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Introduction 

 
Let R be a finite commutative ring. A nonempty subset I of R is said to be an ideal if (I, +) is a 
subgroup of R and for every a ∈ I and r ∈ R, ra ∈ I. A non-zero ideal I of R is called essential, 
denoted by I ≤e R, if I has a non-zero intersection with any non-zero ideal of R. 
By a graph G = (V, E), we mean an undirected simple graph with vertex set 
V and edge set E. A graph in which each pair of distinct vertices is joined by the edge is called a 
complete graph. We use Kn to denote the complete graph with n vertices. An r−partite graph is 
one whose vertex set can be partitioned into r 
subsets so that no edge has both ends in any one subset. A complete r−partite 
graph is one in which each vertex is joined to every vertex that is not in the same subset. The 
complete bipartite graph (2−partite graph) with part sizes m and n is denoted by Km,n. If G = K1,n, 
where n ≥ 1, then G is a star graph. 
By a surface, we mean a connected two-dimensional real manifold, i.e., a con- 
nected topological space such that each point has a neighbourhood homeomorphic to an open disk. It 
is well known that any compact surface is either homeomorphic to sphere, or to a connected sum of g 
tori, or to a connected sum of k projective planes. The orientable genus of a graph G, g(G), is the 
minimum genus of a surface in which G can be embedded. The non-orientable genus of a graph G, g(G), 
is the minimum non-orientable genus of a surface (crosscaps) in which G can be embedded. The number 
g is called the genus of the surface Sg and k is called the crosscap of Nk. A planar graph is a graph of 
genus (crosscap) 0, a toroidal graph is a graph of genus 1, and a projective graph is a graph of crosscap 1. 
 

Literature review 
 

In the literature, there are many papers assigning graphs to rings, groups and semi- groups, see [1, 2, 8, 
12]. First graph construction from a commutative ring is the zero-divisor graph by Beck [8] and 
later studied by Anderson et al[2]. There are several other graphs associated with commutative rings 
and some of them to men- tion are total graph[3], annihilating-ideal graph[9] and annihilator graph [5]. 
Several authors [12, 14, 15, 16, 17, 19, 20] studied about various properties of these graphs including 
diameter, girth, domination and genus. In [6], Basharlou et al introduced the generalized zero-
divisor graph Γg(R). One can see that the zero-divisor graph Γ(R) is a subgraph of the generalized 
zero-divisor graph Γg(R). Some basic prop- erties like girth, diameter were discussed. All the rings 
with the same generalized zero-divisor and zero-divisor graph were characterized. Also, they proved 
that the generalized zero-divisor graph associated with an Artinian ring is weakly perfect. Further, 
K. Selvakumar et al [7] classified all finite commutative rings R for which Γg(R) is planar. Also, all 
finite commutative rings R for which Γg(R) has genus one were classified. In this paper, we 
characterized all finite commutative rings R whose crosscap is one. 
 
 

ARTICLE INFO ABSTRACT 
 Let R be a commutative ring and Z(R)∗ be the set of all nonzero zero- 

divisors. The generalized zero divisor graph of R is defined as the graph 
Γg(R) with vertex set Z(R)∗ and two vertices x and y are adjacent if and 
only if annR(x) + annR(y) is an essential ideal of R. In this paper, we 
classify all finite commutative rings R for which Γg(R) has crosscap one. 
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Preliminaries 
 
The following are useful in the sequel of this paper and hence given below. 
Definition 3.1. Let R be a commutative ring and Z(R)∗ be the set of all nonzero zero-divisors. 
The generalized zero divisor graph of R is defined as the graph Γg(R) with vertex set Z(R)∗ 
and two vertices x and y are adjacent if and only if annR(x) + annR(y) is an essential ideal of 
R. 
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Conclusion 
 
In this article, we have studied generalized zero-divisor graphs Γg(R) of finite com- mutative ring R. We 
classified all finite commutative rings whose Γg(R) has crosscap one. 
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