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ARTICLE INFO ABSTRACT 

 Replacing a portion of concrete with Class F fly ash aids sustainable development 
and reduces the greenhouse effect. Developing an accurate predictive model for 
the compressive strength of self-compacting concrete (SCC) using Class F fly ash 
is crucial. This study evaluates various machine learning models using a dataset 
of 327 samples. Models include regression trees, support vector regression, 
Gaussian process regression, and artificial neural networks (ANNs). The 
ensemble of ANNs exhibits the highest accuracy, with a mean absolute error of 
4.37 MPa and a correlation coefficient of 0.96. Additionally, simpler models like 
multi-genetic programming and individual regression trees perform comparably 
well. Self-compacting concrete, Class F fly ash, compressive strength, machine 
learning, artificial neural networks, regression trees, and Gaussian process 
regression are key terms in this study. 
 
Keywords: self-compacting concrete; Class F fly ash; compressive strength; 
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1. Introduction 

 
The huge creation of Portland concrete prompts the emanation of significant carbon dioxide, and subbing 
concrete with fly debris is a viable method for lessening these ozone depleting substance discharges, 
accordingly advancing practical turn of events. As per ASTM C618, fly debris utilized in concrete is grouped 
into two classes: Class F, which has low calcium content, regularly got from consuming anthracite or 
bituminous coal, and Class C, which has high calcium content, normally got from consuming lignite or 
somewhat bituminous coal. The ASTM C618 standard layouts the physical, synthetic, and mechanical 
properties of these fly debris class. Typically, Portland cement contains 65 percent lime, some of which is 
released during hydration [1].  
Blending it in with Class F fly debris, a pozzolanic material, shapes new covers, improving numerous properties 
of the subsequent cement. Utilizing fly ash in concrete has the potential to improve the material's workability, 
strength, water demand, permeability, chloride ion penetration, heat of hydration, sulfate resistance, alkali 
reactivity resistance, and drying shrinkage. SCC (self-compacting concrete), an elite presentation concrete, is 
portrayed by its liquid and thick consistency, permitting it to move through thickly supported structures 
without the requirement for outer compaction energy. This property can be accomplished utilizing 
corresponding cementitious materials like Class F fly debris, whose particles carry on like smaller than usual 
metal balls, giving a greasing up impact. Fly debris expansion brings about a slower response and less intensity 
age per unit time contrasted with Portland concrete, which is favorable for enormous substantial designs. As 
of late, there has been an expanded utilization of AI (ML) strategies and calculations to foresee the compressive 

https://kuey.net/


10740 M.R. Rajagopal/ Kuey, 30(5), 4828 

 

strength (CS) of SCC. The most well-known approach has been the utilization of counterfeit brain organizations 
(ANN) [2]. 
Siddique et al. fostered an ANN model to anticipate the CS of SCC at different ages, utilizing standards like 
MAE, RMSE, and connection coefficient for precision. Based on 169 samples, Asteris et al. investigated the use 
of ANN to predict the CS of SCC with fly ash after 28 days. Douma et al. also used ANN to model the properties 
of SCC with fly ash. They looked at models using the MSE, coefficient of determination, and MAPE criteria, 
and they recommended an ANN model with 17 neurons in a hidden layer. Different scientists, for example, 
Saha et al., investigated help vector machines (SVM) with various part works to anticipate new and solidified 
substantial properties with fly debris. Azimi-Pour et al. inspected the properties of high-volume fly debris 
substantial utilizing SVM models, finding that a RBF portion capability gave higher precision. Zhang et al. used 
the random forest (RF) and the beetle antennae search algorithm (BAS) to predict the CS of fly ash-based 
lightweight SCC. Regression trees (RT), artificial neural networks (ANNs), genetic programming, and boosting 
regressors were all examined by Song et al., and ensemble algorithms were recommended for accuracy. 
Hadzima-Nyarko et al. explored the utilization of elastic and fly debris added substances in SCC, using different 
Gaussian cycle relapse (GPR) models, which demonstrated compelling for anticipating CS, affirmed by SEM 
pictures [3].   
Kovacevic et al. directed comparable examinations, presuming that GPR models were ideal. Farooq et al. tested 
ANNs, SVMs, and gene expression programming (GEP), recommending GEP as the best model, while Pazouki 
et al. optimized ANN models by employing the firefly algorithm to predict CS. De-Prado-Gil et al. utilized outfit 
techniques like RF, KNN, ERT, XGB, GB, LGBM, CB, and GAMs, viewing RF models as profoundly powerful 
in foreseeing the CS of SCC with reused totals. The curiosity of this exploration lies in the broad utilization of 
cutting-edge ML strategies on an enormous arrangement of exploratory information, giving a point-by-point 
examination and improvement of model hyperparameters. This incorporates MGGP models, relapse tree-
based models, SVM models with different piece capabilities, GPR models, ANN models, and groups. Moreover, 
this paper investigates GPR strategies with programmed pertinence assurance (ARD) covariance capabilities 
for demonstrating the CS of SCC with Class F fly debris, a first in this examination region [4]. 
 

2. Methods 
 

AI (ML) is a part of man-made reasoning and incorporates techniques for preparing calculations to such an 
extent that they can gain from information and decide and expectations, which can be applied in the displaying 
of the way of behaving of designs and materials. The strength of ML strategies lies in the way that these 
techniques can address an overall relationship or capability straightforwardly from exploratory information to 
display the way of behaving of complicated frameworks with various impact factors, whose impacts, both 
individual and synergistic, are obscure or hard to foresee. Additionally, these techniques are able to process a 
large amount of data that includes both "noise," which is an essential component of experimental data, in 
addition to complex information about the observed phenomenon. The use of ML techniques has become more 
articulated as of late because of the rising measure of information accessible as well as because of huge 
advancement in the field of figuring. 
 
2.1. Multi-Gene Genetic Programming (MGGP) 
MGGP, a method for machine learning that draws inspiration from biological processes, is used in symbolic 
regression to predict continuous output variables from input variables. Not at all like conventional relapse 
techniques, MGGP doesn't assume the model construction in advance; all things being equal, it permits the 
observational information to shape the model design. MGGP creates a different arrangement of models 
addressed by trees, each better through cycles utilizing transformative techniques. These models, made out of 
individual trees or qualities, go through hybrid, change, and duplicating to shape the future. Random sections 
can be exchanged between parent individuals during cross-pollination, which can occur at the gene or tree 
level. Mutation alters a single node within a gene at the level of a single gene. The expectation of result depends 
on a direct blend of nonlinear changes of information factors, still up in the air by least squares assessment. 
The wellness capability, normally root mean square mistake (RMSE), guides model improvement in 
progressive ages, with people chosen through competition determination in light of RMSE and expressional 
intricacy. Based on the number of nodes in trees and their possible subtrees, expressional complexity favors 
flatter trees over deeper ones [5]. 
 
2.2. Regression Tree Ensembles 
Grouping tree techniques are flexible, material to both relapse and order undertakings. The development of a 
tree follows a covetous methodology, where the space is separated into subsets in view of the best parted 
variable and not set in stone by limiting a particular model. This interaction proceeds recursively until a halting 
model is met. The model result for a given test perception is the mean worth of perceptions in the locale to 
which the test has a place. At the point when a solitary tree model displays unfortunate speculation on the test 
set, group methods like sacking, irregular woodland (RF), and helping can be utilized to conquer this issue. 
Packing includes making various models utilizing bootstrap inspecting or testing with substitution, each 
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prepared on an alternate subset of the information. In RF, relapse trees are framed utilizing a bootstrap 
technique, with just a subset of factors haphazardly chose for each split. The last model in packing and RF is 
acquired by averaging the forecasts of every individual model. Slope helping constructs a troupe by successively 
adding models, with each new model prepared to make up for the shortcomings of the ongoing outfit. Gradient 
optimization techniques, in which subsequent models approximate the residuals of previous models by 
minimizing the gradient of the loss function, serve as inspiration for this strategy [6-7]. 
 

3. Dataset 
 
To shape a CS expectation model for various periods of SCC tests with the expansion of Class F fly debris, 
framing an adequately enormous arrangement of test information of such concrete is important. A database of 
SCC sample tests from the published literature was used in this instance. The all-out number of tried examples 
utilized for displaying comprised of a sum of 327 tried examples with various times of the tried example from 
1 day to 365 days. Substantial constituents were investigated as information factors: concrete (C), water (W), 
Class F fly debris (A), coarse total (CA), fine total (FA), superplasticizer (SP), and the time of tests (AS). The 
strength of this concrete at a cylinder pressure of 100 mm 200 mm, expressed in MPa, was the output variable. 
As Supplementary Materials (Supplementary Materials S1), the entire database is available. According to the 
value of the correlation coefficient, there is an intercorrelation between the input variables (such as the ratio 
of superplasticizer to fine aggregate, the ratio of fly ash to cement, etc.) in addition to a certain correlation 
between compression strength as an output variable and some input variables (such as cement, sample age, 
etc.). The use of AI techniques is very viable in demonstrating simply such issues with intercorrelation. 
Furthermore, histograms organized along the principal inclining show the equilibrium of the dataset. Using 
the attached dataset and the built-in function corrplot (Matlab 2020a), all diagrams are generated 
automatically. It is essential to be familiar with the statistical indicators of the data that are being used when 
applying various machine learning algorithms to the definition of prediction models. The models that are being 
framed sum up inside the information on which the model preparation was performed. The built-in randperm 
function of the Matlab program was used to mix the entire dataset with random permutations of samples, then 
randomly selecting 80 percent of the samples for model training and 20 percent for model testing. This 80:20 
division of information is a standard strategy in AI. The accuracy of the model was evaluated using the criteria 
root mean square error (RMSE), mean absolute error (MAE), Pearson's linear correlation coefficient, and 
mean absolute error (MAE). All of the analyzed models were trained on the same training set [8-11]. 
 

Table 1. Statistical properties of variables used for modelling. 

Constituent Max. Min. Mean Mode Count 

Cement (C) (kg/m3) 505 62.00 293.08 249.00 325 

Water (W) (kg/m3) 390.50 132.50 197.00 181.00 325 

Fly ash (A) (kg/m3) 372.00 20.00 170.23 161.00 325 

Coarse aggregate (CA) (kg/m3) 1195.00 590.00 828.34 831.00 325 

Fine aggregate (FA) (kg/m3) 1105.00 434.00 807.47 912.00 325 

Superplasticizer (SP) (%) 4.50 0 0.980 0.80 325 

Age of samples (AS) (days) 325 1 44.31 29.00 325 

Compressive strength (MPa) 95.60 4.44 36.45 13.00 325 

Statistical analysis of input and output parameters for Training set  

 Max. Min. Mean Mode Count 

Cement (C) (kg/m3) 505 62.00 292.57 250.00 260 

Water (W) (kg/m3) 395.39 133.25 197.83 180.00 260 

Fly ash (A)(kg/m3) 375.00 20.05 169.40 160.00 260 

Coarse aggregate (CA) (kg/m3) 1195.00 590.05 825.08 837.00 260 

Fine aggregate (FA) (kg/m3) 1119.00 434.05 811.44 910.00 260 

Superplasticizer (SP) (%) 4.50 0 0.98 0.50 260 

Age of samples (AS) (days) 363 1.1 43.86 28.00 260 

Compressive strength (MPa) 90.50 4.92 36.55 12.00 260 

 Statistical analysis of input and output parameters for Test 
set 

 

Cement (C) (kg/m3) 505 62.00 295.11 295.11 68 

Water (W) (kg/m3) 279.50 132.00 193.68 193.68 68 

Fly ash (A)(kg/m3) 336.00 20.00 173.56 173.56 68 

Coarse aggregate (CA) (kg/m3) 1190.00 590.00 841.48 841.48 68 
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Fine aggregate (FA) (kg/m3) 1109.00 434.00 791.43 791.43 68 

Superplasticizer (SP) (%) 4.60 0 0.98 0.98 68 

Age of samples (AS) (days) 365 1 46.09 46.09 68 

Compressive strength (MPa) 72.61 4.44 36.02 4.44 65 

 
4. Results 

 
To shape a CS expectation model for various periods of SCC tests with the expansion of Class F fly debris, 
framing an adequately enormous arrangement of test information of such concrete is important. A database of 
SCC sample tests from the published literature was used in this instance. The all-out number of tried examples 
utilized for displaying comprised of a sum of 327 tried examples with various times of the tried example from 
1 day to 365 days. Substantial constituents were investigated as information factors: concrete (C), water (W), 
Class F fly debris (A), coarse total (CA), fine total (FA), superplasticizer (SP), and the time of tests (AS). The 
strength of this concrete at a cylinder pressure of 100 mm 200 mm, expressed in MPa, was the output variable. 
As Supplementary Materials (Supplementary Materials S1), the entire database is available.  
According to the value of the correlation coefficient, there is an intercorrelation between the input variables 
(such as the ratio of superplasticizer to fine aggregate, the ratio of fly ash to cement, etc.) in addition to a certain 
correlation between compression strength as an output variable and some input variables (such as cement, 
sample age, etc.). The use of AI techniques is very viable in demonstrating simply such issues with 
intercorrelation. Furthermore, histograms organized along the principal inclining show the equilibrium of the 
dataset.  
Using the attached dataset and the built-in function corrplot (Matlab 2020a), all diagrams are generated 
automatically. It is essential to be familiar with the statistical indicators of the data that are being used when 
applying various machine learning algorithms to the definition of prediction models. The models that are being 
framed sum up inside the information on which the model preparation was performed. The built-in randperm 
function of the Matlab program was used to mix the entire dataset with random permutations of samples, then 
randomly selecting 80 percent of the samples for model training and 20 percent for model testing. This 80:20 
division of information is a standard strategy in AI. The accuracy of the model was evaluated using the criteria 
root mean square error (RMSE), mean absolute error (MAE), Pearson's linear correlation coefficient, and 
mean absolute error (MAE). All of the analyzed models were trained on the same training set. 
 

Table 2. Comparative analysis of results of different machine learning models. 
Model RMSE MAE R 

MGGP 7.2 5.7 0.9 

Decision tree 8.9 6.7 0.8 

TreeBagger 7.2 5.6 0.91 

Random forest 6.8 5.6 0.93 

Boosted tree 1 5.8 4.9 0.95 

Boosted tree 2 6.5 4.6 0.92 

SVM linear 12.6 10.3 0.74 

SVM RBF 5.7 4.4 0.92 

SVM sigmoid 12.77 10.5 0.75 

GP exponential 6.8 5.4 0.93 

GP Sq.exponential 6.6 5.2 0.94 

GP Matérn 3/2 6.4 4.8 0.94 

GP Matérn 5/2 6.5 4.6 0.94 

GP Rat. quadratic 6.6 4.9 0.94 

GP ARD exponential 5.8 4.5 0.95 

GP ARD Sq. exponential 6.3 4.5 0.95 

GP ARD Matérn 3/2 6.3 4.6 0.94 

GP ARD Matérn 5/2 6.5 4.3 0.94 

GP ARD Rat. quadratic 6.3 4.8 0.94 

ANN 8.9 6.9 0.89 

Ensemble ANN 5.6 4.3 0.95 

 
 

 



10743 M.R. Rajagopal/ Kuey, 30(5), xyz 

 

5. Conclusions 
  
For the purpose of predicting the compressive strength (CS) of self-compacting concrete (SCC) with the 
addition of Class F fly ash, this research investigates a variety of cutting-edge machine learning approaches. 
Strategies like MGGP, RT, and troupe methods in light of RTs, TreeBagger, irregular woods, supported tree 
models, SVM models with various bits, GPR models, individual ANN models, and gatherings of ANN models 
are talked about. The paper gives a point-by-point method to improving boundaries for every single broke 
down model and assesses their exactness utilizing RMSE, MAE, R, and MAPE standards. It underlines the 
significance of individual information factors and the positive effect of fly debris on substantial strength. 
Individual and ensemble models are examined for accuracy using a comprehensive database of literature tests.  
The effectiveness of ensemble models made up of GPR models and neural networks, which were not extensively 
discussed in previous research, is highlighted in this study. Furthermore, less precise yet more interpretable 
individual models like MGGP and RT are contrasted with usually utilized ANN models. Both MGGP and RT 
models offer bits of knowledge into the connection between substantial constituents and compressive strength, 
with MGGP giving a condition-based relationship and RT offering a straightforward tree structure, pivotal for 
functional execution at times.  
The discoveries empower ventures to demonstrate their substantial blend all the more proficiently, without 
huge speculation. Among the assessed models, the outfit of ANNs arises as the ideal decision with acceptable 
exactness for anticipating substantial strength across different ages. The use of bootstrap conglomeration 
prominently further develops precision contrasted with individual ANN models, and growing the data set could 
additionally upgrade model execution. Although GPR models with an ARD exponential function have a slightly 
lower accuracy, they are able to determine the impact that each variable has on prediction accuracy. Compared 
to the optimal ensemble ANN model, the MGGP model stands out for its explicit expression, making it easier 
to make concrete predictions across ages with slightly lower accuracy. The easier RT model accomplishes 
equivalent precision to the best individual ANN model, making it a helpful other option. 
 

References 
 

1. Environmental Protection Agency (EPA); Federal Highway Administration (FHWA). Using Coal Ash in 
Highway Construction—A Guide to Benefits and Impacts; Report nr EPA-530-K-002:ID: 151; EPA: 
Washington, DC, USA, 2005. 

2. Ahmad, J.; Zaid, O.; Aslam, F.; Martínez-García, R.; Alharthi, Y.M.; Hechmi EI Ouni, M.; Faisal Tufail, R.; 
Sharaky, I.A. Mechanical properties and durability assessment of nylon fiber reinforced self-compacting 
concrete. J. Eng. Fibers Fabr. 2021, 16, 1–13. [CrossRef] 

3. Saha, P.; Debnath, P.; Thomas, P. Prediction of fresh and hardened properties of self-compacting concrete 
using support vector regression approach. Neural. Comput. Appl. 2020, 32, 7995–8010. [CrossRef] 

4. Pazouki, G.; Golafshani, E.M.; Behnood, A. Predicting the compressive strength of self-compacting concrete 
containing Class F fly ash using metaheuristic radial basis function neural network. Struct. Concr. 2022, 
23, 1191–1213. [CrossRef] 

5. Searson, D.P.; Leahy, D.E.; Willis, M.J. GPTIPS: An Open Source Genetic Programming Toolbox for 
Multigene Symbolic Regression. In Proceeding of the International MultiConference of Engineers and 
Computer Scieintist Volume I, IMECS 2010, Hong Kong, China, 17–19 March 2010. 

6. Kovacˇevic´, M.; Ivaniševic´, N.; Petronijevic´, P.; Despotovic´, V. Construction cost estimation of 
reinforced and prestressed concrete bridges using machine learning. Gradevinar¯ 2021, 73, 1–13. 
[CrossRef] 

7. Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to 
boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [CrossRef] 

8. Bingöl, A.F.; Tohumcu, I. Effects of different curing regimes on the compressive strength properties of self-
compacting concrete incorporating fly ash and silica fume. Mater. Des. 2013, 51, 12–18. [CrossRef] 

9. Pathak, N.; Siddique, R. Properties of self-compacting-concrete containing fly ash subjected to elevated 
temperatures. Construct. Build. Mater. 2012, 30, 274–280. [CrossRef] 

10. Gesoglu, M.; Güneyisi, E.; Özturan, T.; Özbay, E. Modeling the mechanical properties of rubberized 
concretes by neural network and genetic programming. Mater. Struct. Construct. 2010, 43, 31–45. 
[CrossRef] 

11. Zhao, H.; Sun, W.; Wu, X.; Gao, B. The properties of the self-compacting concrete with fly ash and ground 
granulated blast furnace slag mineral admixtures. J. Clean. Prod. 2015, 95, 66–74. [CrossRef] 


