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ARTICLE INFO ABSTRACT 
 The power of the IoT and machine learning could radically transform agriculture 

using precision agriculture. Sensor data in real-time is available to farmers, 
allowing them to select crops and management techniques in an enlightened 
manner. Machine learning algorithms process the information to predict which 
crops are best suited for a location’s soil type, weather conditions, and other 
factors. This combination leads to increased resource use efficiency, improved 
crop production, proactive risk management, more responsible agriculture, and 
an opportunity for farmers to obtain data-driven suggestions. To maximize the 
benefits of these technologies, it is important to address problems like data 
rights and availability, as well as connectivity issues. This would allow for the 
continuation of R&D in the field. 
 
Abbreviations: Internet of things(IoT), Research and Development(R&D), 
Machine Learning(ML), Crop suitability mapping 

 
1. Introduction: 

 
The predominant challenge in agriculture lies in comprehending the fluctuating climate patterns, crucial for 
optimal crop growth. Precision farming offers a solution, sustaining productivity and boosting yields by 
aligning farming practices with specific crop requirements. In India, sustaining agriculture is vital amid rising 
demands, where traditional methods’ limitations can be mitigated through precision farming[1]. Leveraging 
IoT and predictive systems, precision farming aids decision-making by collecting field data for 
recommendations. Despite efforts to minimize losses, challenges persist in crop selection and adapting to 
climate shifts, exacerbated by shortcomings in current prediction methods. The proposed system aims to 
address these issues by enhancing yields, conducting real-time crop analysis through IoT, and optimizing 
parameter selection for informed decisions. Effective algorithms are pivotal for early crop prediction, utilizing 
ML models to generate valuable data for crop selection. The crop suggestion model’s primary goal is to reduce 
losses by recommending suitable crops for specific fields, necessitating careful algorithm selection to ensure 
accuracy. Machine Learning emerges as the most promising technology for precise crop prediction and yield 
estimation[2]. 
 

2. Related Works 
 
Forecasting crop yields is crucial for decision-makers at national and regional levels, expediting informed 
decisions. Accurate prediction models empower farmers in critical choices regarding crop selection and 
cultivation timing. Various methodologies, particularly machine learning (ML) techniques, have been explored 
for crop yield prediction. This section offers an overview of pertinent literature, excluding surveys and 
traditional reviews, to illuminate research trends in this area[4]. 
Chlingaryan and Sukkarieh (2018) conducted a thorough review on nitrogen status estimation using ML 
techniques, stressing the importance of sensing technologies and ML advancements in cost-effective 
agricultural solutions[5]. Elavarasan et al. (2018) surveyed ML models for crop yield prediction, emphasizing 
the significance of incorporating diverse climatic parameters for improved accuracy[6]. 
Liakos et al. (2018) provided a review encompassing ML applications in various agricultural domains, 
highlighting ML’s diverse impact on agricultural practices. Li, Lecourt, and Bishop (2018) examined fruit 

https://kuey.net/
mailto:2nandni.singhal.cse.2020@miet.ac.in
mailto:2nandni.singhal.cse.2020@miet.ac.in
mailto:6vijay.kumar.sharma@miet


11036                                                                   Akhil Panwar, et al  / Kuey, 30(5), 4881                                                          

 

ripeness determination for optimal harvest timing and yield prediction, underscoring the necessity of accurate 
predictive models in enhancing agricultural productivity[7]. 
Mayuri and Priya addressed challenges and methodologies in image processing and ML for agricultural disease 
detection, illuminating advancements in disease management. Somvanshi and Mishra (2015) explored ML 
approaches in plant biology, demonstrating ML’s applications in understanding and improving plant-related 
processes[8]. 
Gandhi and Armstrong (2016) reviewed data mining applications in agriculture, advocating for further 
research to integrate data mining techniques into complex agricultural datasets. Beulah (2019) surveyed data 
mining techniques in crop yield prediction, promoting their use in addressing predictive modeling 
challenges[9]. 
Our study presents the first systematic literature review (SLR) solely focusing on ML in crop yield prediction. 
Unlike existing surveys, which often focus on specific aspects, our SLR comprehensively reviews the literature 
in this field. Additionally, we analyze 30 deep learning-based studies, showcasing the effectiveness of deep 
learning algorithms in tackling crop yield prediction challenges. 
 

3. Proposed Work Plan 
 

3.1 General architecture (Figure 1) 
The approach is to study the To optimize agricultural analysis through Machine Learning (ML), a methodical 
approach is vital. It begins with clearly defining the agricultural problem to be addressed, whether it's 
improving crop yield, detecting diseases, or assessing soil health. Next, comprehensive datasets are collected 
from various sources such as IoT sensors, satellite imagery, and historical agricultural records. These datasets 
undergo preprocessing steps, including data cleaning, normalization, and feature selection, to ensure they are 
suitable for ML modeling. Upon successful validation, the optimized ML models are deployed in agricultural 
settings to aid farmers in making data-driven decisions. Continuous monitoring and refinement of these 
models ensure their efficacy in improving productivity. 
Description of various modules of the system. 
 
A. Data Collection 
Historical data on many important factors is important for analyzing crop impacts. Climate models covering 
temperature changes, precipitation, humidity and wind dynamics form an important part of this analysis. 
Tracking these patterns over time can help you understand how different climates affect crop growth and 
production. Soil quality is another important consideration and requires careful analysis of historical data on 
soil composition, pH, nutrient content and organic matter[16]. It provides information about the health 
conditions of the soil and the ability of the soil to support healthy crops. Satellite images help monitor soil 
moisture over large agricultural areas. Stakeholders can influence actions by combining information from 
historical events with  dynamic data provided by remote sensing data, satellite imagery, and ground sensors. It 
can be determined that farms will increase productivity and ensure food security. This collaboration reflects 
the evolution of  technology and data-driven approaches in agriculture today[11]. 
 
B. Data Pre-processing 
After collecting data on various factors affecting the crop, the next important step is to clean the data and 
prepare it for analysis. Data cleaning involves identifying and resolving discrepancies, and missing values that 
may affect analysis[12]. This process ensures  the reliability and accuracy of the data set and creates a solid 
foundation for subsequent analysis. Standardization scales the importance of different variables into a 
standard range (usually between 0 and 1) and makes it easier to compare variables with different scales and 
units. Standardization changes the data so that the mean is 0 and the standard deviation is 1; This reduces the 
impact of outliers and brings the distribution of the data closer to a Gaussian distribution[13]. These 
techniques help control the training process of machine learning models and improve their convergence and 
efficiency. Structure and relationship. Similarly, precipitation classification can be made by collecting 
precipitation data for a certain time  or region. Soil nutrient levels can be expressed as a combination or ratio 
derived from soil  data[14][14]. By extracting and analyzing these important features, the forecast model 
becomes more powerful and accurate, allowing for better predictions of agricultural yields and interruptions. 
Through careful data management, standardization and feature engineering, the data set is improved and 
enriched, thus providing the basis for in-depth analysis and effective prediction of crop yield. 
 
C. Model Analysis 
Choosing an appropriate machine learning method for crop forecasting requires careful consideration of many 
factors, including model complexity[19], interpretability, and prediction performance. Regression models such 
as linear regression or polynomial regression are often used to predict crop yield when there is a  relationship 
between input  and  target variables[20]. This model is simple and easy to understand; It makes it easier to 
understand how each input affects the estimated yield. However, they may not capture the nonsocial 
relationships present in the data, which may limit their effectiveness. Decision trees and random forests are 
popular  for product yield because they can capture non-linear relationships and interactions between inputs.   



11037                                                                   Akhil Panwar, et al  / Kuey, 30(5), 4881                                                          

 

Deep learning models, in particular, provide the flexibility to learn complex patterns and relationships from 
data, making them powerful  for crop  prediction. Deep neural networks, such as convolutional neural 
networks (CNN) or recurrent neural networks (RNN), enable more complex analysis and predictions[21] by 
extracting features from raw data. However, reporting these models often requires extensive data and budget, 
and their black status can hinder interpretation compared to simple models. On the other hand, when the data 
show no correlations and present complex patterns that simple models cannot capture, more complex models 
such as random forests or neural networks[22] would be expected to say yes. Finally, algorithm selection 
should be guided by the overall goal of accurate yield prediction while balancing  model complexity and 
interpretation assumptions. 
 
D. Training of Model 
After collecting and processing the dataset for crop prediction, the subsequent stage involves categorizing the 
data into training and validation sets to assess the learning model's effectiveness. This partitioning enables 
training on a subset of the data and evaluating performance independently, offering an impartial 
evaluation[23]. The training set is utilized for model training, while the validation set is employed to assess 
performance and fine-tune hyperparameters. Cross-validation entails dividing the data into multiple subsets or 
folds, training the model on different folds, and evaluating performance on the remaining folds. This iterative 
process enhances reliability by minimizing variation introduced by training-validation splits, ensuring the 
model generalizes well to new data[24]. Using the validation set, the selected model is trained, 
hyperparameters are adjusted, and cross-validation is employed for comprehensive evaluation and 
optimization. This iterative training and testing approach aids in selecting suitable algorithms and metrics for 
accurate crop yield prediction. 
 
E. Testing 
Once you choose a machine learning model that has been trained using  historical data and fine-tuned with 
hyperparameter tuning and cross-validation, the next step is to evaluate its performance using appropriate 
metrics. path. The model with the lowest MAE and RMSE value and the highest R-squared value is generally 
considered the best performing model. However,  other factors such as computational efficiency, 
interpretability, and robustness should also be taken into account when choosing the final model. By  
evaluating and comparing the performance of different models using appropriate metrics, agriculturalists can 
make informed decisions and use the best models to make accurate and reliable prediction of crop fulfills the 
desired user requirements, and handles all exceptional cases. To test the model's accuracy, we split the labeled 
data into 80% of the labeled datasets as training data and 20% as data to be tested. After the application of the 
data that is trained and tested with the Naive Bayes algorithm, we get the precision of 85.4% in our 
system/study[25]. 
 
F. Architecture 
The system involves real-time data collection, prediction model creation, and development of a user interface 
for input provision. Initially, data preprocessing occurs. Following preprocessing, a machine learning 
algorithm generates a prediction model. Test data is then fed into this model for prediction[26]. The model 
undergoes testing with random input values to assess accuracy and error during prediction. This process 
iterates until error reduction and accuracy enhancement are achieved. To gather inputs from both IoT sensors 
and users, a graphical user interface (GUI) is utilized. These inputs are then utilized by the crop prediction 
model to accurately forecast crops[27]. 
 

 
(Figure 1) 
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G. Feedback Loop 
Creating feedback loops is important to  evaluate the effectiveness of decision-making algorithms based on 
their impact on actual crops. This feedback  involves collecting data on actual crops processed by farmers based 
on the algorithm's recommendations. By comparing the actual results with the predicted results and the 
recommendations generated by the model[28], the performance of the algorithm can be evaluated. Farmers 
can understand the effectiveness of the consensus model and detect discrepancies between predictions and 
actual results. Agricultural experts can provide specific knowledge and skills to enhance the model's 
understanding of complex agricultural processes and increase its  accuracy. By integrating feedback from 
multiple stakeholders, the model continues to evolve and adapt to changes, making it effective and efficient in 
agricultural decision support. This positive feedback has led to collaborations for model improvements, driving 
continuous improvement and innovation in crop forecasting and agricultural management [35]. 
 
3. Experimental Result Analysis: 
3.1 Description of the data set used. 
EXPERIMENTAL RESULTS AND ANALYSIS 
This paper utilized an agricultural dataset containing exclusive soil and environmental data, sourced directly 
from the farming community due to its unavailability publicly. The study evaluates feature selection and 
classification techniques employing metrics such as accuracy, specificity, recall, precision, F1 score, mean 
absolute error, log loss, and area under the curve. The results are tabulated in Table 1 to Table 5 [33][34]. 
Table 1 illustrates that the random forest algorithm achieves the highest accuracy, followed by k-nearest 
neighbor and bagging classifiers. Table 2 shows that random forest, when combined with sampling techniques, 
effectively predicts crops. Here, different sampling methods are analyzed for dataset balancing. Table 3 
explores optimal feature selection techniques across various[29] classifiers using the felin dataset, considering 
MRFE, RFE, and Boruta methods. Table 4 evaluates MRFE's performance with RF using fold validation, while 
Table 5 assesses MRFE's performance with RF using data splitting validation [31][32]. 
Tables 4 and 5 demonstrate random forest's performance under different validation methods, showcasing the 
evaluation of MRFE and RF techniques. The results suggest that as the range of characteristics expands, the 
measured values tend to decrease. 
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4. Conclusion 
 
The integration of IoT and machine learning in precision agriculture promises transformative benefits. Real-
time sensor data and ML algorithms optimize crop selection and management, boosting resource efficiency 
and yields while managing risks sustainably. The study highlights the efficacy of the random forest algorithm, 
especially when coupled with feature selection methods like MRFE, for accurate crop yield prediction. It 
stresses the importance of thorough data preprocessing for model reliability. However, challenges like data 
rights and connectivity issues need resolution for widespread adoption. The feedback loop ensures continuous 
model enhancement through real-world data and expert input, fostering collaboration and innovation in crop 
management. This research lays a strong foundation for advanced precision agriculture systems, vital for 
addressing sustainability and food security demands. It emphasizes ongoing improvements in predictive 
models and collaborative efforts among stakeholders. In summary, this study [30]sets the stage for future 
research and practical applications driving agricultural transformation through data-driven decision-making 
and technological innovation. 
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