020). 
Time-domain feature extraction techniques analyze temporal changes in EEG data. It observes information 
such as the intensity of the signals at various times. By analyzing the ups and downs in EEG signals, these 
techniques assist in our understanding of the changes in brain activity over time. Taking the characteristics and 
important aspects from EEG data, each feature its special properties. Hjorth Features emphasize movement, 
motion, and complexity, while providing simplicity, quickness, and application to fixed signals. Statistical 
features, such as Mean, Standard Deviation, Variance, Skewness, Kurtosis, and Signal Energy, are simple to 
use and appropriate for both stationary and non-stationary data. Although it might take some time, the Fractal 
Dimension assesses the self-similarity and complexity of the signals. The Kalman Filter assesses states and 
signal uncertainty and is perfect for localizing EEG sources. The particle Filter uses particles and weights to 
provide scalability and non-deterministic state estimation while being computationally costly (Mudgal, Sharma 
et al. 2020). 
Frequency domain features are very important in EEG-based brain-computer interfaces because they reflect 
the various frequency components of brain activity. The Discrete Fourier Transform (DFT) and Fast Fourier 
Transform (FFT) are two techniques widely used for this purpose. DFT separates the EEG signal into discrete 
frequencies, providing information about its intensity and phase; however, FFT is faster, making it suitable for 
real-time BCI applications. The FFT is a mathematical algorithm that converts a signal from its original (time) 
domain into a frequency-domain representation. By applying FFT to EEG data, we can identify the power 
spectral density of different frequency bands such as delta, theta, alpha, beta, and gamma. Each frequency band 
is related to a specific brain state and function. The different frequency bands in EEG signals correspond to 
different cognitive processes and brain activities. For example, delta and theta waves are often observed in deep 
sleep. The waves are associated with memory processes, alpha waves are associated with relaxation and 
meditation, beta waves are associated with active thinking and concentration, and gamma waves are involved 
in higher cognitive functions (Klimesch 1999, Niedermeyer and da Silva 2005, Başar 2012, Sanei and Chambers 
2013). 
Time-frequency features are very popular and widespread methods for studying BCI with EEG signals because 
they collect information that changes at any particular time and frequency. It includes methods such as the 
autoregressive model, short-time Fourier transform (STFT), Continuous Wavelet Transform (CWT), and 
Discrete Wavelet Transform (DWT)(Mudgal, Sharma et al. 2020). The STFT offers a windowed technique for 
examining the frequency of EEG signals over a brief period of time, demonstrating how the frequency spectrum 
changes over time. The CWT analyses the data at various scales using simple waveforms (waves) that may be 
extended and amplified. helpful in identifying brief, localized patterns of activity in EEG data. DWT is used in 
real-time BCI applications because it is computationally effective and breaks down the signal into time-
frequency components for examination. The autoregressive model predicts the EEG signal values from past 
events to forecast future values. It is helpful in identifying abnormalities and stimulating brain function. 
 
1.1.4 Classification 
Several techniques have been used to classify imagined speech data. These are linear classifiers and neural 
networks (Lotte, Congedo et al. 2007). Linear classifiers, such as support vector machines, are a part of 
statistical learning theory and are capable of addressing issues related to limited sample sizes, nonlinear 
correlations, and multiple categories. This classification aims to create an ideal hyperplane that serves as the 
decision boundary to distinguish between various classes by maximizing the margin between them. It is 
effective and easy to understand, but may face challenges with complex patterns of data (Ma, Ding et al. 2016). 
Another technique is the logistic regression. This technique allows linear regression to be used for classification 
(Guerrero, Parada et al. 2021). It serves as a bridge between linear regression and classification approaches, 
offering valuable statistical insights and forecasts continuous variables, while classification categorizes data 
points into specified groups. It is useful for tasks that require forecasting continuous values and sorting data 
into classes. 



6023 3894/ Kuey, 30(5), et.al  Pravin V. Dhole 

 

For the purpose of classifying EEG data associated with imagined speech, neural networks are highly effective 
techniques. By modeling the anatomy of the human brain, these techniques acquire the ability to identify 
intricate patterns and connections present in the EEG signal. Neural networks can enhance their capability to 
classify imagined speech for applications such as brain-computer interfaces and cognitive state analysis 
through the utilization of labeled EEG data for training purposes. Convolutional neural networks (CNNs) are a 
popular form of neural network used for a variety of applications. They are influenced by the visual cortex of 
the human brain and are composed of layers that analyze various elements of the incoming data. The layers 
include of convolutional layers, pooling layers, and fully linked layers. The convolutional layer collects features 
from the input, the pooling layer decreases feature dimensionality, and the fully connected layer classifies based 
on these features. CNNs are often used for evaluating bio-signals because to their ability to replicate important 
characteristics of the brain's visual cortex, such identifying patterns in a localized manner and being indifferent 
to the precise placement of objects (Park and Lee 2023). Artificial neural network (ANN) can be utilized to 
evaluate and identify EEG rhythms associated with motor imagery (Sheela sobana Rani, Pravinth Raja et al. 
2022) . Long Short-Term Memory (LSTM) networks excellent in classifying EEG data due to their ability to 
comprehend temporal changes in brain activity, so understand the sequential data in EEG signals LSTM 
network can be used. LSTM is a technique derived from RNN that exhibits superior performance in handling 
long-term memory (Hochreiter and Schmidhuber 1997, Kim and Choi 2020, Yang, Huang et al. 2020). 
Table 2 represents a comprehensive overview of the main phases involved in processing EEG signals 
classification. It explains the complex process of analyzing EEG signals and its practical applications in the real 
world. 
 

Table 2: EEG Signal Processing and Classification Overview 
 
Stage 

 
Sub-Stage 

 
Operation 

 
Application 

 
Example and 
Reference  

 
 
 
 
Data 
Acquisition 

Electrode 
Placement 

Position electrodes on 
the scalp. 

EEG-based Brain-
Computer Interfaces 

Controlling a computer 
cursor with thoughts 
(Wolpaw, McFarland et al. 
1991). 

Signal 
Amplification 

Boost weak brain 
signals using a 
differential amplifier. 

Neurofeedback, 
Brain-Computer 
Interfaces 

Monitoring and improving 
attention levels (Larsen 
2011, Qin, Zhang et al. 
2023). 

Filtering, 
Digitization 

Apply a high-pass filter 
and convert analog 
signals to digital. 

Clinical Diagnosis, 
Research 

Diagnosing epilepsy 
through EEG recordings 
(Imtiaz, Iranmanesh et al. 
2019, Khosla, Khandnor et 
al. 2020, Clarke, Karoly et 
al. 2021, Qaisar 2023). 

Data Storage and 
Transmission 

Store and send 
digitized EEG data. 

Telemedicine, 
Remote Monitoring 

Remote monitoring of 
patients' brain 
activity(Singh and Bansal 
2014, Li, Cheng et al. 
2021). 

 
 
 
 
 
 
 
 
 
Pre-
Processing 

Reference to 
Linked Mastoid 
Channels 

Align data with linked 
mastoid reference 
channels. 

Cognitive Research, 
ERP Analysis 

Studying neural reactions 
to certain events 
(Trujillo, Stanfield et al. 
2017, Molina, Tardón et al. 
2024) 

Band Pass Filtering 
(0.5 - 50 Hz) 

Filter signals to include 
frequencies between 
0.5 and 50 Hz. 

Sleep Studies, 
Cognitive Tasks 

Analyzing sleep patterns 
and cognitive processes 
(Khosla, Khandnor et al. 
2020, Huang, Zhang et al. 
2021). 

Interpolation of 
Removed Channels 

Fill in gaps left by 
removed channels. 

EEG Data 
Reconstruction 

Enhancing data integrity 
for accurate analysis 
(Kim 2018, Bahador, 
Jokelainen et al. 2021, 
Vajravelu 2021). 

Artifact Subspace 
Reconstruction 

Reconstruct data to 
mitigate artifacts. 

Artifact Removal Reducing artifacts caused 
by eye blinks or movement 
(Chang, Hsu et al. 2019). 

Down-Sample to 
250 Hz 

Reduce data rate for 
efficient processing. 

Real-Time Processing Enhancing the real-time 
performance of EEG 
systems (Mayeli, Zotev et 
al. 2016). 
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Remove Noisy or 
Flat Channels 

Eliminate channels 
with excessive noise or 
no variation. 

Quality Improvement Improving the quality of 
recorded EEG signals 
(Bigdely-Shamlo, Mullen 
et al. 2015, Pedroni, 
Bahreini et al. 2019). 

Extract Power 
Spectral Density 

Derive frequency 
domain information. 

Cognitive State 
Assessment 

Assessing cognitive 
workload or stress levels 
(Ong, Saidatul et al. 2018, 
Reddy and Pachori 2024). 

 
 
 
 
 
Features 
Extraction 

Time Domain 
Features 

Mean, Median, 
Variance, Standard 
Deviation, Skewness, 
Kurtosis 

Pattern Recognition, 
Mental State Analysis 

Recognizing specific 
mental states based on 
EEG patterns 
(Stancin, Cifrek et al. 2021, 
Wang and Wang 2021). 

Frequency Domain 
Features  

Delta, Theta, Alpha, 
Beta, Gamma. 

Neurofeedback, 
Cognitive Load 
Estimation 

Measuring and observing 
the brain's reaction to 
inputs (Stancin, Cifrek et 
al. 2021, Makkar and Bisen 
2023, Singh and Krishnan 
2023). 

Time-Frequency 
Domain Features 

Wavelet Transform 
(WT), Spectrogram, 
Short-Time Fourier 
Transform, fast 
Fourier transform 
(FFT) 

Motor Imagery, BCI 
Systems 

Enhancing Brain-
Computer Interface (BCI) 
performance (Al-Fahoum 
and Al-Fraihat 2014). 

 
 
 
 
 
 
 
 
 
 
 
Classification 

Frequency-Based 
Approach 

Classify based on 
signal frequencies. 

Motor Imagery, BCI 
Systems 

Controlling external 
devices through imagined 
movements (Wahdow, 
Alnaanah et al. 2023). 

Time-Frequency 
Analysis 

Analyze changes over 
time and frequency. 

Cognitive Load 
Estimation 

Real-time assessment of 
mental workload (Morales 
and Bowers 2022). 

Spatial Approach Focus on the spatial 
distribution of signals. 

Brain Mapping, 
Neuroimaging 

Understanding brain 
activity in specific regions 
(Miao, Hu et al. 2020). 

Event-Related 
Potentials (ERP) 

Classify based on 
responses to stimuli. 

Neuroscience, 
Cognitive Research 

Investigating brain 
responses during cognitive 
tasks (Kuncheva and 
Rodríguez 2013, Sabeti, 
Boostani et al. 2020). 

Wavelet Transform Simultaneously 
analyze time and 
frequency domains. 

Sleep Analysis, Signal 
Decomposition 

Decomposing signals for 
detailed sleep stage 
analysis (Hazarika, Chen 
et al. 1997, Jareda, Sharma 
et al. 2019). 

Deep Learning-
Based Approach 

Utilize neural networks 
for classification. 

Automated Diagnosis, 
Pattern Recognition 

Enhancing accuracy in 
automated EEG diagnosis 
(Sarmiento, Villamizar et 
al. 2021, Tibrewal, 
Leeuwis et al. 2022, 
Abdulghani, Walters et al. 
2023). 

Source 
Localization 
Approach 

Determine the spatial 
origin of signals. 

Neuroimaging, Brain 
Mapping 

Identifying brain regions 
involved in specific tasks 
(Wentrup, Gramann et al. 
2005, Eom 2023). 

Cognitive State-
Based Approach 

Classify based on 
cognitive states. 

Human-Computer 
Interaction, BCI 
Systems 

Adapting interfaces based 
on user cognitive states 
(Chakladar, Roy et al. 
2021). 

 
2. Application of EEG 

 
Table 3 provides a summary of the practical use of brain signals in daily activities. The exploration encompasses 
several domains like as healthcare, gaming, and communication, demonstrating how humans can take control 
over items, express their thoughts clearly and effectively, and even enhance their state of well-being via the 
power of their cognition. Each row provides a concise description of the application's purpose, functionality, 
and unique advantages. However, one must also take notice of the challenges that arise from these technologies, 
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such as their accuracy and accessibility. Furthermore, there are several advancements still to be made in the 
field of brain-computer interfacing. The potential for remarkable progress is always increasing. 
 

Table 3: Applications of EEG technology integrated into Brain-Computer Interfaces 

Category Application Description Benefits 
Challenges 
 

Healthcare 
 

Artificial Control: Arms, 
legs, hands(Beyrouthy, 
Al Kork et al. 2016, Teng, 
Xu et al. 2018, Gao, Luo 
et al. 2019) 

Allows individuals who 
have had limbs lost to 
operate their artificial 
limbs using their 
thoughts. 

Restores 
independence and 
functionality. 

Accuracy, 
reliability, and 
affordability. 

Assistive Technologies: 
Wheelchairs, 
communication devices 
(Punsawad, 
Ngamrussameewong et 
al. 2016, Tariq, Trivailo 
et al. 2018) 

Allows persons with 
motor disabilities to 
manipulate equipment 
using their mental 
capacities. 

Increases 
independence and 
communication 
ability. 

Signal clarity 
and user 
training. 

Neurofeedback: ADHD, 
anxiety, pain 
management(Moyosola, 
Alexandru et al. 2019) 

Provides training to 
individuals in order to 
help them control their 
brain activity for 
therapeutic reasons. 

Non-invasive 
treatment option 
with potential for 
long-term benefits. 

Requires 
consistent use 
and individual 
tailoring. 

Gaming 
& 
Entertainment 

Brain-Computer 
Interfaces (BCI) Games: 
Thought-controlled 
gameplay(da Silva 
Ferreira 2017) 

Builds unique forms of 
gaming using brainwave 
patterns. 

A fun and engaging 
way to explore BCI 
technology. 

Technical 
limitations and 
limited game 
variety. 

Communication 
& 
Control 

Text composition: 
Typing, spelling 
correction(Van der Weel 
and Van der Meer 2024) 

Facilitates direct 
communication via the 
conversion of thoughts 
into written text for those 
with restricted physical 
movement. 

Faster and more 
natural 
communication. 

Accuracy and 
speed of text 
generation. 

Smart Home Control: 
Lights, 
appliances(Nafea, 
Abdul-Kadir et al. 2018, 
Kim, Kim et al. 2019) 

Facilitates the 
manipulation of 
intelligent home 
equipment via the use of 
brain signals, without the 
need for manual 
interaction. 

Increases 
convenience and 
accessibility. 

User training 
and potential 
security risks. 

Imagined Speech 
Classification(Lee, Lee 
et al. 2021, Abdulghani, 
Walters et al. 2023, 
Hossain, Das et al. 2023) 

Facilitates 
communications by 
converting mental 
patterns of speech into 
written text or 
instructions. 

Offers alternative 
communication for 
individuals with 
speech impairments 
or in noisy 
environments. 

Accuracy, 
decoding 
complexity, and 
ethical 
considerations. 

Research 
& 
Development 

Brain-Computer 
Interfaces Research: 
Understanding brain 
function(He, Yuan et al. 
2020, Ramsey 2020) 

Offers significant 
knowledge on the 
interface between the 
brain and computer 
systems, as well as the 
control of neurological 
processes. 

Advances BCI 
technology and its 
potential 
applications. 

Ethical 
considerations 
and data privacy 
concerns. 

Cognitive Enhancement: 
Attention, memory, 
focus(Sethi, Dabas et al. 
2018, Zhang and Gruber 
2019) 

Examines the possibility 
of enhancing cognitive 
function via BCI 
intervention. 

It could offer benefits 
for learning, 
productivity, and 
well-being. 

Early stage of 
development 
and potential 
safety concerns. 

 
3. Literature Review: 

 
The understanding of imagined speech classification and recognition in different languages is enhanced in 
these studies. The most important studies are examined and classified based on the technique used for 
gathering brain signals. 
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3.1 Electrocorticographic (ECoG): Electrocorticography or ECoG is the method of recording and 
analyzing the electrical signals in the brain by directly placing electrodes on the cerebral cortex or the outermost 
layer of the brain (Wyler 1987). 
The analysis the function of high-gamma brain activity in monitoring the regular patterns of musical rhythms 
throughout both the process of perceiving them and imagining them Herff  Steffen A. et al 2020. The study 
examines the correlation between high-gamma brain activity and the rhythmic patterns of music by analyzing 
electrocorticographic (ECoG) recordings from human participants. The findings suggest a strong link between 
high-gamma autocorrelations in auditory and frontal regions and the autocorrelations of musical rhythms, 
especially in the right prefrontal cortex. This indicates that individuals are actively engaging in the cognitive 
processing of rhythm structure throughout both the perceptual and imagining processes. the study provides 
important knowledge on the neurological processes involved in perceiving and imagining rhythm. It highlights 
the importance of high-gamma brain activity in auditory processing (Herff, Herff et al. 2020). 
Proix Timothee et al. in 2022 explore the capacity to decipher imagined speech by analyzing brain activity 
recorded using ECoG in individuals diagnosed with epilepsy. Prior studies have shown advancements in 
deciphering explicit speech, however decoding imagined speech presents difficulties owing to the presence of 
feeble and inconsistent brain signals. The ECoG data collected from a sample of 13 patients who engaged in 
both overt and imagined speaking activities. They discovered the presence of low-frequency power and the 
interaction between different frequency ranges are crucial for accurately deciphering imagined speech. The 
studies consisted of word repetition tasks when participants mentally simulated the perception and articulation 
of certain words. The research used a hypothesis-driven methodology, specifically investigating the interaction 
between low-frequency brain oscillations and their cross-frequency coupling in the perception of speech. 
Although there were variations in the way tasks were designed in different experiments, the findings 
demonstrated encouraging prospects for deciphering imagined speech using ECoG signals. This study makes a 
significant contribution to the development of brain-computer interfaces (BCIs) for those who have severe 
difficulties in producing speech (Proix, Delgado Saa et al. 2022). 
Meng Kevin et al 2023 explore the study on the capacity of brain-computer interfaces (BCIs) to restore 
communication skills in individuals who are paralyzed and unable to talk. The research sought to create 
artificial speech sounds by analyzing brain activity recorded from the cortical surface using intracranial 
electrode arrays temporarily implanted in 10 patients with epilepsy. Two subjects, whose precentral gyrus was 
covered by electrodes, were able to make fake speech sounds effective while doing overt and mimed word 
reading tasks. The artificial sound was assessed using both objective measures, comparing them to speech 
recordings, and subjective evaluations conducted by human listeners. In forced-choice tasks, about one-third 
of the sounds were accurately recognized. However the attempt to create fake speech sounds while participants 
imagined speaking was unsuccessful. However, the study of neural features identified possible activation 
patterns in some parts of the brain, including the postcentral gyrus and superior temporal gyrus, throughout 
the process of imagining speech (Meng, Goodarzy et al. 2023). 
In the past brain-computer interfaces (BCIs) have depended on spelling methods that are dependent on the 
abilities induced by stimulation, which may be burdensome. Nevertheless, the initial study conducted by Herff 
et al. (2011) showcased the potential of generating speech directly from brain signals obtained using 
electrocorticography (ECoG) in real time. They recreated audio magnitude spectrograms by analyzing the brain 
activity over time and then produced corresponding audio waves. This work represents a notable advancement 
in synthesizing speech from imagined speech, demonstrating promising associations between the original and 
recreated signals, despite the use audibly uttered speech for modeling (Herff, Johnson et al. 2016). 
Overall studying Electrocorticography (ECoG) as a means of understanding and decoding a range of cognitive 
functions associated with speech perception, imagination and synthesis Herff Steffen A. et al. (2020) provided 
evidence that the cognitive processes associated with rhythm sense by demonstrating the significance of high-
gamma brain activity in the perception and visualization of musical rhythms. Proix Timothee et al (2022) study 
on the use of ECoG signals for imagined speech decoding revealed the significance of cross-frequency coupling 
and low-frequency power for precise speech decoding. Meng Kevin et al. (2023) investigation on the recovery 
of communication abilities in paralyzed people highlighted the possibility of ECoG-based BCIs in producing 
fake speech sounds by examining brain activity captured by intracranial electrode arrays. Ultimately, real-time 
speech production from ECoG data was achieved in the Herff et al. (2011) work, which represents a 
breakthrough in the direct synthesis of speech from brain activity. All things considered, these studies 
demonstrate the creative use of ECoG technology to understand and control speech-related cognitive processes, 
providing encouraging information for the advancement of brain-computer interfaces and neuroprosthetic 
devices. 
 
3.2 EEG for Imagined Speech: 
An interesting new field of study is the investigation of imagined speech using Brain-Computer Interface (BCI) 
and Electroencephalography (EEG) technologies. We explore the current research on the topic of imagined 
speech recognition and classification using EEG data in this literature review. Classification of imagined speech 
with BCI technology has already been the subject of various studies. These including recognize Wang et al. 
(2013) studied Chinese characters(Wang, Liu et al. 2013), Matsumoto and Hori (2014) studied Japanese vowels 
(Matsumoto and Hori 2014), Paul et al. (2018) concentrated on Hindi vowels (Paul, Jaswal et al. 2018), Agarwal 
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& Kumar (2022) studied English words(Agarwal and Kumar 2022). Bengali vowels have been studied by Ghosh 
et al. (2023) (Ghosh, Sinha et al. 2023), and Bengali numbers and vowels were included in the research by 
Arman Hossain et al. (2023) (Hossain, Das et al. 2023). 
In a study by Wang et al. (2013) tried a new idea in Brain-Computer Interface (BCI) technology. Instead of 
using movements, they asked eight Chinese people to think about different Chinese characters. They used EEG 
signals to detect these thoughts and a method called Common Spatial Patterns (CSP) to analyze the EEG data. 
Then, they used a Support Vector Machine (SVM) to process the data. The results showed that the method was 
good at telling if someone was thinking about one character with accuracy ranging from 73.65% to 95.76%. It 
opens up a possible application for Brain-Computer Interface (BCI) systems, suggesting the integration of 
speech and motor imagery to expand the range of uses. 
Matsumoto and Hori et al (2014) studied the ability of people to generate speech via their thoughts, even in the 
presence of significant communication difficulties. The researchers collaborated with a group of five individuals 
who engaged in the mental process of picturing Japanese vowels (/a/, /i/, /u/, /e/, and /o/). During this task, 
the researchers recorded the participants' brain activity using scalp electrodes. By using CSP filtering, adaptive 
collection (AC), and relevance vector machines with a Gaussian kernel (RVM-G), researchers discovered that 
RVM-G exhibited slightly superior performance compared to SVM-G, obtaining an accuracy rate of 79%. 
However RVM-G exhibited a higher demand for computational resources and had difficulties when dealing 
with a limited number of training instances. This underscores the promise of RVM-G in enhancing silent speech 
recognition, while also acknowledging its limits in terms of insufficient data and slower processing speed 
(Matsumoto and Hori 2014). 
 
In a study conducted in 2018, Paul et al used Brain-Computer Interface (BCI) technology to assist those who 
have difficulties in verbal communication. The participant's attention was directed towards three Hindi vowels 
that they contemplated silently. By using EEG to monitor cerebral impulses, a computer algorithm deciphered 
these cognitive processes and transformed them into spoken utterances or directives, thus enhancing the 
efficacy of communication. Their highest achievement yielded a 70.74% accuracy in discerning unsaid 
sentiments. Brain-computer interface (BCI) technology has great promise in enhancing the quality of life for 
those with communication difficulties. The research included eight individuals engaging in quiet contemplation 
of three distinct Hindi vowels. The EEG data was acquired and examined using a linear support vector machine 
to detect the specific vowel associated with the individual's thoughts (Paul, Jaswal et al. 2018). 
 
In 2022, Agarwal and Kumar et al developed a brain-computer interface (BCI) by using 32-channel EEG 
equipment. Their objective was to analyze the cognitive process of imagining speech for certain English words 
and phrases. The study had a sample size of 13 individuals. Their attention was directed towards certain terms 
such as SOS, stop, medicine, restroom and the phrase come here. They used a deep learning technique known 
as the Long Short-Term Memory (LSTM) network to examine seven EEG frequency bands across nine 
significant brain areas. Their findings demonstrated a remarkable accuracy of 73.56%, exceeding that of 
previous methodologies. The researchers discovered that the alpha EEG band had exceptional efficacy in 
identifying imagined speech. The LSTM (long short-term memory networks) model demonstrated superior 
accuracy and faster prediction time in comparison to other models such as CNN, highlighting the efficacy of 
deep learning networks (Agarwal and Kumar 2022). 
Ghosh et al. (2023) used electroencephalography (EEG) data to discern and classify mentally seen Bengali 
vowels. An "activity map" (AM) was generated using EEG data to visualize the temporal dynamics of brain 
activity. The EEG signals of the subjects were recorded as they contemplated Bengali vowels. The AM quantified 
neural activity across several frequency ranges. A Convolutional Neural Network (CNN) was used to assess the 
AM, resulting in an accuracy of 68.9%. This approach exhibited superior performance compared to other 
methods, demonstrating the potential for the identification of imagined speech using EEG data (Ghosh, Sinha 
et al. 2023). 
 
Arman Hossain et al (2023) explored the use of a non-invasive brain-computer interface (BCI) in the 
recognition of imagined Bengali speech. The use of a 14-channel electroencephalography (EEG) headset to 
capture EEG signals while engaging in mental imagery of Bengali vowels and numerals. Four statistical 
variables, including standard deviation, root mean squares, sum of values, and energy, were derived from the 
EEG data. A classification procedure was conducted to distinguish between vowels and digits. The random 
forest classification approach yielded an accuracy of 84.28% at the coarse level and 76.13% at the fine level, 
which is the highest degree of accuracy achievable. The findings indicate that a Brain-Computer Interface (BCI) 
system can accurately differentiate Bengali vowels and digits based on Electroencephalogram (EEG) data. This 
highlights the potential of BCI as a beneficial tool for those with speech impairments who are in search of 
alternate means of communication. This study establishes the foundation for possible systems enabling users 
to communicate via imagined speech (Hossain, Das et al. 2023). 
 
Luis Alfredo Moctezuma et al. studied brain signals to identify imagined Spanish words to create a real-time 
classification system. They used the Discrete Wavelet Transform technique in Python using the sci-kit-learn 
module to analyze EEG data from 27 participants who were picturing five Spanish words. Their toolkit 
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demonstrated significant accuracies of around 77% for speech classification, 78% for differentiating speech 
from stillness, and 98% for subject identification. The method's effectiveness stemmed from its capability to 
extract characteristics from EEG data and categorize them using random forest techniques. This work 
highlights the possibility of using EEG-based imagined speech categorization to assist communication in 
nonverbal persons. Future research will focus on improving the system for practical use by minimizing noise 
and improving signal detection (Moctezuma and Molinas Cabrera 2018). 
 
Maurice Rekrut et al. work explores Semantic Silent Speech Brain-Computer Interfaces (BCIs), which are 
essential for interpreting imagined speech from brain signals. It tackles a major problem with conventional 
BCIs: their restricted capacity to identify words. This project intends to significantly enhance word recognition 
skills by introducing Semantic Silent Speech BCIs that use semantic category categorization. The research 
attains impressive accuracy rates, reaching up to 95% for individual respondents, by rigorously evaluating five 
semantic categories using multiple methodologies. The combination of Common Spatial Pattern feature 
extraction with Support Vector Machine classification shows potential but only partially meets real-world 
application needs. This work provides useful insights for improving Semantic Silent Speech Brain-Computer 
Interfaces, although facing obstacles in maintaining consistency across different participants. It highlights the 
significance of customized techniques for each person, derived from thorough training sessions (Rekrut, 
Sharma et al. 2021). 
 
B. Dekker et al. compiled the DAIS database, which comprises crucial speech and neural data from twenty 
Dutch speakers. These individuals were recorded as they both envisioned and spoke in response to fifteen 
distinct Dutch prompts. ResNet-50, a specialized model, was employed to analyze the brain signals captured 
in the EEG recordings. With a 70.6% accuracy rate, this model could distinguish whether the subject was at 
rest, envisioning speech, or speaking aloud. The researchers employed 64 electrodes to capture brain activity 
and a high-quality microphone to capture spoken words. Each participant completed 20 sets of 15 trials during 
which they were observed as their brain activity varied between reading, imagining, and speaking the stimuli. 
The data was cleansed of any errors and subsequently partitioned into distinct segments in preparation for 
analysis. Brain activity exhibited distinct variations when the subject was at rest, envisioning speech, or 
speaking aloud. This indicates that while imagining communication, the brain is extremely active. The results 
of their experiments demonstrated that brain signals generated during imagined speech are distinct from those 
generated while at rest or speaking aloud. Utilizing this database to investigate how the brain functions during 
speech and imagination can lead to the development of more effective technologies, such as silent speech 
interfaces (Dekker, Schouten et al. 2023). 
 
The B. Min et al.(Min, Kim et al. 2016)  machine learning classifiers SVM with RBF kernel and ELM ( Extreme 
Learning Machine) with various kernels were used to classify the imagined speech data of EEG signals of vowels 
such as a, e, i, o, and u. Vowel EEG data was collected from five participants utilizing a 64-channel EEG 
equipment over the course of five sessions, with 10 trials lasting three seconds for each vowel. The single-trial 
EEG data of imagined vowels was divided into thirty segments in order to extract the characteristics from the 
data. The segmented EEG data was used to extract the following features: skewness, variance, mean, and 
standard deviation. The author employed the sparse regression model to make the feature vectors smaller. 
 
Wayan Pio Pratama et al. used two datasets from the MBD (MindBigData ) platform: one from an EMOTIV 
EPOC+ EEG device with fourteen channels and another from a MUSE headband with four electrodes to train 
a KNN classifier to detect EEG signals representing digits 0–9 (Pratama, Kesiman et al. 2021). Principal 
Component Analysis (PCA) and the frequency band technique (delta, theta, alpha, beta, and gamma bands) 
were used to extract features. Features including spectral entropy, power ratio, and power spectrum were 
calculated for each band and given into the classifier. The classifier's accuracy was 9% with the EMOTIV dataset 
and 31% with the MUSE dataset. With the EMOTIV dataset, the classifier achieved 12.5% accuracy using PCA, 
whereas with the MUSE dataset, it achieved 24.8% accuracy. 
 

Table 3: EEG-Based Imagined Speech Classification Studies 
Authors 
Year 
 

Study Focus 
 

Languages 
 

Methodology 
 

Technique 
Used 
 

Findings 
 

 
Limitations 
 

Wang et al. 
2013 
(Wang, Liu 
et al. 2013) 

Discrimination 
of Chinese 
characters via 
EEG imagery 

Chinese 
characters 

EEG signals 
recorded - Common 
Spatial Patterns 
(CSP) applied for 
feature extraction - 
Support Vector 
Machine (SVM) 
used for 
classification 

Common Spatial 
Patterns (CSP) 
with SVM 

Achieved accuracy 
ranging from 
73.65% to 95.76% 
in distinguishing 
characters 

Limited sample size; 
Generalization to 
broader character sets 
not tested 
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Matsumoto 
& Hori 
2014 
(Matsumoto 
and Hori 
2014) 

Identification of 
English vowels 
during speech 
imagery 

Japanese 
vowels 

EEG signals 
recorded - 
Relevance Vector 
Machines with 
Gaussian kernel 
(RVM-G) - SVM 
with Gaussian 
kernel (SVM-G) 
used for 
classification 

Relevance Vector 
Machines (RVM-
G), SVM 

Successful 
identification of 
Japanese vowels 
with RVM-G 
slightly 
outperforming 
SVM 

Challenges in decoding 
imagined speech due to 
variability in brain 
signals 

Paul et al. 
2018  (Paul, 
Jaswal et al. 
2018) 

Recognition of 
Hindi vowels 
through EEG-
based imagery 

Hindi 
vowels 

EEG signals 
recorded - Linear 
Support Vector 
Machine (SVM) 
applied for 
classification. 

Linear Support 
Vector Machine 
(SVM) 

Attained accuracy 
in identifying 
Hindi vowels 

Limited to Hindi 
language; Performance 
may vary with other 
languages 

Agarwal & 
Kumar 
2022 
(Agarwal 
and Kumar 
2022) 

Decoding 
English words 
from EEG 
signals during 
imagery 

English 
words 

EEG signals are 
recorded using a 32-
channel EEG device 
Long Short-Term 
Memory (LSTM) 
network utilized for 
classification 

Long Short-Term 
Memory (LSTM) 
Network 

Demonstrated 
promising 
accuracy in 
recognizing 
English words 
from EEG data 

Performance influenced 
by quality of EEG 
signals; Limited to 
specific English words 
and phrases 

Ghosh et al. 
2023 
(Ghosh, 
Sinha et al. 
2023) 

Classifying 
imagined 
Bengali vowels 
using EEG 
signals 

Bengali 
vowels 

EEG signals 
recorded - 
Convolutional 
Neural Network 
(CNN) employed for 
classification 

Convolutional 
Neural Network 
(CNN) 

Achieved high 
accuracy in 
distinguishing 
Bengali vowels 
from EEG signals 

Limited to Bengali 
language; Potential 
challenges in 
generalizing to other 
languages 

Arman 
Hossain et 
al. 
2023 
(Hossain, 
Das et al. 
2023) 

Recognition of 
Bengali vowels 
and numbers 
from EEG data 

Bengali 
vowels, 
numbers 

EEG signals 
recorded using a 14-
channel EEG 
headset - Random 
Forest classification 
utilized for 
differentiation 
between vowels and 
numbers 

Random Forest Obtained notable 
accuracy in 
distinguishing 
Bengali vowels and 
numbers from 
EEG data 
 

Relatively small sample 
size; Further validation 
needed for real-world 
applications 

Stephanie 
Martin et al 
2016 
(Martin, 
Brunner et 
al. 2016) 

Classify 
individual words 
during imagined 
speech 

English High gamma (70–
150 Hz) time 
features with SVM 
model 
 

Support Vector 
Machine (SVM) 

Classification 
accuracy of 88% 
was achieved for 
individual words 
during imagined 
speech 

Lower classification 
accuracy compared to 
listening and overt 
speech conditions 

Brigham & 
Vijaya 
Kumar 
(2010) 
(Brigham 
and Kumar 
2010) 
 

Imagined 
syllable 
classification 
 

- EEG signals were 
recorded while 
imagining /ba/ and 
/ku/ syllables 
 

Auto-Regression 
(AR) coefficients 
 

Classification 
accuracy varied 
between 56% to 
88%. Further 
enhanced to 
99.76% for subject 
identification. 

Limited sample size, 
specific focus on syllable 
classification 
 
 

Yoshimura 
et al. (2016) 
(Yoshimura, 
Nishimoto 
et al. 2016) 
 

Decoding vowels 
from imagined 
articulation 
 

Japanese 
vowels /a/ 
and /i/ 
 

EEG signals from 
imagining Japanese 
vowels 
 

Sparse Logistic 
Regression 
(SLR) 
 

Higher 
classification 
accuracy was 
achieved due to 
EEG cortical 
currents. 

Limited to Japanese 
vowels, small sample size 
 

Rojas & 
Ramos  et al 
(2016) 
(Rojas, 
Ramos et al. 
2016) 
 

Identification of 
Spanish vowels 
using imagined 
speech 
 

Spanish 
 

EEG signals from 
imagined Spanish 
vowels 
 

Symbolic 
Aggregate 
Approximation 
(SAX), Support 
Vector Machines 
(SVM) 

Achieved an 
accuracy of 
85.29% in 
classifying two 
Spanish vowels 

Specific to Spanish 
vowels, limited stimuli 
 

https://www.nature.com/articles/srep25803#auth-Stephanie-Martin-Aff1-Aff2
https://www.nature.com/articles/srep25803#auth-Stephanie-Martin-Aff1-Aff2


6030 Pravin V. Dhole et.al / Kuey, 30(5), 3894 

 
Gonzalez-
Castaneda 
et al. (2017) 
(González-
Castañeda, 
Torres-
García et al. 
2017) 
 

Enhanced 
classification of 
unspoken words 
using 
sonification and 
textification 
 

Spanish 
 

EEG signals during 
imagined speech of 
Spanish words 
 

Discrete Wavelet 
Transform 
(DWT), 
Sonification, 
Textification, 
SVM, Naïve 
Bayes, Random 
Forest 

High classification 
accuracy with 
sonification and 
textification 
methods 
compared to 
original EEG 
signal. 
 

Limited to Spanish 
words, potential bias 
introduced by 
sonification/textification 
 

Nguyen et 
al. (2017) 
(Nguyen, 
Karavas et 
al. 2017) 
 

Suitability of 
speech imagery 
for BCI 
 

- EEG signals during 
speech imagery 
 

Riemannian 
manifold 
features, 
Relevant Vector 
Machine (RVM) 

Classification 
accuracy of 70% 
for vowels and 95% 
for words. 
 

Specific to BCI 
applications, limited 
evaluation metrics 
 

 
The literature and table 3 are showing existed study on EEG-based imagined speech classification mostly 
concentrates on English, Spanish, Dutch, Bengali, Chinese, Japanese, and Hindi. Still, there is a clear study gap 
when it comes to Marathi and how imagined text is classified. Future research on imagined text classifications 
in Marathi seems promising, considering the language's cultural and linguistic importance. We can create 
classification models particularly for Marathi language processing by taking EEG data from people when they 
envision speaking or reading Marathi words, phrases, or sentences. In order to accommodate the linguistic 
peculiarities of Marathi, this may include modifying established techniques like Common Spatial Patterns 
(CSP), Support Vector Machines (SVM), Convolutional Neural Networks (CNN), Long Short-Term Memory 
(LSTM) networks, and others. Furthermore, studying the neurological correlates of Marathi imagined text may 
help create brain-computer interface (BCI) systems that are more inclusive and culturally appropriate. All 
things considered, researching imagined text classification in Marathi has the potential to advance 
neurotechnology more broadly and improve communication tools for Marathi-speaking communities. 
 

4. Discussion 
 
EEG signal analysis highlights the interdisciplinary method used to interpret brain signals for many purposes, 
especially in brain-computer interfaces (BCIs). The procedure starts with data gathering, in which brain 
electrical impulses are collected and refined to improve precision. The following phases include extracting 
features that identify significant characteristics and classifying them to understand these characteristics, using 
techniques that vary from frequency analysis to deep learning. The information shown in Table 2 highlights the 
wide range of uses of EEG-based BCIs in healthcare, gaming, communication, and research. Although these 
technologies have the potential for advantages including enhanced communication and cognitive 
improvement, problems like accuracy, user training, and ethical concerns must be resolved for general 
acceptance and dependability. EEG-based approaches show flexibility and potential in deciphering imagined 
speech and recognizing cognitive processes. EEG is a non-invasive technique for measuring brain activity, 
making it widely available and appropriate for many uses. EEG studies show significant progress in classifying 
imagined speech while being prone to noise and artifacts. Several techniques include Common Spatial Patterns 
(CSP), Support Vector Machine (SVM), Relevance Vector Machines (RVM), Long Short-Term Memory (LSTM) 
networks, and Convolutional Neural Networks (CNNs) have great accuracy in identifying imagined speech. 
EEG-based Brain-Computer Interfaces (BCIs) are used in healthcare, gaming, communication, and research 
fields, demonstrating the significant impact of using brain signals to control devices, improve communication, 
and investigate cognitive processes. Advancements in signal processing and machine learning methods are 
improving EEG's capabilities, making it a vital instrument for neurotechnological progress. 
 

5. Conclusion 
 
In conclusion, this research shows how combining artificial intelligence with EEG can be really helpful for 
Brain-Computer Interfaces (BCI) and understanding how we imagine speech. It's important because it helps 
us develop new ways for people to communicate and interact using just their thoughts. BCI, which use EEG 
technology can be super useful in different areas like healthcare, communication, gaming and boosting brain 
functions. The complexity of EEG data and the importance of multiple steps in the analysis process including 
data acquisition, pre-processing, feature extraction, and classification are explored in detail. Throughout the 
study our focuses on feature extraction techniques, including time-domain, frequency-domain, and time-
frequency domain analysis, have been highlighted for enhancing the classification of EEG-based imagined 
speech data. Linear classifiers, such as support vector machines and logistic regression, have been employed 
alongside neural networks, particularly convolutional neural networks (CNN) and artificial neural networks 
(ANN), to effectively analyze and classify EEG data associated with imagined speech. We found that machine 
learning and deep learning algorithms may potentially classify EEG signals with good precision. The study 
described our understanding of the use of BCI and EEG technologies for the classification and understanding 
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of imagined speech. It shows how working together across different fields and coming up with new ideas can 
help people with speech problems have a better life. As we keep studying and improving these technologies, 
there's a lot of hope that they can make a big difference in how people communicate and think, making it easier 
for them to express themselves and interact with the world. 
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