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ARTICLE INFO ABSTRACT

The study covers the potential of managing large Internet of Things (IoT) networks,
such as Smart City network using the Software-Defined Networking (SDN)
approach. A hierarchical tree topology provides an efficient and scalable solution for
connecting a vast number of IoT devices in a Wide Area Network (WAN). The tree
topology makes it simple to manage and add or remove IoT nodes from the network
due to its hierarchical structure. Additionally, the topology can be highly fault-
tolerant, as each IoT node has redundant paths to the root node. By implementing a
1024-node IoT network with a hierarchical tree topology and leveraging the Ryu
controller for centralized management, we aim to investigate the performance
characteristics of such a network. Performance evaluation conducted for network
size of 4,8,16,144 and 1024 hosts for TCP and UDP traffic using Mininet that is
network emulation tool, Iperf used for bandwidth and Throughput analysis, and
Ping for latency and packet loss measurements. The findings will offer valuable
insights for optimizing large-scale IoT deployments.

Keywords—Internet of Things IoT, Software Defined Networking, SDN, Large
Scale Networking, WAN, IoT Nodes or hosts.

1 Introduction

IoT networks of substantial size, which encompass a multitude of connected devices or "things," are known as
large IoT networks. These devices gather and transmit data across the internet, and the scale of these wireless
and wired networks can range from modest deployments within domestic or professional settings to vast
networks that extend over entire cities, industries, or even nation-states.

Large-scale IoT networks possess several critical features and factors, including scalability, which enables the
connection of thousands, millions, or even billions of devices, encompassing a wide range of capabilities,
communication protocols, and data formats. These devices span across sensors, actuators, smart appliances,
vehicles, and high-end GPU processors. The communication in IoT networks is typically facilitated through a
diverse array of connectivity technologies, such as Wi-Fi, Bluetooth, cellular networks (LTE/3G/4G/5G),
LPWAN technologies like LoRaWAN or NB-IoT, Zigbee, or Ethernet. The devices in these wireless networks
may vary in their capabilities, communication protocols, and data formats.

Managing and safeguarding the copious amounts of data produced by IoT devices presents a substantial
obstacle. The design of extensive IoT networks must consider the need for dynamic scaling as the number of
connected devices increases. To facilitate growth and adaptation, scalable architectures, adaptable protocols,
and modular solutions are necessary. It is also crucial to ensure interoperability and power management from
a centralized location in large-scale deployments.

Effective monitoring and management tools are indispensable for ensuring the proper functioning, health, and
security of IoT deployments. These tools include centralized dashboards, analytics platforms, and remote
device management solutions that allow administrators to oversee, diagnose, and enhance the performance of
IoT networks with ease.

To develop IoT network using the principles of Software-Defined Networking (SDN) to ensure efficiency,
scalability, and flexibility by making network management programmable and supporting a wide range of IoT
applications. Incorporate IoT devices into the SDN architecture through the utilization of IoT gateways or edge
computing nodes. In this study as depicted in Fig. 1, we design an IoT network for 1024 devices using a tree
topology on Mininet and assess its performance using Ping and Iperf as metrics.
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The paper's structure is as follows: In Section 2, the Literature Review is discussed, where pertinent papers in
this area are examined. This is followed by Section 2, which discusses the methodology. This section includes
the methodology followed to perform the proposed research as depicted in Fig.1. mininet emulator is used to
build up a custom Tree topology IoT network under the SDN environment. Followed by the implementation of
the Ryu controller in the SDN. In the Mininet tree topology, the implementation of an Ryu controller was
done. Once the network is successfully build, thereafter the data traffic is generated from source IoT
node(hosts) to destination IoT node(hosts) using the Wireshark traffic analysis tool. Here Hosts and IoT
nodes or devices terms can be used interchangeably. Lastly, the performance of the finally designed Tree
topology IoT network using the Ryu controller is evaluated based on various metrics, Section 3 will provide the
detailed study of Implementation and Result analysis will be done. Section 4 concludes the paper.

Literature Review

The traditional network architecture is deemed insufficient to serve the demands of Large IoT applications, as
a significant portion of the network capacity is currently being utilized [1,2]. The majority of data traffic within
the network is transmitted through the reliable Transmission Control Protocol (TCP), which offers several
advantages such as congestion control, improved bandwidth, and reliable communication [3]. In light of the
substantial demand for network usage, it is crucial to modernize the traditional network architecture for
working on IoT networks like Smart cities [4]. This paper also discuss security of IoT networks.

In the traditional network architecture, the network node serves as the data and control plane, and end-to-end
hosts working on Big Data processing like Hadoop tool [5]. As per the survey done by Farhady et al, the
traditional network design combines plane in the same device [6,8]. However, there is no abstraction rule for
the control plane across the entire network, It is impossible to visualize the global network perspective from
centralized location and it requires manual configuration for each device including wearable sensors [7]. The
traditional architecture of single controller has constraints such as limited scalability, reliability, and
compromised security [8], this study includes multiple controllers to manage individual network domains and
communicate with each other to provide end-to-end network services. This complexity in manual
configuration is the primary reason for the limitations of the traditional network architecture. The survey done
in [9] delves into key areas of SDN traffic engineering, including flow management, fault tolerance, topology
updates, and traffic analysis. To overcome these shortcomings of network, Network programmers have
proposed a new paradigm called software-defined networking (SDN), which provides facility for designing or
configuring the large network easily and supporting programmable centralized controller by partially
deploying SDN which manages the control plane with a global network perspective [10]. It proposes a novel
and practical solution for cost-effective measurement systems in such deployments, along with a
synchronization mechanism for aggregating traffic statistics from multiple controllers [11]. Here emulation is
done on datacenter topology.

This paper introduces SEAL (Secure and Agile), a novel Software Defined Networking SDN-based framework
designed to adaptively protect smart city applications from DDOS attacks, Collectively the framework’s
modular architecture ensures fault tolerance scalability and reliability, while experimental evaluations
demonstrate its effectiveness in combating DDOS attack [12]. There are two types of application programming
interface (API) operating for communication in SDN that is southbound and northbound API. The
communication between the control plane and the data plane handled by the southbound API. Similarly
northbound API is responsible for the communication between the control plane and management plane. This
discusses the integration of SDN with IoT gateway nodes to enhance network management efficiency,
implementing an Ethernet packet frame-based routing algorithm to improve Quality of Service [13] for the
large network architecture. The SDN controller network operating system (NOS) operates within the control
plane of the SDN environment, to manage network from the centralized location and provide software-based
services and handle network traffic successfully. This paper proposes a reward based formal model, SDN R, to
compute real time QoS, By separating time based reliability from other QoS parameters and utilizing
Extended Time Automata [14].

This study proposes Software-defined architecture for Cyber-Physical Systems and IoT applications, focusing
on scalability, flexibility, and cybersecurity. It uses smart agents, decentralized control, and in-network data
processing [15]. Suarez-Varela et al proposed a scalable flow monitoring solution compatible with existing
OpenFlow switches. Leveraging DPI and Machine Learning techniques, Here flows are classified ad data and
enhancements you will ultimately determine than this one isn’t as especially web and encrypted traffic, with
two sampling methods tailored to OpenFlow features [16]. [17] In this Author explores the application of SDN
in WSN, creating a Software-defined wireless sensor Network (SDWSN), Highlighting challenges in network
management and configuration. The focus is on studying these challenges to enhance security efficiency, and
reliability, with insights drawn from literature on SDN, WSN, and SDWSN architecture. [18] This study
reveals the performance of various SDN controllers including NOX, Floodlight, ONOS, POX focusing on
metrices like throughput and round-trip time. Using a Mininet emulator with an RYU controller, the research
assesses parameters like bandwidth, throughput, round trip time, jitter, and packet loss, providing insights
into the effectiveness of SDN architectures. The implementation of the SDN architecture is performed in the
Mininet emulator. RYU controller is used for a custom-designed tree topology comprising network nodes
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more than 1000 under one topology, and an OpenFlow switches. The proposed work aims to conduct an in-
depth performance analysis of the SDN based IoT network Tree topology architecture for various parameters,
such as the number of transmitted and received packets, minimum, average and maximum bandwidth, round
trip time and throughput with and without acknowledgement and standard deviation in time(milli seconds)
among others. The RYU controller in an SDN environment in case of UDP transmission is evaluated based on
data traffic parameters, including throughput, packet loss, delay and bandwidth. The experimentation is
performed in the Mininet emulator using OpenFlow switches. While some authors have investigated the SDN
environment's performance for a default topology, deeper discussion of the SDN environment's performance
for a custom topology is required because of dynamic IoT networks node addition and deletion. Queiroz et al.
[19] paper proposes a Big data streaming approach to collect and process counter values, offering detailed
insights into network resource utilization and enhancing TE capabilities, as validated by experimental results
conducted by the author. Further the authors measure the usage of network resources in the SDN
environment and suggested solutions for enhancements to improve SDN architecture performance. Badotra
et al. [20] conducted a comparative study of the performance of two leading open-source SDN controllers,
namely Open Networking Operating System(ONOS) and Open Daylight (ODL), using Mininet emulation and
Wireshark analysis. Results indicate superior performance of the ODL controller over ONOS in terms of burst
rate, throughput, bandwidth, round trip time, and data transfer.

In [21], Priya et al. discussed the functionality of the SDN controller within the control plane of the SDN
environment. This controller depends on the Network Operating System (NOS) to deliver topology, traffic
management services, virtual services, and network applications. The southbound API facilitates
communication between the control plane and the data plane, while the northbound API enables
communication between the control plane and the management plane. NOX/POX, OpenDayLight, beacon,
floodlight, RYU are some of the various types of SDN controllers.. These controllers act as the "central
processing unit" of the SDN architecture. The primary purpose of these controllers is to improve the resource
utilization and enhance the network performance in the SDN environment.

The authors of paper [21] compared the performance of various OpenFlow controllers, such as NOX, POX,
Ryu, FloodLight, and OpenFlow reference controller, based on packet handling capacity and parameters like
packet size and traffic flow patterns. To measure the performance in terms of delay, jitter, throughput and
packet loss, distributed internet traffic flow generator (D-ITG) tool was used.

The research indicated that the FloodLight controller demonstrated superior performance in both throughput
and delay when compared to other controllers. The authors propose that future investigations expand on these
findings by conducting a comparative analysis involving the OpenContrail controller and OpenDayLight
controllers.

Wang et al. proposed a UDP-based reliable transmission framework aimed at improving the efficiency of TCP
transmission on SDN-enabled networks. By leveraging SDN technology to customize flow rules and designate
packet routes, the framework reduces TCP overhead significantly, ensuring reliable packet delivery with
improved bandwidth usage [28].

In another study, Tootoonchian et al. [27] emphasized that controller responsiveness is the primary factor in
deciding whether additional controllers should be deployed. While multiple controllers are necessary for high
availability and maintaining low response times, it seemed feasible to maintain a consistent logically
centralized view of the network across controllers. Finally, the study noted that understanding overall SDN
performance remains an open research problem, and its single controller microbenchmarks are just a first
step towards comprehending the performance implications of SDN.

In a separate study, Bhatia et al. [22] proposed a data-driven approach, integrating Software Defined
Vehicular Networks (SDVNs) and machine learning, to predict vehicular traffic behavior accurately. Utilizing
clustering algorithms and a long short-term memory neural network (LSTM-NN) architecture, the model
achieves a high level of accuracy, equivalent to 97%, in real-time traffic density prediction.
Additional investigation is required to evaluate the effectiveness of the suggested model in alleviating traffic
congestion within vehicular networks.

Lu Yu et al. [29] introduced an alternative network architecture to counter vulnerabilities in destination IP
prefix-based routing, proposing dynamic IP assignment via SDN to enhance security. By implementing three
strategies through SDN, it enables scalable transformation of Internet addressing paradigms, offering flexible
IP addressing and customizable network services. They suggested that future research work could be done to
improve the security of the SDN architecture.

Amin et al. [23] did an extensive survey of several hybrid SDN environments and identified research gaps and
existing solutions. They proposed the development of an automated and dynamic system for managing SDN
networks.

A Study was conducted by Singh and Jha [24] to compare the algorithms for SDN control panel performance
based on latency, jitter and Q factor values. It was concluded that a centralized programmed architecture
outperformed other architectures. For further improvement, author recommended to do a load balancing
between multi-controller arrangements in a SDN network.
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Akyildiz et al. [25] outlined the state-of-the-art in traffic engineering for SDN, highlighting core aspects like
flow management and fault tolerance, and discussing associated challenges. Moving forward, future steps may
involve further exploration and development of novel traffic engineering solutions to address the evolving
needs of SDN networks.

Bholebawa et al. [26] did a performance comparison of two SDN controllers, POX and Floodlight across
different SDN topologies. They found that Floodlight showed improvement over POX in throughput and
roundtrip time for single, linear, star and custom topologies.

As per available information, RYU stands out as a prominent SDN controller tailored for enhancing network
agility in traffic engineering contexts [18]. However, a notable gap exists in research concerning the
implementation of SDN architecture using a custom-designed topology and conducting a comprehensive
analysis of diverse network performance metrics employing the RYU controller [18]. This study seeks to bridge
this gap by focusing on deploying the SDN architecture with the RYU controller within the Mininet emulator,
utilizing a specifically tailored tree topology. The investigation aims to assess various node-to-node
performance metrics of the SDN network, including throughput, bandwidth, and round-trip time, leveraging
the capabilities of the RYU SDN controller.

2 Problem Definition:

Table 1 highlights the problem statement through several key facets: firstly, it emphasizes the significance of
the proposed investigation; secondly, it delineates the specific domain where the research problem manifests;
and finally, it outlines the framework for presenting the research findings.

Table 1. Problem definition

Domain of Study Research Focus Methodology

Investigating the impact of SDN Ryu Evaluation of host-to-host metrics
Large IoT Networks controller performance with RYU SDN controller

Specific Domains (e.g., Identifying the need for high- Examination of the significance of
Smart Healthcare, Smart performance controllers in diverse SDN controller performance in
City, Smart Transport) IoT applications enhancing network capabilities

Addressing the gap in research

regarding traffic performance Proposing a framework  for

assessment with the RYU SDN comprehensive traffic performance
Traffic Engineering for SDN controller evaluation in SDN environments

SDN allows for centralized management of network resources, which can be particularly useful in IoT
deployments with a large number of devices. Through a centralized controller,dynamically allocate resources,
monitor network traffic, and apply security policies, providing greater control and flexibility. Here
experimentation is done for that

3 Methodology:

ppinent Ryu SON controlied i the SON emdmonmen)

Cenerare %aal Time camm zafic from Caent o Sarver Host or loT nodes

h o M1924 ping IPERF and PING command

Peromance evahation and companzan of Network Taffe using RYU
riyoler 1 SDN

Methodalogy of the performance evaluation of Large JoT Network of 1024 Nodes designed
using SON RYU controfler

Fig 1. Methodology of Ryu SDN controller
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Methodology as mentioned in Fig 1, is followed in the given below work.

3.1 Setup Mininet Environment:

Integration with Mininet Environment:

Set up the simulated network using Mininet, replicating the tree topology implemented and run as shown in
Figure 2 below. Configure Mininet to emulate the behavior of switches, controller switch co, and 1 Distribution
switch connected with other 32 switches via its 32 ports. With every port of S2-S33 switch, 32 IoT devices or
hosts or IoT nodes connected from port1 to port 32 within the virtualized environment. Integrate Mininet with
an RYU controller to enable centralized control and management of the virtual network. Figure 4 shows all the
nodes in IoT network implemented on Mininet.

Figure 2 is the creation of 1024 nodes on mininet emulation platform using Ryu controller and it handles here
1024 hosts using 32 switches directly . It is using tree topology structure .

Jexampies

Fig 2. Implementation of Custom network of 1024 nodes using 33 switches using SDN
running on Mininet and Ryu.

Traffic engineering and Quality of Service (QoS) policies can be implemented within the Ryu ccontroller to
prioritize and optimize IoT traffic. Define rules for traffic shaping, prioritization, and routing based on the
requirements of different IoT applications and services.

Setup Steps are given below-

Install Mininet on system.

Launch Mininet using the appropriate command.

Create the Tree Topology:

sudo mn —topo tree, depth=2,fanout=32

network = TreeNet( depth=2, fanout=32, host=HostV4,

switch=0VSSwitch, waitConnected=True).

Once the topology is created, assign unique IP addresses to each node in the network. To automate this
process using Python scripts or manually assign IP addresses using Mininet's command-line interface is
possible.

SDN Controller:

Implementing an SDN RYU controller (co) at the root/core switch facilitates centralized management and
control of the network. This controller communicates with all switches in the network using protocols such as
OpenFlow to dynamically program forwarding rules and optimize traffic flow. RYU is an open-source and
component-based SDN controller, licensed under Apache 2.0, and its name means “flow” in Japanese,
reflecting its function of directing flow control for innovative network management. The RYU controller
supports several protocols for managing the network, including the Network Configuration Protocol and
OpenFlow protocol versions 1.0 to 1.5, and it is implemented in the Python programming language.

The RYU SDN controller's architecture is divided into three planes: the application layer, the network layer,
and the physical layer [34]. The lowest layer is the physical layer, which includes various physical and virtual
devices connected to the internet to communicate with one another. This layer is sometimes referred to as the
infrastructure Layer .The structure in question comprises three tiers: a base layer, a middle layer, and a top
layer. The base layer is made up of a variety of IoT devices and hosts that are positioned on the same level. The
middle layer, often known as the control layer, manages the flow of data traffic between nodes to maintain
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network stability without incurring excessive overhead. The interface between the physical layer and the
application layer is facilitated through well-defined Application Programming Interfaces (APIs)[35] known as
southbound interfaces, such as Network configuration protocol , OpenFlow, and OF-config. Finally, the
topmost layer, known as the application layer, consists of end-user applications, including network and
business logic. The objective of these applications is to centralize network intelligence at a single location,
known as the controller.

3.2. IoT Network Topology:

Designing a large 10T network using a tree topology involves structuring the network in a hierarchical manner,
with a root node (or core switch) at the top and multiple levels, here level 2, of branches (or distribution
switches) connecting to edge devices (1024 IoT devices or hosts).

Here's a conceptual design of the network using a tree topology as shown in Figure 3:

Fig 3. IoT Network using Tree Topology

Root/Core Switch:

At the top level, have a powerful root/core switch that serves as the central point of control for the entire
network. We name that switch as controller co.This switch connects to distribution switches at lower levels
and provides high-speed connectivity and routing capabilities. Total 33 switches excluding controller used in
this design.

Distribution Switches:

At the second level, the network is managed by S1 distribution switch. S1 distribution switch connects to the
root/core switch and serves as a gateway for a specific subset of S2-S33 distribution switches. Distribution
switches can be strategically placed to efficiently route traffic and minimize latency. here using tree topology,
we have one switch S1 having 32 ports connected to other 32 Switches and one port connected to Root switch.
Number of switches and their port and link connections are shown in Figure 4,5 and Figure 6.1,6.2.

IoT Devices(Hosts,1024) or Access Switches :

At the third level,1024 IoT devices or hosts encompass a variety of sensors, actuators, controllers, and other
smart devices deployed throughout the network. These devices communicate with each other and with
centralized controller to collect and transmit data. Sometimes it is possible to connect access switches to each
distribution switch. Access switches provide connectivity to a group of IoT devices or end devices within a
localized area or zone.
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Fig 5. Ports in proposed IoT Network Topology

i.' < o e : - \ - PR
Fig 6.1. Links in Proposed IoT Network Topology

In Fig 5, its clearly define that switch S1, port number, 1-32, are connected to Switches S2-S33. The links as
shown in Figure 6, in between switch S1 and switch numbers S2 -S33 are making tree topology. S1-eth33 port
of Switch S1 is connected to controller co.
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Fig 6.2. Links of Switch S33, in Proposed IoT Network Topology

the roles of core switches(S1), distribution switches(S2-S33) and Hosts(hi1-h1024). Each distribution switch S2
is connected to 32 hosts and similarly S2-S33 switches connected to 32*32 that is 1024 hosts. Switch S1 is
connected to Switch S2 to S33 as shown in Figure 6.1.

Performance Monitoring of Network:

This section mentions the results obtained for the SDN large IoT network performance evaluation through the
RYU SDN controller. The performance parameters considered such as bandwidth , throughput(Gbps), round
trip time(milli seconds)have been measured under TCP, UDP data traffic using benchmark tools like Iperf
as well as Ping. Deploying monitoring tools Ping and Iperf to monitor the virtualized network environment
and track the performance of IoT network. Utilize SDN-based analytics to gain insights into network traffic
patterns, device behavior, and performance metrics is also possible.

Figure 7 presents the connections among different ports. Here, the host h1024 is connected to the TCP port
5001 via IP 10.0.4.0, and the default size of the TCP window taken is 178(no ack) and 85.3 Kb. The
experimentation shows the interval between the client host and the server host, the transfer rate, and the
bandwidth of the particular connection.

Fig 7. TCP window size in SDN IoT Network 1024 hosts tree topology

Throughput represents the actual amount of data traffic processed via controller(co) between two nodes of the
network(hi-h1024) in a second. In TCP traffic, one of the host act as a client(h1) and another act as a
server(h1024). Iperfs utility has been utilized to test the throughput of the controller. On the customer side,
Iperfs traffic has been generated in every 10 s, and the information about throughput has been gathered on
another side of the network.

The throughput is in Gbps. It is 21.9 and 26.9 Gbps between h1 to h1024 respectively, without and with
acknowledgement scenarios.

Bandwidth

To calculate the traffic transmitted between Host h1 and Host h1024 using TCP protocol, Iperf command is
used.

Here Host 1024 behave as server and running in background. Host h1 as client node sends TCP SYN request
packet to the Host h1024 node for the establishment of connection. Here S1 switch used for connection among
client and server node. Iperf command executed in every 10 seconds between client and server for
transmitting traffic. After performing this test Figure 7, shows the bandwidth of the proposed Tree
network topology between the nodes. The maximum data transferred between hi to h1o24 is 18.8
and 23.1 Gbps.
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Run Iperf UDP server in h1024:

Iperf server in Figure 8, is listening on the UDP port number 5001 receiving 1470 bytes of datagrams with the
default buffer size of 208 Kbyte. Run Iperf UDP client in h1 and use Protocol, -u: UDP, -c: Client, 10.0.4.0: IP
address of h1024, -b 10m: bandwidth internal time and transfer 10 Mbps data. If bandwidth is not
specified it is by default taken as 1mbps. -P: creates 10 parallel connections and each connection will send
1mbps default value. Iperf client in Figure 8, is connecting to 10.0.4.0 (h1024) UDP port 5001.

o 10,0.4,0 =1 10 =P 10 =t 30

UDP port §001
PG target: 11216.21 us (kalman adjust)
s (default)

port GO0l

10,0,0,1 port 4 o : 5001
10,0,0,1 port 5 0 L 5001
t Ho0l

5001

G001

ot Bool

10,0 260

Fig 8. UDP window size in SDN IoT Network 1024 hosts tree topology

Monitoring Performance with Ping:

Using the ping command, one can monitor the network performance between IoT nodes. The source node,
which can be either an IoT node (such as IoT node1), a client, or hi, should be selected, and each of its
neighboring nodes (h2-h1024) should be pinged to measure latency and packet loss. It is recommended to
perform these Ping tests periodically to monitor changes in performance over time. Additionally, the "Pingall"
command can be used to check the connectivity of all nodes in the network.

Round trip time (RTT) is also known as a ping test time. RTT is the total time taken to by the data packet to
reach from a specific source host h1 to the destination host h1024 and the acknowledgement packet to reach
back to the source h1. Ping utility uses Internet Control Message Protocol (ICMP).

Figure 9 shows the calculation for 10 packets transmitted between hi to h1024 and RTT for their path
depicting minimum, maximum, and average values. The minimum /Average/Maximum RTTs of the proposed
SDN topology is 0.045 /2.437/18.724 ms. Total RTT is 9183 ms.

Further, using the tree topology, different network setups were done using the mininet tool with the help of
RYU controller starting from 4 hosts and scaled that to 16 hosts, 64 hosts, 144 hosts and finally to 1024 hosts.
Performance of the TCP traffic transmission was observed while scaling up the network with more hosts.
Below is the summary of the Iperf command run between two hosts to show throughput and bandwidth
calculations between the extreme hosts using TCP traffic in the interval of 10 seconds (Table 2):

No. of | No. of nodes | Throughput | Bandwidth | ACK Throughput | ACK Bandwidth
switches (hosts) Gbps Gbps Gbps Gbps

2 hi-hg 30.1 25.8 6.48 5.54

4 h1-h16 28.6 24.6 6.51 5.57

8 h1-h64 28.5 24.5 6.58 5.64

12 hi1-h144 31.8 27.3 6.57 5.63

32 hi-hi1024 45.8 39.3 6.27 5.36

Table 2. TCP traffic in the interval of 10 seconds
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Throughput and bandwidth values
50
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® Throughput Gbps ) Bandwidth Gbps
ACK Throughput Gbps = ACK Bandwidth Gbps

Fig. 10 — Throughput and bandwidth values

Based on the observed data:
The throughput values generally increase as the number of switches and nodes increases, which is expected as
more network resources are available to handle data traffic.
However, there is a notable decrease in throughput observed when transitioning from 12 switches to 32
switches, which may indicate a bottleneck or saturation point in the network. Further investigation is needed
to determine the cause of this decrease.
Similar to the throughput, the bandwidth values generally increase with the number of switches and nodes.
The bandwidth values closely mirror the throughput values, which is expected as throughput is a measure of
the amount of data transferred over time, while bandwidth represents the maximum data transfer rate.
The ACK throughput and ACK bandwidth values remain relatively consistent across different configurations of
switches and nodes.
This consistency suggests that the network is effectively handling acknowledgment packets, which are critical
for ensuring reliable data transmission.
Overall, the provided values indicate that the network is performing reasonably well in terms of throughput,
bandwidth, and acknowledgment packet handling. However, the observed decrease in throughput when
transitioning to 32 switches warrants further investigation to identify and address any potential network
bottlenecks or limitations.
Based on the provided data, the performance metrics such as throughput, bandwidth, ACK throughput, and
ACK bandwidth demonstrate the effectiveness of the IoT network using SDN in handling TCP traffic. The
increasing values of throughput and bandwidth with the number of switches and nodes indicate scalability and
resource utilization improvements in the network. Additionally, the consistent values of ACK throughput and
ACK bandwidth suggest that acknowledgment packets are being efficiently processed and transmitted across
the network.
However, the notable decrease in throughput observed when transitioning from 12 switches to 32 switches
warrants further investigation. This decrease could be indicative of network congestion or resource saturation,
highlighting a potential bottleneck that needs to be addressed. Further analysis, such as identifying specific
network components or configurations causing the bottleneck, is necessary to optimize network performance.
The data shows a notable increase in both average and maximum RTT as the number of switches and nodes in
the network grows. This suggests that larger networks may experience higher latency and variability in
communication, which could impact the overall performance and responsiveness of IoT applications.
The maximum deviation in RTT values across different configurations indicates the presence of significant
variability in network latency

The observed spike in maximum RTT and deviation for the configuration with 32 switches and 1024 nodes
highlights potential scalability challenges in large-scale SDN-enabled IoT networks. As the network size
increases, managing and optimizing communication becomes more complex, leading to higher latency and
greater variability.
Moving forward, future research could focus on several aspects:Identifying Bottlenecks To investigate the root
cause of the throughput decrease observed with 32 switches. This could involve analyzing network traffic
patterns, identifying congested links or nodes, and optimizing resource allocation strategies.
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Table 3. — Summary of the outcomes of the ping command run between two hosts for 10

packets
No. of | No. of mnodes . Avg RIT | Max RIT | Max
switches (hosts) Total RTT [ Min RTT | g ms Deviation
ms ms

2 hi1-hg 9209 0.076 0.165 0.509 0.119

4 h1-h16 9213 0.086 0.167 0.446 0.095

8 h1-h64 9186 0.078 0.149 0.367 0.076

12 hi1-h144 9198 0.119 0.156 0.325 0.056

32 hi1-hi1024 9354 0.138 4.14 20.88 7.739

Optimization Techniques: To develop and implement optimization techniques to improve network
performance and scalability. This may include load balancing algorithms, traffic engineering strategies, or
enhanced resource allocation mechanisms.

Dynamic Adaptation: To explore the feasibility of dynamic network adaptation mechanisms that adjust
network configurations in real-time based on traffic patterns, resource availability, and performance metrics.
This could involve leveraging machine learning algorithms or adaptive control mechanisms to optimize
network efficiency.

Resilience and Fault Tolerance: To enhance the network's resilience and fault tolerance capabilities to mitigate
the impact of failures or network disruptions. This could involve implementing redundancy mechanisms,
failover strategies, or proactive fault detection mechanisms.

Security Considerations: To integrate robust security mechanisms into the SDN-based IoT network to protect
against potential cyber threats and attacks. This may include encryption protocols, access control
mechanisms, or intrusion detection systems.

Conclusion

This paper focuses on the evaluation of large IoT network performance through the Ryu Controller i.e. taking
into consideration 1024 hosts and 33 switches using a tree topology on Mininet, ensuring optimal
performance and monitoring for the IoT applications.

Results are obtained after the implementation is evaluated by various parameters like the bandwidth and
Round-Trip Time (RTT). Iperf was used for testing the TCP/UDP server or client for host h1 and host h1024 to
estimate the performance of the Ryu controller in mininet using the tree topology. It was observed that both
throughput and bandwidth generally increased with the scaling of the IoT network however a decrease was
observed in the throughput while scaling beyond a point. An increase in the average and maximum round trip
time was observed however maximum deviation in RTT indicated that larger networks may experience
network congestion or resource saturation leading to higher latency and variability in communication.

Overall, the future scope of research should focus on optimizing network performance, enhancing scalability
and flexibility, improving fault tolerance, and addressing security challenges to ensure the reliable and
efficient operation of SDN-enabled IoT networks and using deep learning using the different SDN Controllers
for designing and monitoring large networks.
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