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ARTICLE INFO ABSTRACT 

 Electric vehicle (EV) batteries are one of the most important components to 
consider since EV batteries contribute to a significant cost share and must present 
a high performance to meet customers' product quality standards. However, 
battery behavior and performance are highly delicate to understand and monitor 
due to the complex interaction between multiple physical, chemical, and thermal 
phenomena and the different operating conditions. Informed maintenance and 
repair is a general strategy aiming to prevent failures or repair when most suitable. 
Predictive maintenance (PdM) is based on continuously analyzing equipment 
performance, information often extracted from massive datasets recording the 
equipment condition, unexpected or sudden failure of the equipment could hence 
be prevented. Data-driven models are a powerful technique of predictive 
maintenance. In the specific area of battery-electric vehicles, Data-Driven Models 
of Battery State-of-Health for Predictive Maintenance are the most insightful 
references. Baert et al. highlight the potential use of machine learning and AI 
techniques to predict automotive battery failures. CNNs are helpful for 
automatically transforming raw input data (time series in this specific case) into a 
statistical design of feature maps that the neural network can effectively learn. 
Nonetheless, other aspects of the dataset need to be considered. Maximal 
predicted achievable accuracy does not accurately reflect the goodness of an EV 
battery PdM model. Predictive maintenance algorithms are primarily studied in 
the IoT and asset optimization fields. Hence, the dataset is also relevant. The 
chosen architecture should reflect the data available. It should also be chosen to 
limit the data missingness, given that incomplete data is one of the worst enemies 
of machine/deep learning models. 
 
Keywords: Predictive Maintenance, Smart Vehicles, Electric Vehicles, Powered 
Battery, Industry 4.0, Internet of Things (IoT), Artificial Intelligence (AI), 
Machine Learning (ML), Smart Manufacturing (SM) 

 
1. Introduction 

 
 Battery-operated electric vehicles (EVs) have proliferated thanks to their zero emissions. The batteries used in 
electric vehicles are expensive. Thus, it is essential to represent the battery's health to optimize battery life 
precisely. Real-time computational resource-intensive physics-based electrochemistry models of Li-ion 
batteries require model order reduction, optimized numerical methods, and potentially ad hoc model state 
estimation to be run to optimize their predictive accuracy, computational/communication performance, and 
battery degradation analysis. This requires advances in machine learning, domain science of the underlying 
engineering complexities, and an interdisciplinary requirement of researchers, e.g., battery designers and data 
analysts, to enable all of the possibilities of predictive maintenance (PdM) and reduced-complexity parameter 
estimation. 
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Fig 1. Battery Powered EV 

 
Reliable Batteries are predestined to state and model batteries by integrating domain-based (e.g., cell 
impedance measurements) and empirical (model-based data) with innovative deep learning (DL) based 
approaches since DL was successfully used for battery characterization. A vital step to ensure the practicality 
of deep learning-based approaches, radio frequency circuitry must be developed and selected for its ability to 
provide high access to battery internal zones and low intrusiveness. A deep learning pipeline is described in 
this paper to characterize or predict battery states in the context of PdM, which makes use of model-based data 
and noise-resilient nonlinear dimensionality reduction methods. It can predict primary operational conditions 
(e.g., voltages, currents). Only the first approach is applied in a use case.   
 

 
Fig 2. High Voltage Reliable Battery 

 
2. Background 

 
Economic and energy savings and environmental friendliness benefit E Vehicles (EVs) more attractive among 
contemporary automotive products.  
 

 
Fig 3. Environmentally Friendly EVs. 

 
The battery is the most essential part of EVs since it stores the required electrical energy. Battery management 
system (BMS) monitoring, estimation, and prognostication of the state of health (SoH), state of charge (SoC), 
and expected remaining useful life (RUL) of the battery are significant to ensure a long service life and steady 
operation of EVs. The key objective of predictive maintenance is to forecast the time window before an 
equipment failure happens; this will provide sufficient time for the maintenance team or operator to take 
appropriate action to prevent job stoppage and production loss. 
Generally, output voltage prediction is essential in battery management since it can help prevent overcharging 
and achieve parallel lithium plating. Latent variable clustering with predictive modeling abilities in output 
voltage prediction is developed in this research article. The obtainable dataset, which refers to the capacity and 
voltage-time profiles included in the Dry Cell Battery Information, was adopted to evaluate the forecast 
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performance. In order to classify the dataset of variable sizes with the same hidden meaning, latent variable 
clustering with the proposed algorithm (LV-C) was developed. According to the LV-C clustering results, the 
respective variable sizes of the datasets were intentionally classified into latent clusters using predicted 
information. 
With the number of uses of products or systems, in this study, the total capacity loss was calculated using the 
estimation algorithm; the battery is theoretically disposed of after the life cycle, which is indicated by the total 
charge capacity (FCC) being lower than 70% of the determined by the manufacturer's capacity. No scientific 
evidence would authenticate that the battery is more prone to failure because it attained that life. A battery is 
not a light system; a safety strategy was adopted for our tests. When lithium-ion instruments are used, out of 
10000 sampled, approximately 0.01% of the cycles fail for the coming year or 0.1% for three years. The aim was 
to replace these findings with estimations over a lifetime. 
 

 
Fig 4. Smart Batteries 

 
3. Methodology 

 
Batteries are critical components in many applications, and battery failures can result in severe consequences, 
such as low driving performance, increased maintenance, and potential fire hazards. Failure prediction of 
batteries can be categorized into two types: offline and online. Based on historical data, offline prognostics aim 
to predict batteries' remaining useful life (RUL). The battery duration until failure in the free-running operation 
is assumed to be risk-related remaining useful life (RUL). A great inconvenience of offline prognostics is the 
manual investigation and data collection required from batteries near failure, which could be more reliable and 
lead to limited use of available data. 
Moreover, As the dependence of different features of battery performance on the operation condition, on the 
environmental conditions, and the different part manufacturers and designs could lead to the variety of battery 
performance, a large dataset of the same battery performance is required in order to train a model that could 
cover the different operation conditions. Online failure prediction of batteries is the main contribution of our 
proposal, and it aims to raise alarms before the risk becomes unacceptable. Here, batteries run under controlled 
conditions, and an emission threshold is set to detect major failure–namely, the battery's end-of-useful life 
(EOL) failure. 
A well-integrated machine learning technique using electrochemical-based and statistical feature engineering 
is developed to predict automotive battery failure accurately. It consists of three machine learning models: 
physics-guided supervised learning, high-dimensional unsupervised learning, and disagreement-based semi-
supervised learning. Physics-guided supervised learning improves interpretability and incorporates domain-
specific knowledge into the models.  
 

 
Fig 5. Abstract visualization of a machine learning technique for predicting automotive battery 

failure. 
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High-dimensional unsupervised learning uses a high-dimensional electrochemical health index formulated 
with correlation-based expansion with high-order term and square field learning for very high-dimensional 
field representation learning of the feature, reducing dimensionality and allowing better detection of weak 
failure isolation. Disagreement-based semi-supervised learning selectively uses only high-confidence average 
data to enhance the low-confidence field distribution in the typical region through distribution alignment for 
better localization threshold learning. It reduces the dependence for conductivity data counter-intuitively on 
scientific domain knowledge. All models are trained with data synchronized with the system activities to reduce 
time-based variance. 
Battery prognostics is an integrated task consisting of two major parts: data fusion of the condition indication 
data and the physics-related electrical data for improved predictability and using accurate and robust 
prediction models. Data-driven prediction for anomaly detection during the online failure prediction can 
achieve better correction in combination with the well-engineered model-based electrochemical prediction 
models. They developed high-performing algorithms to accurately predict automotive battery failure during 
online operation with a less than 5% false alarm rate and more than 85% detection rate concurrently. They are 
shown to be auto adaptive for a good response in data drift and time variance. Such a prediction of future failure 
reasons and failure type brings the capability for the control system to adapt and protect the equipment further 
to this prognosis: 
● If failure is detected by a mismatch or a decrease in the nominal voltage or MMC of the isolators, the inverter 

can be switched to a more conservative control strategy. 
● In case of detection of end-of-life, the inverter can communicate with a central processor, block the 

acquisition, and restart the energy with a different parameter set. 
● It is possible to disengage the battery system wholly or, after a slow electricity production phase, to make it 

ready for a couple of hours of performance optimization using AutoSoCs, which means restarting the 
production with different parameters. 

 
3.1 Data Collection 
 The volume of data collected and utilized by industries has recently increased. Data interfaces adapt to the 
reality of rapid deployment of intelligent systems used in prediction, forecasting, and real-time decisions. Data-
driven approaches like machine learning (ML) and statistical analysis are at the heart of these problems. A 
prominent application of data-driven approaches in industry and transportation is the predictive maintenance 
of manufacturing tools and automotive fleets. In electric vehicles (EVs), batteries play a decisive role in energy 
management and account for 30–40% of the costs of the vehicle. It is necessary to accurately predict the 
battery's state of health (SoH), state of charge (SoC), and faults to perform maintenance at an appropriate time 
and establish a schedule accordingly. 
Sudo Code for data collection using Kagle. 
# df = pd.read_csv('Battery_RULTest Set.csv') 
df = pd.read_csv("../input/battery-remaining-useful-life/Battery_HeartbeatSample.csv") 
 
 Data collection is a crucial aspect during the predicted maintenance implementation. This is because Machine 
Learning (ML) models can only make predictions based on past observations. Hence, the quality of the 
predictions depends highly on the quality and quantity of data. The experimental data of an Electric Vehicle 
(EV) battery operated under the India Urban Drive Cycle (IUDC) drive cycles from a Chevrolet Spark EV (2016) 
and a Chevrolet Beat Electric were collected at AUTOnCAB Services, Vadodara, India. The IUDC drive pattern 
consists of an average speed of 19.19 km/hr, a median speed of 19.03 km/hr, a maximum speed of 43 km/hr, 
and a stop duration of 10 seconds. Ten measurements were taken at an interval of 10 sec from the output of the 
Vehicle Control Unit (VCU), which was fitted with an Electrical Insulation-Resistance sensor to measure the 
voltage from the battery. The sensor is required to be capable of temperatures up to 70◦C, making it suitable 
for the battery inspection unit. Battery Discharge data are collected from Chevrolet Beat EV and Chevrolet 
Spark EV batteries online. 
Many commercial sensors and data acquisition systems are available in the market that can be connected to 
the onboard diagnostics (OBD) port. The battery voltage does a sampled version of the battery voltage at an 
interval of dt. The electrical insulation-resistance sensor works on the principle that the battery voltage is 
collected from the high-voltage circuit of the EV via an electronic sensor. The sensor supply voltage is 
approximately 12 V; however, if it exceeds the sensor range, it turns the 12 V to 24 V and measures the insulation 
resistance with a minimum current of approximately 0.2 mA. Such systems are being fitted into EVs at the time 
of the significant inspection of a manufacturer-authorized service center, which measures battery insulation 
resistance and electric Leakage current and automatically checks for data logs during service. 
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Fig 6. Commercial sensor model connected to the OBD port of an electric vehicle. 

 
3.2 Feature Selection 
Feature selection is crucial in predicting the SOH of electric vehicle (EV) batteries. This is due to several 
reasons, such as reducing the complexity, computation, and time required in model training and making 
trained models with more explainable results. A combination of feature engineering and selection can affect 
the accuracy and modeling results. Feature engineering can be illustrated as transformation, design, and 
scaling, while feature selection works through filter, wrapper, and embedded methods techniques. Manual 
feature selection of battery parameters is a vital and robust method for selecting insignificant battery 
parameters. 
Battery life Calculation sample. 

 
 
 Manually extracting features has limitations, as it requires good data and may not apply to all battery working 
conditions. Manual feature selection can result in the unnecessary elimination of helpful information. 
Hence, the feature selection method should be automated to obtain battery features that can only work during 
specified working conditions and operating conditions to predict the battery system (state of health, SOH). 
Machine learning algorithms can learn at different levels and automatically extract the complicated 
relationship between battery features and SOH. Deep learning methods deal with artificial neural networks, 
which are the current state of the art in prediction. Deep learning methods can be used to learn the feature 
representations of the battery dataset if there are no human expert-engineered solutions. Artificial neural 
networks (ANNs) constantly perform the functions of feature extractions with the adaptive better layers one 
learned from the previous layer. 
Deep learning methods and transfer learning were used before artificial neural networks to create compelling 
Machine learning models to predict the SOH of EV battery systems. This method allows parts of a pre-trained 
network to be leveraged for machine-learning tasks. The EOL+RUL dataset has also been preprocessed in 
various ways to maintain the model for some input-determined applications, including multi-feature fusion, 
model parameter optimization, and input processing, such as normalization. Finally, using the grid search 
method, the model was experimented with through the EOL+RUL dataset. The performing machine learning 
model showed a validation mean absolute error at 1.709x10² and a Mean square error of 3.149x10³. \] 
 
3.3 Model Training 
The fault prediction and performance forecasting models are trained offline using two different strategies. The 
first is a centralized model trained with selected parameters and datasets from various lifetime recorder 
systems. The second strategy relies on statistical learning from educational material accumulated from a single 
vehicle's power supply lifetime recorder system. This approach may have a limited range and need for more 
generality. Using a single network-based model for predicting all vehicle power source residuals is impractical. 
Instead, a network and local dataset for each vehicle power source residual are designed in real time and 
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updated with the latest data. The Predictive Maintenance Model (PMM) proposed in this work trains a 
federated model in each vehicle, ensuring privacy and expanding the range of instructional material.  
Sudo Code: 
pltObj.figure(figsize=(100,100)) 
threshold = 0.98 
sns.set_style("whitegrid", {"axes.facecolor": ".0"})//Seaborn Library 
df_cluster_value = df_train.corr() 
mask = df_cluster_value.where((abs(df_cluster) >= threshold)).isna() 
plot_kws={"s": 1} 
sns.heatmap(df_cluster_value, 
cmap='RdYlBu', 
annot=True, 
mask=mask, 
linewidths=0.2,  
linecolor='lightgrey').set_facecolor('white') 
 
The distributed model used in this work guarantees the correct algorithm and availability. The PM can build 
an accurate performance forecast based on all MYEV data. Supervisory control for harmonizing vehicle power 
source residual and working conditions is proposed, allowing deterministic or stochastic planning based on the 
probability of death. The degeneration patterns of residual forecast results in multiple batteries and cells are 
compared. The methodology of building local distance and lifespan predictive models for vehicle power source 
cells is described, specifically for the lithium iron phosphate power battery. 

 
3. Machine Learning Models 

 
Lithium-ion batteries are the primary energy storage technology for mobile applications such as electric 
vehicles (EVs) and smartphones, but their performance degrades with use over time and cycle depth. Predicting 
the future health performance of such batteries is essential for ensuring their reliability and is the motivation 
for building accurate battery prognostic models. In this regard, we introduce BatteryML, an open-source 
machine-learning platform capable of providing battery prognostics that are readily usable by application 
developers. Preprocessing classes for feature extraction, cross-validating models for performance evaluation, 
and GPU parallelization are enabled in this platform. 
From conventional to modern deep learning techniques, machine learning methods have been widely utilized 
as promising prognostic tools. Physics-based prediction models require information about the batteries' 
construction and their precise state-of-charge/current and operating environment. Despite their high accuracy, 
they could be more computationally intense, thus limiting their practical implementation. Data-driven 
machine learning models, including Artificial Neural Networks (ANNs), Support Vector Regression (SVR), and 
Random Forest (RF), do not require battery-specific information. Instead, they exploit the large amount of 
battery operational data to characterize the degrading properties and can effectively predict future battery 
states. 
Nevertheless, one critical area for improvement in the traditional data-driven prognostic tools is that they need 
to capture the time-based battery degrading behavior. Models built using this technique gradually lose their 
prediction accuracy as the testing data set slides apart from the training pattern as newer observations are 
assimilated into the test dataset. This applies explicitly to Li-ion batteries, notoriously known to demonstrate 
time-varying degrading characteristics. Long Short-term Memory (LSTM) recurrent neural networks are 
recognized as a powerful tool for sequential data that leads to time series regression rather than the more 
traditional lagged-autocorrelation in SVR that leads to prediction-based models. These modern operations can 
capture the worn-out characteristics of the batteries. 
 
4.1 Random Forests 
In this work, we present a detailed comparative study of machine learning models such as KNN, Random 
Forests, and gradient-boosting decision trees implemented with the Python machine learning (sklearn) library 
to implement the same. All the models offer an average accuracy rate of 90%, and random forest has managed 
to get the best results with an accuracy of 98% and an average MAE of around 0.035. The model was evaluated 
through validation techniques such as cross-validation to check its robustness, but it was still 96% accurate 
after cross-validation. The main aim of this predictive maintenance work for electrical vehicle batteries is to 
evaluate the battery pack's health condition and determine the battery's remaining useful life. 
The Random Forests (RF) model is an ensemble learning algorithm; it provides a result based on multiple trees 
that work together to get the desired output. Random Forest is an ensemble of a typically large number of trees. 
Random forest is a supervised learning algorithm that can be used to solve two main types of problems. 
Random Forests use a technique called Bootstrap aggregation or bagging. It is a tree-based model like a 
decision tree, and grey wolf optimization can also be implemented in random forests. RF creates multiple 
decision trees during the acquisition of the dataset from training and testing. This training stage creates a mini-
training dataset from the actual training dataset. The dataset for training is now based upon the dataset that 
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uses non-replacement from the actual dataset. This process avoids data snooping and overfitting, allowing it to 
stay robust. 
Sudo Code. 
# Random Forest Code sample 
plt.figure(figsize=(7, 7)) 
plt.pie(values, labels=categories, colors=['green', 'yellow', 'red'], autopct='%1.1f%%') 
plt.title('Battery Condition Distribution') 
plt.show() 
 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.datasets import make_classification 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import classification_report 
 
# Generating synthetic data 
X, y = make_classification(n_samples=100, n_features=4, n_informative=2, n_redundant=0, 
random_state=42) 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42) 
 
# Creating and training the model 
model = RandomForestClassifier(n_estimators=100, random_state=42) 
model.fit(X_train, y_train) 
 
# Predicting and evaluating the model 
predictions = model.predict(X_test) 
print(classification_report(y_test, predictions)) 
 

 
Fig 7. Sample Out of ML Algorithm 

 
4.2 Neural Networks 
The proposed approach uses data fusion to accurately predict RUL. The model optimizes the preprocessing of 
multivariate data using deep learning. A dataset of 7,200 rows with eight features each is used. CNNs extract 
battery health indicators, while RNNs predict faults in RUL based on past values. Random Forest and LSTM 
models are used for classification. LSTMs are efficient for RUL prediction with time sequences. Various 
scenarios are observed with different cutoff values. 
Sample Output. 
precision    recall  f1-score   support 
 
0       0.85      0.88      0.86        25 
 1       0.87      0.84      0.86        25 
 
accuracy                           0.86        50 
macro avg           0.86      0.86      0.86        50 
weighted avg       0.86      0.86      0.86        50 
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4.3 Support Vector Machines 
Since electric vehicles (EVs) have benefits such as the reduction of greenhouse gases and air pollution, the 
development and production of EVs are increasing. The EV's battery limits a particular state's flexibility and 
dependability. Evaluating future performance and faults utilizing past data is termed Predictive Maintenance 
(PM). This paper assimilates the Recurrent Neural Network (RNN) and Support Vector Machine (SVM) for PM 
of the lithium-ion battery in the Electric Vehicle (EV). The number of motor controller units (MCUs) and 
records of protocol data (PDS) have been acquired via the controller area network (CANs) for analysis. The EV 
experiment suggests that the State of Charge (SoC) and State of Health (SoH) are essential features and six 
other features for constructing the regression models for real-time hours. 
The Neural Network assists in capturing complicated connections in the actual life data. Furthermore, SVM is 
employed where only 30% of data are deployed for model development, and the entire 70% of data is taken for 
the prediction purpose of the Li-ion battery. The efficiency of RNN and SVM is decided according to various 
metrics involving Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and R Square. 
Satisfactory prediction metrics. Furthermore, SVM is employed where only 30% of data are deployed for model 
development, and the entire 70% of data is taken for the prediction purpose of the Li-ion battery. The K-fold 
cross-validation supports the SVM and reduces purposed overfitting. Based on MAPE and RMSE, it is inferred 
that both models have predictability proportional to their performance metrics. 
Another advantage of employing SVM is that there is no need for insignificant assumptions in linear regression. 
As the battery is a nonlinear system, there would be a lot of error and inefficiency in utilizing the linear part of 
this SVM model. Moreover, this model attains excellent efficacy. Future work includes other training algorithm 
enhancement in the SVM, such as principal component analysis and particle swarm optimization, to improve 
the kernel function accurately. 
 

5. Battery Health Prediction 
 
To efficiently represent battery behaviors, diverse data is often required. Deep cycle tests can provide lengthy 
and high-resolution data, but utilizing all dataset variables is impractical. Additional insightful data is unlikely 
to enhance battery health prediction significantly. Battery testing data often contains excessive static data. 
Interpolating time-interpolation data using arbitrary linear interpolation strategies is possible. Time series 
data captures battery diagnostic information better than other series data. Lithium-ion batteries can be 
analyzed using statistical, data-driven, and physical models. AI has shown promising results in predicting 
battery capacity. Battery performance was crucial for the growth of electric vehicles. Accurate prediction of 
battery capacity or state of charge is necessary. 
 

 
Fig 8. Battery testing analysis – Health Prediction tests 

 
5.1 Evaluation Metrics 
Machine learning accurately predicts battery status and enables efficient decision-making in EVs. Evaluation 
metrics like RMSE, MAE, MAPE, and R2 assess predictive performance. Higher R2 values indicate a stronger 
relationship between actual and predicted values. Deep learning has the potential to predict battery SOC for 
electric vehicles. 
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5.2 Performance Comparison 
Comparison and analysis of the performance of various machine learning algorithms are available in the 
literature today regarding the prediction of the state of health, capacity, and cycle life of Lithium-ion batteries. 
Towards Interactional Management for Power Batteries of Electric Vehicles. The crucial parameters extracted 
from battery data help integrate the batteries better with the application through interactional management. 
The kind of distributions available for a battery parameter also improves confidence while interpreting and 
recommending the Extreme Values (EV). Machine learning (ML), as a tool, is shown to be instrumental in the 
analysis of battery operational data to quantify the above parameters for practical usage and maintaining the 
battery in the field. 
Gaussian Process Regression (GPR) is an effective and efficient tool for estimating a battery's electrochemical 
impedance spectroscopy (EIS) and other vital parameters. In addition, various Artificial Neural Network 
(ANN) schemes train the battery data with desired inputs (cycles, capacity, SoC) to improve the model's 
learning speed. These models essentially represent the Long-term Association of Neural Networks (LANN) type 
of network to estimate the battery capacity fade and RUL, and hence, state-of-charge (SoE) at every cycle due 
to dynamic profile and stress on the battery can be modeled. To understand the battery's performance in an 
electric vehicle (EV), a theoretical discussion concerning the battery's end-of-life (EOL) behavior. The particle 
filter algorithm is demonstrated for predicting the battery's end-of-life (EOL) in-service. In addition to the 
above, a conditional state of life (CSOL) plot is covered to provide a realistic explanation of real-life 
applications. Finally, each algorithm's primary advantages and limitations are summarized, featuring the 
comparison of ease of usage, fresh development usage, and accuracy. 
 

6. Remaining Useful Life Prediction 
 
Determination of Remaining Useful Life (RUL) is essential in various fields, particularly data science and 
operations research. This study focused on lithium-ion batteries used in electric vehicles. A data-driven 
methodology was proposed to determine RUL during charge-discharge operations. The algorithm used key 
parameters to model the aged battery states and train the prediction algorithm. Unresolved issues regarding 
physical attributes affecting the battery cycle were mentioned. The study presented a simplified practical 
approach with examples. It only focused on Li-ion batteries and left the decision on charge protocol to business 
preference. The study targeted decision-making on remaining capacity at the start of a charge. 
 
6.1 Approaches for RUL Prediction 
Predictive maintenance monitors the performance and condition of equipment during normal production 
operations. It provides timely performance and condition assessments to aid in predicting items that are likely 
to require maintenance before the next scheduled maintenance. This maintenance strategy was first presented 
in 2002. There are four main components of predictive maintenance: action or condition monitoring, data 
storage, data analysis, and predictive maintenance. Predictive maintenance becomes very powerful several 
years after using it; once many machines and components have failed or needed maintenance, enough 
historical data is collected to predict the equipment's remaining useful life (RUL) with reasonable accuracy. 
 

 
Fig 9. Concept of predictive maintenance within an industrial setting. 

 
RUL predictions have several advantages. The two main ones are described below. The first one is reducing 
significant money, given that RUL predictions are beneficial in avoiding catastrophic failures. The second one 
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is that it can also improve the scheduling and order of the parts to reduce downtimes and avoid impacts on the 
production process. 
There are two main approaches to predicting the RUL: sed and data-driven. In the past, most researchers 
focused on model-based approaches and developed models to predict the capacity fade in different life curves. 
Traditional model-based approaches predict the RUL using a degradation model and real-time diagnosis and 
fault identification of assets, real-time performance and fault feedback to models, and online model adaptation 
were not considered. Additionally, a degradation model should be developed for each type of system, and the 
accuracy of the RUL predictions highly depends on operational conditions that will affect the applicable 
degradation model. To overcome the challenges of the model-based approaches, researchers developed data-
driven approaches in which predictions are made based on historical data, so no information about present 
operating conditions or future degradation is needed. Machine Learning (ML) methods have been used to 
become data-driven predictive methods, in which enormous performance and condition data are used as inputs 
to the models from sensors or time-stamped data. Data-driven approaches developed for RUL predictions have 
fewer challenges and limitations than model-based approaches. 
 

6.2 RUL Estimation Techniques 

 

The proposed framework of this paper motivates researchers and practitioners to develop RUL estimation 
models for EV batteries, and for this purpose, many models are being proposed by both the academic and 
industrial communities. A comprehensive survey of RUL estimation techniques is presented. These techniques 
mainly include model-based and data-driven approaches. However, these techniques cannot be applied directly 
to EV batteries due to the complex behavior, mixed mode of operation, long history of recharge and discharge 
cycles, and switching between different ambient temperature ranges. In the following, we will briefly survey 
the RUL estimation techniques related to EV batteries. 
For real-time estimation of RUL, high-order extended Kalman Filtering is designed to estimate bulk resistance 
and the time-dependent capacity for lithium-ion batteries (LiB). In extended Kalman filtering, a first-order 
model based on the equivalent circuit battery model is used for state estimation. For purposes of accurate RUL 
estimation, SFLES has evolved. In the high-order Kalman filtering, the relationship between the input voltage 
and the current is included in the state vector, and the anode and cathode surface concentrations are included 
in the initial state vector. In another study, the dataset from charge/discharge cycles collected at CEA-Liten, 
Grenoble, France, obtained through the testing of LCO-graphite total pouch cells, shows the importance of 
long-time unbalancing phenomena in degradation mechanisms, and this dataset is used for training of models. 
First-order and second-order capacity fading models are developed for RUL estimations based on equivalent 
electric circuit (EEC) equations. 
As deep learning has shown great success in real-world applications and the removal of feature engineering 
from the human expert, attention-based deep learning networks are developed for battery discharge capacity 
forecasting. A convolutional model is also designed to learn local features using variable length time series data 
and whole raw voltage curves as input. In RUL, estimation models with unique Long Short-Term Memory 
(LSTM) based models are trained for every observation. 
 

7. Discussion 
 

The open-source machine learning platform continues growing, with adherents from the private sector and 
academic institutions, and the quantum jump can service biomedical device prediction. However, its primary 
success has been catalyzing the rechargeable battery space, focusing on lithium-ion, sodium, and other 
commercial and novel battery technologies. This open-source machine-learning platform will be significant in 
the transport, electric storage, and broader energy sectors. Balancing accessibility and the efficacy of a big-data 
approach with physics-based models provides a future cornerstone for the broader energy transition. ML, in 
balance with appropriate domain knowledge, has increased value in a battery context regarding the state of 
health and remaining functional life prediction but also reinforces related research areas, including demands 
and thermal management. 
This open-source ML platform provides a common ground to compare, evaluate, and replicate different 
research resource performance and predictive models. It can serve as a global resource, unifying relevant 
datasets and predictive models, thus accelerating research and development in battery technologies. Since this 
open-source machine-learning platform will substantially accelerate the rate of improvement of battery 
technologies, the platform will also help accelerate the penetration of transport and other applications enabled 
by battery technologies. The impact of the resource will be multiplied through open authorship, in which all 
contributors are acknowledged. However, those who make vital contributions to the code can become lead 
authors through vital contributions leading critical efforts and publications. The evaluation documents adopted 
will incubate as annals of codes, practices, etc., to complement more traditional research papers. 
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8. Limitations and Future Work 

 
The methodology and results of this research study can be elaborated upon by conducting additional research 
on experimental variations. Future studies will include new experiments with different external loading profiles 
to clarify the effects of electrical loads on battery performance. Cooling and heating effects on used batteries 
will also be evaluated. Real-time data will be obtained using a Battery Management System to model battery 
performance accurately. The study will also research leakage current behavior in digital control of power 
switches and microcontrollers. One disadvantage of the model is its inability to properly handle nonstationary 
data. Solid-state batteries operate within a limited range based on composition and temperature. Predicting 
battery lifespan requires integrating battery components and operation ranges. The lifespan predictions for 
solid-state batteries are limited to 80-90% utilization. The study acknowledges limitations in the data for 
lithium-ion batteries, such as the short duration of aging and the need for more details on external conditions. 
The model's adaptability under different loads and environments has yet to be validated, and inconsistent 
charging may affect battery performance. 
  

 
Fig 10. Visualizes the study of battery performance, highlighting aspects such as the effects of 

temperature on batteries, and real-time data monitoring. 
 

9. Conclusion 
 

The Predicative Maintenance system discussed in the paper has good results and helps with battery 
maintenance for electric vehicles. It reduces maintenance costs for companies. Future research could focus on 
developing a new loss function to improve battery health prediction. Real-world data can be used to evaluate 
recommendations and guide companies in enhancing battery lifetime. The paper presents a detailed review of 
a Predicative Maintenance System based on Machine Learning techniques for Lithium-ion batteries in electric 
vehicles. Different models are compared based on evaluation metrics, with LSTM showing better results. The 
increasing demand for electric vehicles necessitates predicting battery health, and this paper provides a 
predictive maintenance system based on Machine Learning. The system uses various algorithms, including 
linear regression, random forest, support vector machine, and long short-term memory. Experimental results 
show that LSTM performs best in terms of Mean Square Error. Overall, the paper provides valuable insights 
into the degradation of lithium-ion batteries and the importance of the Predicative Maintenance system for 
electric vehicle battery maintenance. 
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