
Copyright © 2024 by Author/s and Licensed by Kuey. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Educational Administration: Theory and Practice
2024, 30(5), 6348 - 6353
ISSN: 2148-2403

https://kuey.net/ Research Article

Analysis Of Fine Granularity Locking In Complex Objects

Sonal Kanungo1*, R. D. Morena2

1* DPG Degree College, MDU University Gurugram. Email: sonalkanungo@gmail.com
2Department of Computer Science, Veer Narmad South Gujarat University, Surat. Email: rdmorena@vnsgu.ac.in

Citation: Sonal Kanungo, (2024) Analysis Of Fine Granularity Locking In Complex Objects, Educational Administration: Theory and
Practice, 30(5), 6348 - 6353
Doi: 10.53555/kuey.v30i5.3943

1. Introduction

Objects can represent as complex data [1]. Their complex relationships are characterized by combinations of
object relationships like Inheritance, Composition, Aggregation and Association. Inheritance characterizes a
'Parent-Child’ or ‘IS-A’ relationship [2]. Aggregation characterizes 'HAS-A' relationship. Association
characterizes as ‘IS-PART-OF' relationship [3]. The relationship is the connection between the entities.
Relationship can be described as connectivity, cardinality, or dependency. Connectivity is the occurrence of
an entity, which means the relationship with another entity is either ONE-TO-ONE, ONE-TO-MANY, MANY-
TO-ONE and MANY-TO-MANY [4].

1.1.1 Association
Relationship between single objects and many other related objects is known as an association. An
association is a “Use-A” relationship between two or more objects in which the objects have their own life
time and there is no owner [5].

Figure-1 Association

1.1.2 Aggregation
Aggregation is a specialized form of association between two or more objects in which the objects is having its
own life-cycle with ownership as well. Aggregation is a stronger form of association, representing the ‘HAS-A’
relationship between a component object and an aggregate object [3].

Figure 2 Aggregation

Student Course Teacher

Takes Teaches*

1

*

*

ARTICLE INFO ABSTRACT
 Object-oriented database (OODBMS) has the capacity to support reference

objects of complex structures, making them ideal for complex data
demonstration. They provide a seamless integration between the application's
data model and its programming language, facilitating easier and more efficient
development processes. Additionally, OODBMS are employed in CAD/CAM
(Computer-Aided Design/Computer-Aided Manufacturing) systems,
telecommunications, scientific research and simulations. OODBMS has complex
nature, therefore complex concurrency control mechanisms are needed and also
that this mechanism should not degrade the performance of OODBMS. In this
paper we are discussing how locks will implement on complex objects.

Keywords: Composite object, Association, Inheritance, Composition, Locking,
Multiversion, Concurrency control, Serialization.

https://kuey.net/
mailto:sonalkanungo@gmail.com
mailto:rdmorena@vnsgu.ac.in

6349 Sonal Kanungo / Kuey, 30(5), 3943

1.1.3 Composition
A Composition is strongest form of association where composite is solely responsible for managing its
components including creation and destruction of these components. In this relationship child objects do not
have their lifecycle without parent object [3].

Figure-3 Composition

1.1.4 Inheritance
Inheritance is a directed relationship between two classes of the same kind. One class is called parent and
other is called the child. Parent class is also known as superclass and child class is called subclass. The parent
has set of instances with common properties [6]. All children have properties of super class but also have
additional properties of subclasses too. The relation between a subclass and its superclasses which is known
as “IS-A” [7].

Figure 4 Inheritance

2. Concurrency Control

Several transactions can run concurrently in shared database. The system must control the interaction among
the concurrent transactions; to control this variety of mechanisms can be implemented on data which are
known as concurrency-control schemes.
There are different concurrency control techniques are present such as locked based, two-phase locking,
Optimistic, timestamping and Multiversion currency control etc [8,9,10,11]. In Lock-Based Protocols: For
concurrent access to a data item, the lock mechanism is employed. Only when a lock is in place on a data item
is authorization granted to access it. Only if the request is approved can the transaction proceed. There are
two ways that data objects can be locked: sharing mode (S) or exclusive mode (X)[8]. Exclusive-mode lock is
provided for transactions that have the ability to read and write from the data item X. Data item S receives a
shared-mode lock for transactions that can read but not write to it. [8].

2.1 Two Phase Locking
During the first stage, referred to as the growth phase, a transaction obtains all the locks that it requires. The
process releases the locks during the second phase, which is referred to as the shrinking phase [8]. A process
must relinquish every lock, wait, and restart if it is unable to obtain every lock during the first phase [8].

2.2 Timestamp-Based Protocols
In this algorithm, the timestamp is given to a transaction when it begins [10]. The timestamp has to be
unique with respect to the timestamps of other transactions. Here, Wtimestamp is the largest time-stamp of
any transaction that executed write successfully and R-timestamp is the largest time-stamp of any transaction
that executed read successfully are kept. Any conflicting read and write operations are executed in timestamp
order [14].

2.3 Validation-Based Protocols
This is also called as optimistic concurrency control since transaction executes fully in the hope that all will go
well during validation [10]. Validation-based protocols function under the presumption that read-write
conflicts between transactions happen infrequently. This permits unrestricted access to shared data items

Clock Battery*1

Hands Face

Vehicle

ShipBicycleCar

6350 3943 / Kuey, 30(5), Sonal Kanungo

while processing transactions. In order for a transaction to be committed, the DBMS must verify that there
were no conflicts. Conflict resolution mainly leads to transaction abort [15].

2.4 The Multiversion Methods
The Multiversion mixed method uses the Timestamp ordering and Two-phase locking with multiple versions
of data [11]. A timestamp is attached to each piece of data along with its version. Transactions involving
multiversion updates adhere to the strict Two-phase locking (2PL) standard [8]. The read and write locks are
held by the update transactions until the transaction is completed. While the transaction is holding the write
lock, read-only transactions are still able to access the committed version of the data [16]. The readings never
have to wait because of the prompt appropriate version return [17]. It offers more flexibility in managing the
request of reads and writes since readers can read any version and writes cannot overwrite each other [18].

2.5 Multi Granularity
Everything in the database needs to be secured in the case where the transaction needs access to the entire
database and the locking protocol has been used. This process takes a very long time. Because of this, the
entire database is locked for improved efficiency. As such cases the lock must implemented to different
granularities. The multi-granularity locking algorithm can be represented graphically as a tree [19]. Top-
down order or the leaf to root structure is proposed by various granularity protocols [20]. This technique
provides object-oriented concepts for fine granularity for design time requests to access data in system [21].

3. Review of Literature

WON KIM, JAY BANERJEE, HONG-TAI CHOU, JORGE F. GARZA, DARRELL WOELK The authors
propose a new object-oriented database ORION, which implements composite objects. WON KIM, ELISA
BERTINO, JORGE F. GARZA The authors present a new model of composite objects developed for a number
of different properties. This includes independent, exclusive, dependent exclusive, independent shared, and
dependent shared composite references. JAY BANERJEE, WON KIM The authors suggested the results of
various issues of schema evolution such as dynamic definition and subsequent changes to a database schema
in an object-oriented database environment. The framework is based on a graph-theoretic model of the class
lattice with multiple inheritance. WOOCHUN JUN AND LEE GRUENWALD Authors discuss three
significant issues in object-oriented database management system (OODBMS), such as semantics of methods,
nested method invocation and referentially shared object. K.P. ESWARAN, J.N. GRAY, R.A. LORIE, AND I.L.
TRAIGER The authors discussed the notions of transaction, consistency, and locking. It has been argued by
authors that consistency is required between transactions, whether be two-phase and well-formed or
conversely that if all transactions are well-formed and two-phase then any legal schedule is consistent. H.T.
KUNG and JOHN T. ROBINSONS Authors propose two groups of nonlocking concurrency. The techniques
used are ‘optimistic’ as they depend fundamentally on transaction backup as a control mechanism, ‘hoping’
that conflicts won’t incur between transactions. CHRISTOS H. PAPADIMITRIOU, PARIS C. KANELLAKIS
discussed problem of concurrency control when the database management system supports multiple versions
of the data and multiversion methodology.

4. Methodology

Transactions are arranged in queue and served as they come to system, with timestamp given when they are
created. Transactions are considered to be approved if the lock mode is compatible with the existing
transaction. In case of incompatibility, new transaction will go to Wait. Transaction’s locking synchronizes by
mutual exclusion. A transaction must acquire a lock before accessing a data item on that object from the
OODBMS. The concurrency control technique will grant a lock request only if the data item is not currently
locked by another transaction. Else, it will force the requesting transaction to wait.

4.1 Locking for Objects
The transaction can request to access an object. This object can be the independent or dependent object.
When we are accessing the independent object in our proposed scheme, will lock this object only. If this
object is not independent then it can be either composite or associative object. It maintains reference
identifications of all related objects so that it is easy to lock related objects. Whenever some client requests
composite object, in order to maintain the consistency, the object lock is also applied to all component
objects. Lock mode of component and container object will be in the same mode. Association can be
described also as ‘HAS-A’ relationship between objects. In the case of Association, independent life cycle of
reference object exists. Object lock is set on the associative object to maintain the consistency. Furthermore,
even if the associated objects are having a lock, the associative object will not possess the same lock. During
the locking process, associative objects are allowed to be used by various clients.

6351 Sonal Kanungo / Kuey, 30(5), 3943

4.2 Locking for Classes
In the proposed scheme it is possible that the class transactions can request for the single class as well as
related classes, component classes, associative classes or inherited classes.
In composition when a transaction is requesting the lock and if there is no lock or compatible lock exist on
class; class and its component class will lock in the same mode. In Association
When a transaction is requesting the lock and if there is no lock or compatible lock exist on class; individual
class will be locked as in association classes are independent. In Inheritance
with the proposed scheme, when a class transaction is made for a base class, the requested lock mode is set
on the class. Then the lock is inherited to all its children including the edges. When a change is made on the
definition of an attribute/ method/ instance/ relationship or the class itself, all the classes related to this class
(called subclass lattice) should also be locked in the same lock mode to maintain the consistency. In a
transaction, a share mode is assigned to the primary class and its subclasses, and to the domain classes and
their subclasses. However, in an update transaction, an exclusive mode is assigned to the primary class and
its subclasses, and to the domain classes and their subclasses.

5 Results and Analysis

This simulation examines the behavior of the algorithms under a mix of transactions for which our
methodology is designed. The mix used here consists of Update transactions and Readonly transactions.
Update transactions and Readonly transactions are varied from small to very large as a fraction of the overall
database size. The modified algorithm that combines two different types of multiversion control concurrency
and that includes the MVTO and the MVPL.
The transactions generated in serialized manner. Readonly transaction are actually assigned a proper
timestamp which clearly corresponds to its actual start time and it can also always refer to a proper version.
Each version is having have different maximum timestamp. Transaction requesting timestamp is less than
version’s timestamp. When different versions are created each of them is assigned the with write-stamp
which corresponds to its commit time. Locks conflicts which are blocked, are the main cause of deadlocks.
Deadlock can be resolved by aborting the victim transaction. Aborted transaction will be restarted by the
system at a later time without user intervention.

Figure-5

224

115

26

0
0

50

100

150

200

250

Commit Wait Deadlock Abort

Concurrency control for Transactions Involving Operations
only on Objects

6352 3943 / Kuey, 30(5), Sonal Kanungo

Figure-6

An object may be associated with multiple objects. A finer level of granularity of locking experiences more
lock overheads but reduces the level of lock conflicts.
The finest granularity is achieved for class content level operations. The other design operations are also
divided into subclass lattice and class lattice level operations. Concurrency control on the write-read conflicts
and write-write conflicts between classes related by inheritance and aggregation for both classes as well as
object accesses is achieved. Concurrency control technique is providing granularity lock model for fine
granularity among class transactions and object transactions. The purpose for the algorithm fulfills user’s
expectation in terms of high number of commit and better throughput.

Conclusion

The new concurrency control mechanism provides database integrity and consistency. Our proposed scheme
gives a version of classes and objects which will give better performance for Readonly transactions to enhance
concurrency control.
Composite object is also used as the unit of locking so that the number of locks that must be set are
minimized in retrieving a composite object from the database.
It improves the performance with a finer granularity of locking and reduces locking overhead. It provides
concurrency control method, with the emphasis on high-performance; high-contention transaction
processing environments, and provided a self-complete description of locking, which combine locking and
multiversion.

Conflict of Interest

The authors declare no conflict of interest.

Reference

1. JAY BANERJEE, HONG-TAI CHOU, JORGE F. GARZAWON KIM, DARRELL WOELK, and NAT
BALLOU(1987). Data Model Issues for Object-Oriented Applications, ACM Transactions on Office
Information Systems, 5(1), 3-26.

2. BANERJEE. J., W. KIM, H.J. KIM, AND H.F. KORTH(1987). Semantics and Implementation of Schema
Evolution in Object-Oriented Databases, in Proc.ACM SIGMOD Conference.

3. WON KIM, JAY BANERJEE, HONG-TAI CHOU, JORGE F. GARZA, DARRELL WOEL(1987).Composite
Object Support in an Object-Oriented Database System, OOPSIA, 87.118-125.

4. RUMBAUGH J(1987). Relations as Semantic Constructs in an Object-Oriented Language, SIGPLAN
Notices, 22(12).466-481

5. GARZA, J. E, AND W. KIM (1988), Transaction Management in an Object-Oriented Database System, In
Proc. ACM-SIGMOD Intl. Conf. on Management of Data, Chicago.

6. WON KIM, ELISA BERTINO, JORGE F. GARZA (1989). Composite Objects Revisited, ACM, 337-347.
7. JAMES RUMBAUGH MICHAEL BLAHA WILLIAM PREMERLANI FREDERICK EDDY WILLIAM

LORENSEN (1991). Object-Oriented Modeling and Design , Prentice Hall.
8. K.P. ESWARAN, J.N. GRAY, R.A. LORIE, I.L. TRAIGER (1976). The Notions of Consistency and

Predicate Locks in a Database System. Communications of the ACM, 19(11), 624-633.

776
741

130

0
0

100

200

300

400

500

600

700

800

900

 Commit Wait Deadlock Abort

Granular Locking For Object and Class Transactions(mix)

6353 Sonal Kanungo / Kuey, 30(5), 3943

9. DAVID P. REED (1983). Implementing atomic actions on decentralized data. ACM Transactions on
Computer Systems,1(1), 3-23.

10. H.T. KUNG, JOHN T. ROBINSON (1982). On Optimistic Methods for Concurrency Control. ACM
Transactions on Database Systems, 6(2), 213-226.

11. CHRISTOS H. PAPADIMITRIOU, PARIS C. KANELLAKIS (1984). On Concurrency Control by Multiple
Versions. ACM Transactions on Database Systems, 9(1),89-99.

12. PHILIP A. BERNSTEIN and NATHAN GOODMAN (1983). Multiversion Concurrency Control-Theory
and Algorithms. ACM Transactions on Database Systems,8(4), 465-483.

13. ERIC A. BREWER (2000). Towards robust distributed systems. Conference: Proceedings of the
Nineteenth Annual ACM Symposium on Principles of Distributed Computing,1,1-7.

14. SONAL KANUNGO, R.D. MORENA (2015). Analysis and Comparison of Concurrency Control
Techniques. International Journal of Advanced Research in Computer and Communication
Engineering, 4(3), 245-251.

15. SONAL KANUNGO, R.D. MORENA (2016). Comparison of Concurrency Control and Deadlock Handing
in Different OODBMS. International Journal of Engineering Research and Technology, 5(5), 492-498.

16. SONAL KANUNGO, R.D. MORENA (2018). Evaluation of Multiversion Concurrency Control
Algorithms. International Journal of Research in Electronics and Computer Engineering, 6 (3), 807-
813.

17. SONAL KANUNGO, R.D. MORENA (2019). Effective Correctness Criteria for Serializability in
Multiversion Concurrency Control Technique (2019). International Journal of Innovative Technology
and Exploring Engineering (IJITEE),8(12),1674-1653.

18. SONAL KANUNGO, R.D. MORENA (2017). Issues with Concurrency Control Techniques. International
Journal of Electrical Electronics & Computer Science Engineering Special Issue - AET 2017,1-6.

19. SONAL KANUNGO, R.D. MORENA (2017). SEMANTIC MODEL FOR COMPLEX OBJECT IN OBJECT
ORIENTED DATABASE”, International Journal of Advanced Research in Computer Science, 8(15),
1651-1655.

20. WAI LAM, YALIN WANG, AND YONGBING FENG, Concurrency Control in Object-Oriented Databases.
46-65.

21. WOOCHUN JUN AND LEE GRUENWALD (2000), A Multi-Granularity Locking-Based Concurrency
Control in Object Oriented Database System, Elsevier Journal of Systems and Software, 201-217.

