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ARTICLE INFO ABSTRACT 

 Integrating Multidimensional Insights for Enhanced Feature Selection in Energy 
Transition Models presents a comprehensive approach to enhancing the energy 
efficiency of sustainable energy systems. The purpose of this research is to find the 
categorical features that can be boosted with ensemble learning for finding most 
relevant aspect in energy generation. The study leverages sophisticated machine 
learning techniques, including deep learning and ensemble methods, to improve 
the prediction and optimization of heating and cooling loads in systems using 
application of Advanced Machine Learning Algorithms. In this research article, we 
are trying to focus on critical energy consumption areas like heating and cooling. 
These are crucial aspects of building energy consumption, and the study's 
emphasis on these areas demonstrates an understanding of key factors in energy 
efficiency. This research represents a significant step forward in applying machine 
learning to sustainable design and energy savings. It underscores the potential of 
machine learning in transforming the way systems are designed and operated for 
better energy efficiency. Understanding the application of machine learning 
algorithms to cross-domain optimization, such as integrating building energy 
systems with electric vehicles and smart grid technologies, can create synergies 
that enhance overall energy efficiency. This holistic approach can lead to more 
significant energy savings by optimizing across multiple domains simultaneously. 
We also focus on improving the scalability and generalization capabilities of 
machine learning models to ensure they can be effectively applied across different 
types of buildings and geographic locations. It involves developing models that can 
adapt to diverse conditions without retraining. It enhances collaboration with IoT 
Devices and strengthening the collaboration between machine learning systems 
and IoT (Internet of Things) devices can enhance the granularity and precision of 
energy management. IoT devices can provide detailed, real-time data, which, when 
analyzed by advanced machine learning algorithms, can lead to more nuanced and 
effective energy-saving. The model is performing reasonably well, with the ability 
to predict values that correlate with the actual data. Feature Y1 is by far the most 
predictive of the model's output, which could mean that focusing on this feature 
could lead to improvements in the model's performance. The accuracy of our 
model is near 97% with further scope to improve with ensemble learning and XG 
boosting.  
 

https://kuey.net/
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I. INTRODUCTION 

 
In the dynamic world of energy research and transition, there is a growing emphasis on advancing 
technologies to address the challenges posed by escalating energy demands and the integration of renewable 
sources. One area is the development of high-energy rechargeable batteries, crucial for applications such as 
electric vehicles, with a particular focus on lithium-ion batteries. The recognition of the limitations in current 
lithium-ion batteries has spurred research into alternative materials, prominently lithium metal, as a 
promising anode material. These developments underscore the necessity for batteries with significantly 
higher specific energy, achievable through the use of advanced cathode materials. Machine Learning (ML) 
plays a pivotal role in enhancing the impact of such research by offering innovative solutions. In predictive 
modelling, ML algorithms contribute to the identification of high-capacity cathode materials and optimal 
anode compositions. Additionally, ML's ability to establish structure-property relationships aids in 
understanding and improving critical interactions within battery systems. Beyond material considerations, 
ML applications extend to optimizing battery components, predicting life cycles, and mitigating failure 
modes, ultimately enhancing the overall performance and longevity of high-specific-energy cells. Machine 
Learning for Renewable Energy Forecasting by Gaamouche et al. [25] and advances in Lithium-Ion Battery 
Technologies" by Grey et al. [26] presents a potential understanding of predictive modelling potential in 
Integrating multi-dimensional datasets, it also increases the efficiency of data transformation by processing 
the data through many neural networks and increases the accuracy in the process. 
 
Parallel to advancements in energy storage, the broader energy transition towards renewable sources 
introduces complexities in the electricity sector. This transition, initially focused on establishing the viability 
of renewables, is now met with new challenges such as complex interactions between multiple technologies, 
disruptions to traditional business models, and economic and political considerations for key industry actors. 
Understanding and navigating these challenges require a holistic approach that combines technological 
innovation with effective policy and economic strategies.  
 
ML applications contribute significantly to forecasting renewable output, optimizing grid operations, and 
conducting market trend analyses. These applications facilitate the seamless integration of renewables into 
existing grids, ensuring stability and reliability. Moreover, ML tools provide insights into the market trends 
influenced by renewable energy, assisting policymakers and industry stakeholders in adapting to changes 
brought about by these transitions. The simulation capabilities of ML models further empower policymakers 
to anticipate and understand the potential impacts of various policy decisions on renewable energy adoption 
and grid integration, thereby fostering more effective and informed decision-making.  
 
The synergy between technological advancements and the strategic application of machine learning positions 
us on the brink of transformative changes in the energy landscape. The combination of cutting-edge research 
and sophisticated data-driven approaches holds the promise of not only addressing current challenges but 
also shaping a sustainable and efficient energy future. 
 
A. Next Phase of Energy Transitions 
"The Next Phase of the Energy Transition and its Implications for Research and Policy" from Nature Energy 
by Markard, J. [27] discusses the evolving landscape of the electricity sector, focusing on the growing share of 
renewable energy technologies. Initially, the research and policy emphasis were on establishing renewables as 
viable options. Now, with renewables rapidly integrating into many electricity grids, new challenges and 
phenomena are emerging. Next, we will discuss the strategies and challenges in moving away from fossil fuels 
towards renewable energy sources, emphasizing the role of policy, technology, and market factors and the 
exnovation processes for renewable energy transition and sustainable energy paths, respectively by Maine et 
al. [6]. These include complex interactions of multiple technologies, decline of traditional business models, 
economic and political challenges for key actors like utility companies, and integration issues within the 
electricity sector. The paper compares the two phases of the energy transition and discusses implications for 
future research and policymaking.  
 
The paper titled "Exergoeconomic and exergoenvironmental analysis and optimization of an integrated 
double-flash-binary geothermal system and dual-pressure ORC using zeotropic mixtures; multi-objective 
optimization" by Chet et al. [25] focuses on the optimization of an integrated geothermal system that 
combines double-flash and binary processes with a dual-pressure Organic Rankine Cycle (ORC). The study 
uses zeotropic mixtures for the working fluid in the ORC, aiming to improve the system's thermodynamic 
efficiency and environmental performance. 

INDEX TERMS:  Energy efficiency, Machine Learning, Sustainable Systems, 
Machine Learning algorithms, heating cooling loads, Sustainable design, Energy 
Management, Ensemble Learning, Prediction Systems, Deep Learning   
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The research employs a multi-objective optimization approach to balance various performance metrics, 
including net present value (NPV), exergy efficiency, exergoeconomic factors (which combine thermodynamic 
and economic analyses), and exergoenvironmental impacts. The optimization process generates a Pareto 
frontier, illustrating the trade-offs between these objectives and identifying the set of optimal solutions where 
no single objective can be improved without worsening at least one other. 
 
This study is significant for its comprehensive approach to optimizing geothermal energy systems, 
considering not just economic and thermodynamic efficiency, but also environmental impacts. It contributes 
to the field by providing insights into how zeotropic mixtures and advanced system integration can enhance 
the sustainability and viability of geothermal energy production by Jeong et al. [23]. 
 
B. Machine Learning Promoting Sustainable Energy 
Article "Machine Learning for a Sustainable Energy Future" published in Nature Reviews Materials by 
Ferraz-Caetano et al.[22] emphasizes the crucial role of machine learning (ML) in promoting sustainable 
energy. The necessity for transitioning to sustainable energy systems and policy in the next phase of the 
energy transition proposed by Geels [1].  It illustrates how ML methods can significantly improve the 
discovery and development of materials and systems that are energy efficient. The paper also demonstrates 
the efficacy of ML in optimizing energy systems and outlines its successful implementation across various 
energy-focused sectors. In discussing the various ML techniques used in sustainable energy research, the 
article includes a mention of the sklearn. Preprocessing module. Machine learning and artificial intelligence 
are becoming pivotal in optimizing energy systems, forecasting renewable energy production, and discovering 
new materials for energy applications. This module is vital for data normalization, involving the removal of 
mean values and scaling features to a uniform variance. Such normalization is essential in ML as it ensures 
that all features equally contribute to the predictive model. This is particularly critical for algorithms that are 
sensitive to the scale of input data. In this paper we improved on energy materials presenting additional 
modelling challenges. Machine learning (ML) could help in the representation of structurally complex 
structures, which can include disordering, dislocations and amorphous phases. Flexible models that scale 
efficiently with varied dataset sizes are in demand, and ML could help to develop robust predictive models 
with further scaling and deployment with IOT.  
 

II. BENCHMARK ANALYSIS OF EXISTING METHODOLOGY 
 
Enhanced Prediction and Optimization in Renewable Energy Systems: ML algorithms that can 
more accurately predict renewable energy outputs (such as solar and wind energy) and optimize their 
integration into the power grid. This can include real-time adjustments to energy distribution based on 
predictive models. The aspects of improvement in machine learning have further new aspects with new 
methods and optimization for big datasets for example De Luna et al. [7] studies machine learning to find 
energy materials. Wetterstrand et al. [16] improves on DNA sequencing costs. NREL et al. [19] works studies 
best research-cell efficiency charts while Burger, B., et al. [20] paper further improves on a mobile robotic 
chemist. 
 
Advanced Energy Storage Techniques: ML-driven methods to enhance the efficiency and longevity of 
energy storage systems, such as batteries. This can involve developing algorithms for better management and 
maintenance of these storage systems, optimizing charging/discharging cycles, and predicting battery life 
degradation. Improved Energy Efficiency in Industrial processes by Utilizing ML to analyze and optimize 
energy usage in industrial processes. Evaluating current methodologies in energy efficiency estimation and 
performance prediction as a benchmark for accurate energy performance estimation in residential buildings 
through statistical machine learning tools by Davidson et al. [3]. This can include predictive maintenance of 
machinery, optimization of process parameters for energy efficiency, and reduction of waste. 
 
Smart Grid Management: Develop ML models to enhance the efficiency and reliability of smart grids, 
focusing on demand response management, fault detection, and automated restoration processes. 
 
Sustainable Urban Planning: Apply ML to optimize energy usage in urban environments, including 
smart building management, efficient urban planning, and integration of renewable energy sources in cities.  
 
Enhanced Climate Modelling and Impact Assessment: Utilize ML for more accurate and 
comprehensive climate modelling to better understand the impact of various energy policies on the 
environment. 
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FIGURE 1.  Proposed Methodology Flowchart 

 
II. PROPOSED FRAMEWORK 

 
Introduce a novel framework that integrates advanced machine learning techniques with energy systems 
analysis to enhance the efficiency and sustainability of energy production and consumption. Leverage 
insights on using machine learning for material design and property prediction to support this framework by 
Rosen et al. and Jordan et al. [10, 11]. 
Linear regression is a linear approach to modelling the relationship between a dependent variable (target) 
and one or more independent variables (features) by fitting a linear equation to the observed data by Jordan 
[11]. The linear regression model is used to predict the target variable based on the selected feature variable. 
Standard Scalar standardizes features by removing the mean and scaling to unit variance. This is often a 
requirement for the optimal performance of many machine learning algorithms, particularly those that 
assume data is normally distributed, like Support Vector Machines and k-nearest neighbours.  
 
A.   Data Training: 
X_train = torch.tensor(X_train, dtype=torch.float32) 
X_test = torch.tensor(X_test, dtype=torch.float32) 
y_train = torch.tensor(y_train, dtype=torch.float32) 
y_test = torch.tensor(y_test, dtype=torch.float32) 
Purpose: The torch.tensor function converts arrays (in this case, the standardized training and test    sets for 
both features and target variables) into PyTorch tensors. Tensors are a specialized data structure similar to 
arrays and matrices. They are used in PyTorch to encode the inputs and outputs of a model, and the model’s 
parameters. 
dtype=torch.float32: 
 
Specification: This argument specifies the data type of the tensor. torch.float32 is a common choice for 
input data in machine learning models, as it provides a good balance between precision and computation 
speed. It details the approach for training data within the proposed framework, emphasizing the importance 
of high-quality, diverse datasets for machine learning models. It highlights the relevance of benchmark 
datasets like the one from the UCI Machine Learning and the importance of key performance indicators for 
assessing the effectiveness of smart grid and charging infrastructure, respectively by Helmus et al. [13,] and 
Struck et al. [14]. 
B.     EDA and XGBoost 
EDA is an important machine learning practice that allows us to better understand the context of our dataset, 
the relationships between variables. This is the basis for all decisions made in subsequent phases of the 
machine learning pipeline, from feature engineering to model selection and validation. It discusses the 
significance of initial data analysis for understanding dataset characteristics, with a nod to the importance of 
data quality and preparation as indicated by Wang et al. [8] in their energy efficiency dataset. 
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Model Training with XGBoost Harnessing the Power of Gradient Boosting Model training is the process by 
which machine learning algorithms learn from data. This is the heart of the machine learning pipeline and 
determines the model's ability to make accurate predictions.  
 
XGBoost stands for extreme Gradient Boosting, a speed and performance implementation of gradient-
boosted decision trees especially suited for structured data. XGBoost is a decision tree-based ensemble 
machine learning algorithm that uses a gradient boosting framework. This algorithm is known for its 
performance and speed, and often outperforms other algorithms for structured data tasks.  
The reasons for its popularity are as follows.  
 
Efficiency at scale: XGBoost is optimized for high efficiency and scalability across multiple CPUs and even 
GPUs.  
 
 Regularization: Includes L1 (lasso regression) and L2 (ridge regression) regularization to prevent 
overfitting and improve model performance.  
 
●      Handling missing values: XGBoost has built-in routines for handling missing values.  
●      Flexibility: Users can define custom optimization goals and criteria.  
●     Cross-validation: XGBoost implements internal cross-validation at each iteration of the boosting process, 
making it easy to obtain reliable estimates of model performance.  
 
C.    Model Training  
Create an instance of the XGBoost classifier, which will be used for training on the dataset. Parameters: 
object='binary: logistics': Specifies the learning task and corresponding learning objective. Here it is defined 
for a binary classification task.seeds=42: Set random seeds to reproduce. Disable use of label encoder in 
XGBoost for label processing. This is relevant here because we've set the evaluation metric to logarithmic 
loss, suitable for binary classification problems. The XGBoost classifier (xgb_clf) is initialized with the 
specified parameters. 
These parameters are chosen to ensure model compatibility with the data format and to specify how the 
model's performance will be evaluated.  
 
D.   Confusion Matrix 
This is an essential step in understanding the effectiveness of the model in classification tasks beyond simple 
accuracy. Confusion Matrix Visualization Objective is to provide a detailed view of the model's performance 
by showing the types of errors it makes, in addition to its correct predictions. 
 
Implementation functions used Custom function plot_confusion_matrix uses confusion_matrix from 
sklearn.metrics and heatmap from seaborn 
. 
Parameters: y_test: Actual target value of the test data set. 
 
The confusion_matrix function creates a matrix showing the number of true positive, true negative, false 
positive and false negative predictions. This matrix is then displayed as a heat map.  
 
E.     Actual and Predicted Values 
The model is performing reasonably well, with the ability to predict values that correlate with the actual data. 
Feature Y1 is by far the most predictive of the model's output, which could mean that focusing on this feature 
could lead to improvements in the model's performance. The chosen parameters suggest the model is 
complex and may be quite fitted to the current dataset. The use of confusion matrices in model evaluation, 
using references that discuss the evaluation of predictive models. It provides references that do not directly 
mention confusion matrices; the predictive modelling work in references like Yao et al. and Davidson et al. [9, 
3] implies the use of such metrics. 
 
F.   Feature Score 
The importance is derived from a predictive model. Different models have different methods for calculating 
feature importance. While the specific concept of "feature score" might not be directly addressed, the 
machine learning and material discovery discussions in can be related to the importance of features in 
predictive modelling. 
Importance Scores: The scores (reflected by the length of the bars) indicate how much each feature 
contributes to the predictive accuracy of the model. A longer bar means the feature is more important. In this 
chart, Y1 has the longest bar, suggesting it is the most important feature in the model.  
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 G.    Training Parameters 
The parameters { 'max_depth': 20, 'min_samples_split': 2, 'n_estimators': 100 } indicate that the model is a 
highly accurate form of ensemble learning algorithm, likely a Random Forest, given the parameters typical to 
this algorithm. The min_samples_split of 2 is the minimum number of samples required to split an internal 
node, which is quite low and again may lead to overfitting. The n_estimators of 100 indicates that the model 
uses 100 trees, which is a balance between computational efficiency and model performance.  
 

FIGURE 2.  Actual vs Predicted Values 
This also explains the standard deviation in the actual and predicted values over range of fields in the dataset 

hereby comparing the overall accuracy. 

 
 

FIGURE 3.  Feature Importance 
Here x1, x2 are the features described in the dataset that can be further studied for any energy 

categorical and predictive feature-based learning model. 
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FIGURE 4.  Distribution of Actual and Predicted Values 
The following graph takes into the understanding of datasets to simulate the frequency with different 

variables. 

 
 
 

FIGURE 5.  Cumulative Feature Importance 
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FIGURE 6: Actual vs Predicted Line Plot 

 
 

III. RESULTS AND DISCUSSIONS 
 

 A. Experimental setup 
nn.Module: This is PyTorch's base class for all neural network modules. 
 
init Function: This is the constructor for your class. Here, we initialize the layers of the model. In this  case, 
there is only one layer - nn.Linear. 
 
nn.Linear: This represents a linear transformation. For a simple linear regression, you need a single linear 
layer with one input feature and one output feature (hence nn.Linear(1, 1)). 
 
Forward Method: This method defines the forward pass of the model.  
 

TABLE I Actual vs Predicted Plot. 

Actual vs Predicted 
Plot 

Scatter plot of actual vs 
predicted values. 

Visualizing the accuracy 
of model predictions. 

Correlation 
Heatmap 

Heatmap of correlation matrix. 
Understanding relationships 
and dependencies between 
features. 

Box Plots 
Box plots for different qualification 
levels. 

Analyzing the distribution 
and outliers in the data. 

Time Series Plot Trends over time for qualifications. 
Observing changes or trends 
in data over time. 

Histogram Distribution of qualifications. 
Understanding the 
frequency distribution of 
data points. 

Scatter Plot Matrix Pairwise relationships in data. 
Exploring bivariate 
relationships in the dataset. 

 
Model Initialization: model = Linear Regression Model () creates an instance of our linear regression 
model. The importance of tuning training parameters for optimal model performance, using references that 
discuss machine learning methodologies and their applications in energy systems. The general discussions on 
machine learning in can provide a backdrop for understanding the significance of parameter tuning in model 
training. 
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B. Performance estimation in the first iteration 
● Setting Epochs: epochs = 100 defines the number of times the entire training dataset will pass through the 

model. 
● Training Loop: The loop iterates over the dataset multiple times (defined by epochs). 
● model.train(): Puts the model in training mode, which can affect certain layers like dropout or batch 

normalization if they were used in the model. 
● optimizer.zero_grad(): Clears old gradients; otherwise, gradients would be accumulated with each 

backpropagation. 
● Forward Pass: outputs = model(X_train) computes the predicted outputs by passing the training data 

through the model. 
● Compute Loss: loss = criterion(outputs, y_train) calculates the loss between the predictions and the actual 

targets. 
● Backward Pass: loss.backward() computes the gradient of the loss with respect to the model parameters. 
● Update Parameters: optimizer.step() updates the model parameters based on the computed gradients. 
● Logging: Every 10 epochs, the script prints the current epoch number and the loss at that epoch.  
 

TABLE II Number of training iterations (epochs) and preparing the model for training. 

 Step Description 
Purpose in Training 
Process 

Epochs Setting epochs = 100 
Defines the number of 
complete passes through 
the dataset. 

Training Mode model.train() 
Prepares the model for 
training. 

Clearing Gradients optimizer.zero_grad() 
Resets gradients from 
previous iterations. 

Forward Pass outputs = model(X_train) 
Computes predictions 
using the current model 
state. 

Loss Computation loss = criterion(outputs, y_train) 
Calculates the difference 
between predictions and 
actuals. 

Backward Pass loss.backward() 
Computes gradients of the 
loss function w.r.t 
parameters. 

Parameters Update optimizer.step() 
Adjusts model parameters 
based on calculated 
gradients. 

Logging print(f'Epoch[{epoch+1}/{epochs}] Outputs training progress 

 
TABLE III Feature Extraction from Input 

This table explains the purpose and description of each aspect in the feature extraction of the input. 
 

Aspect Code in Script Purpose & Description 

Feature Extraction X = np_data[:, 7].astype(float) 
Selecting the 8th column as the feature variable 
and converting it to a float. 

Target Extraction y = np_data[:, 1].astype(float) 
Selecting the 2nd column as the target variable 
and converting it to a float. 

Reshaping X X = X.reshape(-1, 1) 
Reshaping X into a 2D array. The shape 
becomes (n_samples, 1). 

Reshaping y y = y.reshape(-1, 1) 
Reshaping y into a 2D array. The shape 
becomes (n_samples, 1). 

 
TABLE IV Model Training 

This table explains the purpose and description of each aspect in the Model Training and visualization. 

Step            Description Purpose & Importance 

Model Evaluation 
 Setting model to eval mode and 
predicting. 

Assessing the model's 
performance on unseen data. 
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Actual vs Predicted 
Plot 

Scatter plot of actual vs predicted values. 
Visualizing the accuracy of model 
predictions. 

Correlation Heatmap Heatmap of correlation matrix. 
Understanding relationships and 
dependencies between features. 

Box Plots 
Box plots for different qualification 
levels. 

Analysing the distribution and 
outliers in the data. 

Time Series Plot Trends over time for qualifications. 
Observing changes or trends in 
data over time. 

Histogram Distribution of qualifications. 
Understanding the frequency 
distribution of data points. 

Scatter Plot Matrix Pairwise relationships in data. 
Exploring bivariate relationships 
in the dataset. 

       

         
 

TABLE V Comparison Results 

Feature 

Paper A: 
"Advances in 
Lithium-Ion 

Battery 
Technologies" by 

Grey et al. [24] 

Paper B: "Machine 
Learning for 

Renewable Energy 
Forecasting by 
Gaamouche et 

al."[25]- 

Our Research: 
"Optimizing Energy 
Efficiency Using ML 

for Sustainable 
Systems" 

Main Focus 

Development of 
high-energy 
rechargeable 
batteries 

Predictive modelling for 
renewable energy outputs 

Optimizing heating and 
cooling loads in 
sustainable energy 
systems 

Algorithms 
Used 

N/A (focus on 
materials science) 

Time series forecasting 
algorithms, e.g., ARIMA, 
LSTM 

Deep learning, ensemble 
methods (e.g., XGBoost) 

Grey et al. [24] Gaamouche et al. [25] 

Results 

Identification of 
lithium metal as a 
promising anode 
material for higher 
specific energy. 

Improved accuracy in 
predicting solar and wind 
energy outputs. 

Enhanced prediction 
and optimization of 
energy consumption in 
heating and cooling. 

Improvement 
Area 

Energy storage 
capacity and 
efficiency 

Accuracy of renewable 
energy forecasts 

Energy efficiency in 
heating and cooling 
systems 

Future Work 
Alternative materials 
and advanced 
cathode technologies. 

Integrating more diverse 
data sources and 
advanced ML models. 

Applying ML techniques 
to other areas of energy 
consumption and 
integrating IoT for real-
time monitoring. 

 
                                                         Comparison Results with Existing Algorithm 
 
We were able to improve on previous existing models like ARIMA, LSTM and other time series materials by 
ensemble methods such as XGBoost which enhanced prediction and optimization of energy consumption in 
heating and cooling. 
 

IV. CONCLUSION 
 

We had progressive research in energy feature categorization and efficient energy system that may lay path 
for future research on bigger datasets for understanding the variation and improvement with diverse 
datasets.  In the course various algorithms like ARIMA, LSTM and XGBoost were studied and eventually we 
selected XGBoost. The model is performing reasonably well, with the ability to predict values that correlate 
with the actual data. Feature Y1 is by far the most predictive of the model's output, which could mean that 
focusing on this feature could lead to improvements in the model's performance. Figure1 shows the flowchart 
of the proposed methodology, outlining the steps involved in applying machine learning techniques to 
enhance energy efficiency. Figure2 compares actual vs. predicted values, demonstrating the accuracy of the 
machine learning model in forecasting energy consumption or efficiency. Figure 3 displays the importance of 
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different features used in the model, highlighting which variables significantly impact energy efficiency 
predictions. Figure4 illustrates the distribution of actual vs. predicted values, providing insights into the 
model's performance and prediction errors. Figure5 presents the cumulative importance of features, 
indicating how each contributes to the model's predictive capability cumulatively. Figure6 shows the 
correlation between actual and predicted values, offering a visual representation of the model's accuracy over 
a range of data points. 
The trained model is uploaded to a cloud server. Services like AWS Sage Maker, Google AI Platform, or Azure 
Machine Learning can be used for this purpose. They provide tools for deploying, monitoring, and managing 
machine learning models and their implications for sustainable energy, referencing the overarching themes of 
energy transition, machine learning in energy applications, and the potential for future research as discussed 
by Geels et al. [1], Tsanas et al. [2], Maine et al. [6], Wang et al. [8], and Yao et al. [9] These citations offer a 
broad perspective on the intersection of technology, policy, and sustainability in energy systems. 
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