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INTRODUCTION 

 
A prosthetic is a device that replaces a missing lower limb, aiding in mobility, balance, and functional tasks. 
The various types include hemipelvectomy, hip disarticulation, and Symes prostheses. Customized to fit the 
individual's residual limb, it meets specific needs. 
Bioengineers use machine learning and pattern recognition to separate human 
locomotion into motor tasks and phases, detecting and manipulating neuro-mechanical features using 
embedded sensors to ensure controller stability and reliability. 
A mind-controlled prosthetic limb is made by hybrid brain-computer interfaces(BCIs), which integrate EEG 
and machine learning. The brain produces electrical impulses that are captured by BCIs and converted into a 
machine-learning model when a movement has to take place. By analyzing brainwave patterns, the ML model 
provides exact instructions to the prosthetic device so that it can replicate the user's intended movement. This 
technology can decode complicated hand movements and restore function and independence for individuals 
who have lost upper limb function. It also offers prospective benefits, including tailored training and continual 
learning.  
Lower-limb amputations (LLA) are a prevalent issue with high mortality rates and lower quality of life. Machine 
learning techniques like Naïve Bayes and Random Forest are being used to classify arm and hand motions. 
 

ARTICLE INFO ABSTRACT 
 Machine learning is revolutionizing the healthcare industry by enabling real-time 

prediction of ortosis needs and enhancing prosthetic selection, training, fall 
detection, and socket temperature control. Artificial limbs can help people with 
disabilities to regain their ability to move. An important method in artificial limb 
technology is pattern identification of limb movement intention. 
This paper highlights how machine learning algorithms play an important role in 
upper and lower limb amputation. 
For upper limb EEG and EMG processing enhances classification accuracy in 
prosthetics, enhancing upper limb movement control performance and control 
performance in paraplegics with elbow replacements, demonstrating an 8.9% 
improvement ratio in real-time applications. 
For lower limb prosthetics we implemented various algorithms namely KNN, SVM, 
and QDA, Random Forest, Random Forest with estimator 100, and Random Forest 
with activator 60 to test the best accuracy. 
 
Keywords: Brain-Computer Interface (BCI), EEG, EMG, EEG paradigm, SVM, K-
N-N, Bi-LSTM, quadratic discriminant analysis (QDA), Random Forest 
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Fig 1: Working structure for lower limb prosthesis 

 
Machine learning holds promise for enhancing the precision and dependability of prosthetic control systems, 
particularly in intricate movements. Previous methods, such as EMG-driven control, mechanical control, 
microprocessor-controlled prostheses, variable damping prostheses, and passive prostheses, have various 
limitations such as low signal-to-noise ratio, high sensitivity to noise, and face difficulty in accurately detecting 
muscle activation patterns during complex movements. By incorporating machine learning, these methods can 
address limitations in user comfort, range of motion, accuracy in detecting intent, and complexity of 
movements in lower limb prosthetics. 
 

II.METHODOLOGY- 
 
The suggested hybrid model is divided into four stages: gathering EEG and EMG data; pre-processing and 
segmentation; feature extraction and selection; and classification. 1. Model Schematic  
 

. 
 
A. Collected data 
The data used in this study were collected by Li et al.[3,4]. This data is explained as the below mentioned: The 
average residual length was found to be 25.50 ± 4.20 cm (measured from below the scapula) in the humerus 
test in 4 elderly men (mean age 41.50 ± 7.05). patients[4]. Five movement groups were tested: open hand (HO), 
closed hand (HC), wrist pronation (WP), wrist supination (WS), and weakness (NM).In order to prevent 
patients from suffering from physical discomfort or mental sickness, that might result in distortions and 
damage the quality of the signal, each movement is held for five seconds, with a five-second rest (such as NM) 
scheduled in between two adjacent movements. During the recording period, each subject performed five 
motions (one of HO, HC, WP, and WS) 10 times.  According to the EEG and sEMG data acquisition diagram 
[3] displayed in Figure 1, SEMG and EEG were acquired concurrently during the task. A high-speed sEMG 
device with 32 mono-polar electrodes was used to gather sEMG signals. 
Each subject's remaining arm. EEG signals are obtained from a 64-channel EEG head coupled with the 
Neuroscan system, which represents the most advanced technique for EEG data acquisition and analysis.When 
the target action was indicated on the screen, each subject executed it; when the screen vanished, they stopped. 
When a moving target image appears/disappears on the screen, the EEG data recorder can draw a vertical line 
on the EEG recording as the start/end point of the movement. The 64-channel Al-Ag Cl electrodes are 
distributed according to the 10-20 system standard, which is a recognized method of providing scalp electrodes 
for EEG recording [3]. 
Now for Lower Limb knowledge training data, includes data from 8 subjects (Subject001-Subject008), and test 
data includes data from 4 subjects (Subject009-Subject012). Each topic has profiles associated with ratings, 
grades, and sessions. 
The x time archive contains the timestamps of the accelerometer and gyroscope measurements, and the y time 
archive  
contains the timestamps of the text. Units are seconds, time x is sampled at 40 Hz, time y is sampled at 10 Hz. 
The Y file contains letters 0 through 3, where letter 0 represents standing or walking on the ground, 1 represents  
descending stairs, 2 represents climbing, and 3 represents walking on grass. 
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First, we combine all x data for each subject into a single file with the time column. Again we get the y data. 
Then, for each subject, we combine the data containing the meter and gyroscope with the data containing the 
time column (outside). Here, when externally joining, we only have a label for a quarter of the x samples due 
to the rate difference (40 Hz for x and 10 Hz for y). 
To fill in the missing text, we use the filled interpolation technique, where the missing label of the model is the 
label of its previous model. We now put all the information into a form that will be used for training and use. 
By plotting this data, we found that there was a large uncertainty in the data set and that the log of most data 
samples was 0. Therefore, we use the weight cross-entropy on unemployment to compensate for this. 
 

 
 
B.  Data preprocessing and segmentation 
The EEG signal is amplified at 1000 Hz and filtered with a band pass filter with a frequency range of 0.05 to 
100 Hz. The SEMG signal is filtered using a band pass filter ranging from 10 to 500 Hz and sampled at a rate 
of 1024 Hz. Subtract the average of each channel in the EEG signal and extract the EEG epochs for each 
movement group along the start-end line. Each EEG period for the movement group contains 5 seconds of EEG 
data plus 120 milliseconds of EEG data before movement onset, for a total of 5120 data points [3]. The 
conversion factor to  detect artifacts such as eye movements and blinks in each epoch of the EEG data was equal 
to 1.2 times the value of the epoch data.  
In addition, a 50 Hz notch filter was used to remove noise in the electrical lines of EMG and EEG.  
 

 
Fig. 2. Segmentation scheme overlap 

 
Of 150 ms, 200 ms, 250 ms and 100 ms increment overlapping segmentation scheme is used. Figure 2 shows 
an example of how to complete the overlapping segmentation process. 
a. Training and validation section/segmentation of preprocessing for lower limb: 
1) Session extension: We adopt session extension method for training-validation section; Here we consider 

the validation set and the remaining data as 2 times the entire process learning. As a training set We use 
this data to train the model and evaluate its performance. We found that we could do better using the 
window approach, where we define the window size and treat the data extension of the window size as a 
single window. 

2)  2) Window size method: If we randomly distribute the data set, the sorting behavior disappears. We split 
the data into windows and then split the data into training and validation. In this way we ensure that data 
connections are protected. We worked with different sizes and decided that the size that       looked best was 
120. 

 
C. Feature Extraction 
This step involves the calculation of three sets of time domain, frequency domain, and entropy-based IT 
features, as well as auto-regressive (AR) coefficients for each segment. Time domain features include Root 
Mean Square (RMS), Wavelength Length (WL) and William Amplitude (WAMP), while frequency features 
include Auto regressive (AR) coefficients, Frequency Ratio (FR), Set mean and Set mean of the signal frequency 
(MMNF, MMDF). Model entropy and log energy entropy are entropy-based features calculated for each 
partition. The features of each channel are extracted from segments of different lengths and then combined to 
form feature vectors as shown in figure 3.  



7369                                                                 Subhashree Darshana et.al / Kuey, 30(5), 4164                                                              
 

 
Figure 3. Create feature vectors consisting of 32 EMG channels and 64 EEG channels; where -f- features and -

n-time  windows (-W--) are extracted from each channel. 
 
1 ) Auto regressive coefficients 
Auto regressive (AR) model calculates each sample signal from past samples plus free  
Noise is defined as a combination of time errors. The AR model can be represented as: 

 
where ai is the AR coefficient, p is the order of the AR model, and ek is the additional external noise which is 
independent according to the previous perspective,  p is the order of the AR model. In this study, we used the 
fourth order in the AR model as suggested in [9, 14] and the sixth order.. 
 
2) Entropy-based properties 
Entropy is the measure of the complexity and randomness of a dynamic system and defines the value of 
information creation [17]. Considering the non linearity and non locality of the signal, nonlinear parameters 
can be used to describe the evolution of EEG and EMG signals [15]. We determine the standard entropy and 
log energy entropy for each part. 
 
a) Sample entropy 
The definition of sample entropy is the negative of the width of the logarithm of the chance that two similar m 
points in the sequence will not change at the next point in the tolerance interval r, where the result is calculated 
without taking into account the self-comparison. The vector is constructed by first embedding the scalar time 
series {x1, x2,..., xi,..., xn} into the extended m-dimensional space in order to compute the entropy model. This 
is similar to it: 

 
 
The probability Bm(r) that two arrays are equal to m points is calculated by calculating the average of pairs of 
vectors whose distance is smaller than the tolerance r. Similarly, the embedding dimension of Am(r) is m + 1 
[17]. 
 
The formula for sample entropy is: 
 

 
 
The standard deviation of the initial time, or (0.15 - 0.25) * SD, is  used to choose the tolerance r. We used m = 
2 and r = 0.25 * SD in this investigation. 

 
 

b) Logarithmic energy entropy: 
In general, the entropy of finite length discrete random variables, x = [x(0), x(1), …, x(N-1), with probability 
The distribution function is denoted as p(x). 
The definition is as follows: 
 

 
 
the Log Entropy entropy of x is given by: 
 

 
 
3) Root mean square (RMS): 
 
The root mean square is related to the standard deviation and can be said as follows: 
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4) Willison Amplitude: 
Willison Amplitude (WAMP) is the difference between EEG or sEMG signal amplitudes between two adjacent 
segments that exceeds a threshold to reduce noise effects. It can be shown that: 
 

 
 
In this study, we use a threshold value of 0.025 for (WAMP). 
 
5) Waveform Length: 
Waveform length (WL) refers to the length of a waveform over time.  
 

 
 
6)   Modified Medium Frequency (MMDF) is a frequency that divides the spectrum into two regions of 
equal amplitude. It can be shown that: 
 

 
 
where Aj is the EEG amplitude spectrum at frequency bin j [7]. 
 
4) Modified Mean Frequency:  
Modified Mean Frequency (MMNF) represents the mean frequency, computed by dividing the total of 
amplitude spectrum and frequency by the sum of spectral density. This relationship can be expressed as: 
 

 
where fj is the frequency of spectrum at frequency bin j [7]. 
 
5) Frequency ratio (FR) : 
It is the ratio of the low frequency component and the high frequency component of the signal. 
The equation is defined as: 
 

 
 
among them, ULC and LLC represent the upper and lower cuts at low frequencies, respectively, and UHC and 
LHC represent the upper and lower cuts at high frequencies, respectively. The initial distribution of low 
frequency and high frequency can be determined experimentally [14]. 
 
D. SELECTING THE FEATURES 
The attributes should be able to convey the qualities of individuals with dissimilar bodies. Load estimations 
should be considered in immediate applications. Feature selection selects a subset of essential features based 
on evaluation criteria, resulting in improved learning outcomes, lower costs, and better sample definition. 
Feature selection is performed in such a way that retrieved characteristics that are unsuitable for classification 
are deleted. 
 
a. Model Architectures for lower limb 
In the first stage of the terrain information project, we decided on the random forest classifier. In the next step, 
we will discuss LSTM and bidirectional LSTM [5] as it is based on data, i.e. time data. The main idea behind 
using bidirectional LSTM is that the current terrain estimate is based not only on some past measurements 
(xyz accelerometer and gyroscope values), but also on some past measurements in the sequence. We take this 
into account when using the dimension view method. 
All models we use use batch size 512. Below are the different LSTM and Bi-LSTM models we covered in the 3 
stages of round 2. 
 
1) Bi-LSTM + LSTM + 40WS:  Bi-LSTM + LSTM + 40WS Model 
• Input fed to Bi-LSTM layer (hidden size = 128), then LSTM layer (hidden size = 128). 
• LSTM output fed to thick layer (64x64). 
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• Activation function: ReLU of thick layer and product of thick layer. 
 

 
 
2) Bi-LSTM + LSTM (number of layers = 2, throughput = 0.5) + 40WS: In this model, we consider single-
layer Bi-LSTM and 2-layer LSTM. Both have the same size, 128. 0.5 output is added to the first layer of the 
LSTM. 

 

 
 

3) Bi-LSTM + LSTM(threshold = 2, loss = 0.5) + 120WS: The window size we received in the previous two 
models is 40 and is the only data corresponding to 1 second. Later we realized that 1 second corresponds to a 
scale that is too short to see the ground, because a person can only move one step per second. Therefore, in this 
model, we choose 120, that is, 3 seconds of data, as the window size and consider the same architecture as (2).  
 
 b. Model Training for lower limb  
There are 8 subjects in our training profile, and xyz accelerometer and xyz gyroscope  
 
measurements were recorded from different sections for each subject. In the first stage, we search for omission 
points and use this to classify the data. But since we have already determined the size of the window, we divide 
the entire object into several windows, each of which is a model. Now this formula has been modified and 
divided into 70% and 30% for training and validation purposes. 
 
1) Cross-entropy weighting: In the previous stage, we used SMOTE technology to reduce the number of classes 
by creating synthetic data. This does not help us improve performance because the model is over fitted with 
synthetic data.  

 
Therefore, at this stage, we consider weighted cross-entropy to avoid random objects. We know that class 0 is 
the majority class, and the other classes are minority classes. More weight is given to the minority class because 
the distribution of the minority causes a greater loss than the wrong class of the majority. In weighted cross-
entropy, the weight of the cluster is given by: 

 
 

2) Adam Optimizer and StepLR Scheduler: We train the model only 140 times due to limited budget. We 
calculate the learning curve from 0.001 to 0.1 with Adam optimizer [6], but the loss is not the same. The model 
with learning rate 0.001 has the least learning loss, but after 50 epochs the gradient step size is out of range, so 
we use the timer using stepLR with a step size of 50 epochs and a gamma value of 0.5.  

 
Below is a graph of learning loss versus time. 
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c. Model Selection for lower limb 
In the first stage of this study, we used random forest classification [1], a classical machine learning technique. 
In the next stage, we use Bi-LSTM and LSTM architectures with thick layers. The hyperparameters we set 
include batch size, window size, latent size (for LSTM layers), training cost, number of LSTM layers, and output 
cost. Below is the learning curve over time for all three production units we used. 
 

 
 
E. CLASSIFICATION 
The suggested model's performance was evaluated using three groups: quadratic discriminant analysis (QDA), 
K-nearest neighbor (KNN), and quadratic support vector machine (quadratic SVM), with five categories of top 
sports identified throughout. 
1) Quadratic Discriminant Analysis: 
The formula used here is: 
 

 
 
Ʃk matrix number is the difference matrix that should not be x is the data set and 
µk the average is the estimate of the data, the discrimination law is given by the following formula: 
 

 
 
2) K - Nearest Neighbor: 
The nearest neighbor (KNN) method is a popular easy classification strategy that detects the k nearest 
neighbors in training data and returns the same information at the anticipated time. The KNN approach creates 
a new unclassified model for a class where the majority of its nearest neighbors are K [23]. 
 
3) Support Vector Machine: 
SVM uses a non-linear kernel to build an optimum hyperplane in high-dimensional space, resulting in a non-
linear classifier despite using linear learning methods,  
 
considerably improving learning and generalization capabilities. 

 

 
 
where Si is the support vector, ai is the weight, and b is the bias used to classify the feature vector x. Here k is 
the kernel function. In this study, quadratic support vector machines were tested. The numerical representation 
of a quadratic support vector machine is given by: 
 

 



7373                                                                 Subhashree Darshana et.al / Kuey, 30(5), 4164                                                              
 

RESULT: 
 
For upper limb prosthesis we have used EEG and EMG signals and the below graphs show the data distribution 
for five different movements namely open hand, closed hand, wrist pronation, wrist supination and no 
movement. 
 

 
 
Frequency response of a band pass filter for EMG signal. The filter begins to attenuate the signal at around 100 
Hz and 200 Hz and by 500 Hz the signal  is attenuated by about 20dB. This particular filter is designed to pass 
a relative narrow band of frequencies within the typical range of an EMG signal. 
 

 
 
The below filter is designed to pass a relatively narrow band of frequencies within the typical range of EMG 
signal. 
 

 
 
The notch filter responses show a sharp decrease in amplitude around a specific center frequency. This 
indicates that the filter effectively attenuates weak signals at the particular frequency range while allowing 
signals at other frequencies to pass through with minimal attenuation. 
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b) For lower limbs, we  have employed a confusion matrix to ascertain the accuracy. 
The confusion matrix evaluates the performance of a K-Nearest Neighbor (KNN) classifier Here the rows 
represent the actual classes. Columns represents predicted classes by the KNN model. Values in each cell 
represent the number of instances. 
By looking at the diagonal values (top left to bottom right), we see: 
Model Predicts 7 Class 0 Instances 
Predicts 4 Class 1 Instances. 
By looking at the off -Diagonal Values 
Misprediction of 2 instances of class 0 as class 1. 
Misprediction of 3 instances of class 1 as class 0. 
Overall, model correctly classifies 11 out of 16 instances. 
Misclassification of 5 instances between two classes. 
 
 

 
Fig: Confusion Matrix using KNN 

 
The confusion matrix evaluate the performance of SVC model with non-linear kernel on a classification task. 
The model compares the number of times the classifier correctly predicted different classes, with high diagonal 
numbers indicating good classification and low off diagonal numbers indicating minimal confusion. 
SVC Model Confusion Matrix Analysis 
• Model incorrectly classified 2 instances of class 4 as class -2. 
• Performs well for class 3 (predicted 8 correctly), struggles with classes 0 and 1 (predicted only 0 and 2 
correctly). 
• Confusions class 4 with class -2. 

 
Fig: Confusion matrix using Non Linear Kernel 
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Confusion Matrix Analysis of QDA Classifier 
• Compares correctly and incorrectly predicted classes. 
• Good classification is identified by high diagonal elements. 
• Low off-diagonal numbers indicate rarely confuses between classes. 
• Classifier performs well for class O (predicted 8 correctly), struggles with class 1 (predicted only 2 correctly). 
 

 
 

Algorithm Accuracy Precision 

XG-Boost 53.7 53.3 

Random Forest with estimator 100 92.0 91.9 

Random Forest with estimator 60 91.92 91.89 

Random Forest 91.08 90.9 

 
CONCLUSION: 

 
In this paper, we found that using Random Forest with estimator 100 performs the best of the lower limb data 
set and gives an accuracy of 92% and it generalizes the best on dataset. We used a confusion matrix to check 
the performance of algorithms namely KNN, Non linear Kernal  and QDA and found out the prediction of each 
algorithm. Machine learning algorithms are being used to enhance walking patterns in prosthetic knee systems. 
However, issues like control strategies, portable power supplies, and lightweight actuators still need 
improvement. Further research is needed to understand commonly used techniques and develop intelligent 
prostheses with pattern recognition models for real-time performance validation for betterment in the medical 
science field. 
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