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ARTICLE INFO ABSTRACT 
 The Jump graph J(G) of a graph G is the graph whose vertices are edges of G and 

two vertices of J(G) are adjacent iff they are not adjacent in G. In this paper, we 
present necessary and sufficient condition for the decomposition of jump graph 
of cycles into various graphs such as paths, cycles, stars and complete bipartite 
graphs. Also, we give necessary and sufficient condition for the decomposition of 
[J(Cn)-e] into banner graphs and cycles. 
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1    Introduction 

 
Let 𝐺 = (𝑉, 𝐸) be a simple undirected graph without loops or multiple edges. A path on n vertices is denoted 
by Pn. A Cycle on vertices is denoted by Cn.  The graph 𝐾1,𝑟  is called a star and is denoted by Sr. Let 

{𝑥𝑛 : 𝑥1 , 𝑥2 , … , 𝑥𝑟 } denotes a star 𝑆𝑟  with 𝑥𝑛 as its center. The undefined terms are used in the sense of 
Harary[3]. 
 
    A decomposition of a graph G is a family of edge disjoint subgraphs { 𝐺1 , 𝐺2 , … , 𝐺𝑘 } Such that 𝐸(𝐺) =
 𝐸(𝐺1) ∪ 𝐸(𝐺2) ∪ … ∪ 𝐸(𝐺𝑘). If each 𝐺𝑖 is isomorphic to H for some subgraph H of G, then the decomposition 
is called a H- decomposition of G. 
 
   The Jump graph J(G) of a graph G is the graph whose vertices are edges of G and two vertices of J(G) are 
adjacent iff they are not adjacent in G. This concept was introduced by Chartrand in [1]. Also, complement of 
the line graph L(G) is the Jump graph J(G) of G. 
 
  In[2], N. Gnanadhas and J. Paulraj Joseph discussed Continuous Monotonic Decomposition of Graphs. M. 
Jenisha and P. Chithra Devi inquired Decomposition of Jump Graph of Cycles in [4]. R. Vanitha, D. 
Vijayalakshmi and G. Mohanapriya dealed with P4 Decomposition of Line and Middle Graph of some graphs 
in [6]. In this paper, we discuss about various decomposition of jump graph of cycles. 
 

2    Main Result 
 
Definition 2.1. Let J(Cn) denote the jump graph of cycle Cn. J(Cn) is connected iff 𝑛 ≥ 5.  Here we consider 
only connected jump graph of cycles. The number of vertices of J(Cn) is n because the number of edges of Cn 
is n. Let the edges of cycle Cn be labelled as 𝑥1 , 𝑥2 , … , 𝑥𝑛. So, the vertices of J(Cn) are labelled as 𝑥1 , 𝑥2 , … , 𝑥𝑛.   
 

The number of edges of J(Cn) is 
𝑛2−3𝑛

2
. 

 
Example 2.2. Jump graph of cycle J(C11) is given below. It has 11 vertices and 44 edges. 
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Definition 2.3. n - Pan graph is the graph obtained by joining a cycle Cn to K1 with a bridge. The 3-pan 
graph is often known as the Paw graph and the 4-pan graph as the banner graph. 
In this paper, we denote the banner graph as H. It is given below. 
 

 
 

 
Denote this graph as 𝐻 = {𝑥1 ;  𝑥2 𝑥3 𝑥4 𝑥5 𝑥2 }. Here 𝑥1 is a pendent vertex, 𝑥2 has degree 3 and all other 
vertices have degree 2. 
 

Theorem 2.4. Let 𝑛 ≥ 6 be an even positive integer with 𝑞 =  
(𝑛−2)(𝑛−4)

8
,   𝑟 =  

(𝑛−2)

2
 and 𝑡 = 𝑛 − 3. Then J(Cn) 

is decomposed into q copies of P5, one copy of Sr and one copy of St iff 4𝑞 + 𝑟 + 𝑡 =  
𝑛2−3𝑛

2
. 

Proof. Let 𝑛 ≥ 6 be an even positive integer with 𝑞 =  
(𝑛−2)(𝑛−4)

8
,   𝑟 =  

(𝑛−2)

2
  and  𝑡 = 𝑛 − 3. 

Let  𝑉(𝐽(𝐶𝑛)) = {𝑥1 , 𝑥2 , … , 𝑥𝑛}. 
(Necessity) Suppose that there exists a decomposition of J(Cn) into q copies of P5, one copy of Sr and one copy 
of St .  

Since |𝐸(𝐽(𝐶𝑛))| =
𝑛2−3𝑛

2
, we have 4𝑞 + 𝑟 + 𝑡 =  

𝑛2−3𝑛

2
. 

 

(Sufficiency) Suppose 4𝑞 + 𝑟 + 𝑡 =  
𝑛2−3𝑛

2
. 

For 𝑖 = 1, 3, 5, … , 𝑛 − 5,  {𝑥𝑘 𝑥𝑖 𝑥𝑘+1 𝑥𝑖+1 𝑥𝑘+2 / 𝐾 = 𝑖 + 2, 𝑖 + 4,… , 𝑛 − 3} forms P5 in J(Cn). 

From this, we get 
(𝑛−2)(𝑛−4)

8
= 𝑞 copies of P5. 

For 𝑖 = 𝑛 − 1, {𝑥𝑖 : 𝑥1 , 𝑥3 , 𝑥5 , … , 𝑥𝑛−3 } forms a star Sr with 𝑥𝑖  as its center where 𝑟 =  
(𝑛−2)

2
. 

Also, for 𝑖 = 𝑛, {𝑥𝑖 : 𝑥2 , 𝑥3 , 𝑥4 , … , 𝑥𝑛−2 } forms a star St with 𝑥𝑖  as its center where  𝑡 = 𝑛 − 3. 

Hence E (𝐽(𝐶𝑛)) =  𝐸(𝑃5) ∪ 𝐸(𝑃5) ∪ …∪ 𝐸(𝑃5)⏟                  
𝑞 𝑡𝑖𝑚𝑒𝑠

 ∪  𝐸(𝑆𝑟) ∪ 𝐸(𝑆𝑡). 

Thus J(Cn) is decomposed into q copies of P5, one copy of Sr and one copy of St . 
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Theorem 2.5. Let 𝑛 ≥ 5 be an odd positive integer with 𝑞 =  
(𝑛−1)(𝑛−3)

8
 and  𝑟 =  

(𝑛−3)

2
 .  Then J(Cn) is 

decomposed into q copies of P5 and one copy of Sr iff 4𝑞 + 𝑟 =  
𝑛2−3𝑛

2
. 

Proof. Let 𝑛 ≥ 5 be an odd positive integer with 𝑞 =  
(𝑛−1)(𝑛−3)

8
  and   𝑟 =  

(𝑛−3)

2
. 

Let  𝑉(𝐽(𝐶𝑛)) = {𝑥1 , 𝑥2 , … , 𝑥𝑛}. 
(Necessity) Suppose that there exists a decomposition of J(Cn) into q copies of P5 and one copy of Sr.  

Since |𝐸(𝐽(𝐶𝑛))| =
𝑛2−3𝑛

2
, we have 4𝑞 + 𝑟 =  

𝑛2−3𝑛

2
. 

(Sufficiency) Suppose 4𝑞 + 𝑟 =  
𝑛2−3𝑛

2
. 

For 𝑖 = 1, 3, 5, … , 𝑛 − 4,  {𝑥𝑘 𝑥𝑖 𝑥𝑘+1 𝑥𝑖+1 𝑥𝑘+2 / 𝐾 = 𝑖 + 2, 𝑖 + 4,… , 𝑛 − 2} forms P5 in J(Cn). 

Here we obtain  
(𝑛−1)(𝑛−3)

8
= 𝑞 copies of P5. 

For 𝑖 = 𝑛, {𝑥𝑖 :  𝑥3 , 𝑥5 , … , 𝑥𝑛−2} forms a star Sr with 𝑥𝑖  as its center where 𝑟 =  
(𝑛−3)

2
. 

Hence  𝐸(𝐽(𝐶𝑛)) =  𝐸(𝑃5) ∪ 𝐸(𝑃5) ∪ …∪ 𝐸(𝑃5)⏟                  
𝑞 𝑡𝑖𝑚𝑒𝑠

 ∪  𝐸(𝑆𝑟). 

Thus, J(Cn) is decomposed into q copies of P5 and one copy of Sr. 
 

Theorem 2.6. [4] Let 𝑛 be an even positive integer with 𝑝 =  
𝑛

2
 and 𝑞 =  

𝑛2−6𝑛

8
.  Then there exists a 

decomposition of J(Cn) into p copies of P4 and q copies of C4 iff  𝑛 ≥ 6 and 3𝑝 + 4𝑞 =  
𝑛2−3𝑛

2
. 

 

Theorem 2.7. Let 𝑛 ≥ 5 be an odd positive integer with 𝑞 =  
(𝑛−3)

2
,   𝑟 =  

(𝑛−3)(𝑛−5)

8
 and 𝑡 = 𝑛 − 3. Then J(Cn) 

is decomposed into {qP4, rC4, St}  iff  3𝑞 + 4𝑟 + 𝑡 =  
𝑛2−3𝑛

2
. 

Proof. Let 𝑛 ≥ 5 be an odd positive integer with 𝑞 =  
(𝑛−3)

2
,    𝑟 =  

(𝑛−3)(𝑛−5)

8
 and 𝑡 = 𝑛 − 3. 

Let  𝑉(𝐽(𝐶𝑛)) = {𝑥1 , 𝑥2 , … , 𝑥𝑛}. 
(Necessity) Suppose J(Cn) is decomposed  into {qP4, rC4, St}.  

Since |𝐸(𝐽(𝐶𝑛))| =
𝑛2−3𝑛

2
, we get 3𝑞 + 4𝑟 + 𝑡 =  

𝑛2−3𝑛

2
. 

(Sufficiency) Suppose 3𝑞 + 4𝑟 + 𝑡 =  
𝑛2−3𝑛

2
. 

Clearly, for 𝑖 = 1, 3, 5, … , 𝑛 − 4,  {𝑥𝑖+2 𝑥𝑖 𝑥𝑖+3 𝑥𝑖+1} forms P4 in J(Cn). 

From this, we get 
(𝑛−3)

2
= 𝑞 copies of P4. 

For 𝑖 = 1, 3, 5, … , 𝑛 − 6,  {𝑥𝑖 𝑥𝑘𝑥𝑖+1 𝑥𝑘+1 𝑥𝑖/ 𝑘 = 𝑖 + 4, 𝑖 + 6,… , 𝑛 − 2} forms C4 in J(Cn). 

This gives 
(𝑛−3)(𝑛−5)

8
 = 𝑟 copies of C4 

Also, {𝑥𝑛: 𝑥2 , 𝑥3 , … , 𝑥𝑛−2 } forms a star St with 𝑥𝑛  as its center  and  𝑡 = 𝑛 − 3. 

Therefore E (𝐽(𝐶𝑛)) =  𝐸(𝑃4) ∪ 𝐸(𝑃4) ∪ …∪ 𝐸(𝑃4)⏟                  
𝑞 𝑡𝑖𝑚𝑒𝑠

 ∪ 𝐸(𝐶4) ∪ 𝐸(𝐶4) ∪ …∪ 𝐸(𝐶4)⏟                  
𝑟 𝑡𝑖𝑚𝑒𝑠

∪ 𝐸(𝑆𝑡). 

Hence J(Cn) is decomposed into {qP4, rC4, St}. 
 

Theorem 2.8. Let 𝑛 ≥ 5 be an odd positive integer with   𝑞 =  
(𝑛−5)(𝑛+1)

8
  and 𝑚 =

(𝑛+1)

2
. Then J(Cn) is 

decomposed into {qC4, Pm , P4}  iff  4𝑞 + 𝑚 = 
𝑛2−3𝑛

2
− 2. 

Proof. Let 𝑛 ≥ 5 be an odd positive integer with 𝑞 =  
(𝑛−5)(𝑛+1)

8
  and  𝑚 =

(𝑛+1)

2
.  

Let  𝑉(𝐽(𝐶𝑛)) = {𝑥1 , 𝑥2 , … , 𝑥𝑛}. 
(Necessity) Suppose J(Cn) is decomposed  into {qC4, Pm , P4}.  

Since, |𝐸(𝐽(𝐶𝑛))| =
𝑛2−3𝑛

2
, we have 4𝑞 + 𝑚 = 

𝑛2−3𝑛

2
− 2. 

(Sufficiency) Suppose  4𝑞 + 𝑚 =  
𝑛2−3𝑛

2
− 2. 

Clearly, {𝑥𝑖 𝑥1 𝑥𝑖+1 𝑥2𝑥𝑖/𝑖 = 4, 6, … , 𝑛 − 3} forms C4 in J(Cn). 

This gives  
𝑛−5

2
 copies of C4.  

For 𝑖 =  3, 5, 7… , 𝑛 − 4,  {𝑥𝑘  𝑥𝑖𝑥𝑘+1 𝑥𝑖+1 𝑥𝑘/𝑘 = 𝑖 + 3, 𝑖 + 5,… , 𝑛 − 1} forms C4 in J(Cn). 

This gives 
(𝑛−3)(𝑛−5)

8
  copies of C4. 

Totally, we get 
(𝑛−5)(𝑛+1)

8
 = 𝑞 copies of C4 in J(Cn). 

Clearly,  𝑥1 𝑥3𝑥5…𝑥𝑛 forms Pm in J(Cn) where 𝑚 =
(𝑛+1)

2
 . 

Next,  𝑥1  𝑥𝑛−1 𝑥2𝑥𝑛 form one copy of P4. 
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Therefore E(𝐽(𝐶𝑛)) =  𝐸(𝐶4) ∪ 𝐸(𝐶4) ∪ …∪ 𝐸(𝐶4)⏟                  

𝑞 𝑡𝑖𝑚𝑒𝑠

 ∪ 𝐸(𝑃𝑚) ∪ 𝐸(𝑃4). 

Hence J(Cn) is decomposed into {qC4, Pm , P4}. 
 

Theorem 2.9. Let 𝑛 ≥ 6 be an even positive integer with 𝑞 =  
(𝑛−2)(𝑛−4)

8
, 𝑚 =  

𝑛

2
  and 𝑡 = 𝑛 − 3. Then J(Cn) is 

decomposed into {qC4, Pm, St}  iff  4𝑞 + 𝑚 + 𝑡 =  
𝑛2−3𝑛

2
+ 1. 

Proof. Let 𝑛 ≥ 6 be an even positive integer with 𝑞 =  
(𝑛−2)(𝑛−4)

8
, 𝑚 =  

𝑛

2
  and  𝑡 = 𝑛 − 3.  

Let  𝑉(𝐽(𝐶𝑛)) = {𝑥1 , 𝑥2 , … , 𝑥𝑛}. 
(Necessity) Suppose J(Cn) is decomposed  into {qC4, Pm, St}. 

Since, |𝐸(𝐽(𝐶𝑛))| =
𝑛2−3𝑛

2
, we have 4𝑞 + 𝑚 + 𝑡 =  

𝑛2−3𝑛

2
+ 1. 

(Sufficiency) Suppose4𝑞 +𝑚 + 𝑡 =  
𝑛2−3𝑛

2
+ 1. 

Clearly, {𝑥𝑖 𝑥1 𝑥𝑖+1 𝑥2𝑥𝑖/𝑖 = 4, 6, … , 𝑛 − 2} forms C4 in J(Cn). 

This gives 
𝑛−4

2
 copies of C4.  

For 𝑖 = 1, 3, 5, … , 𝑛 − 5,  {𝑥𝑘 𝑥𝑖𝑥𝑘+1 𝑥𝑖+1 𝑥𝑘/ 𝑘 = 𝑖 + 3, 𝑖 + 5,… , 𝑛 − 2} forms C4 in J(Cn). 

This gives 
(𝑛−4)(𝑛−6)

8
  copies of C4. 

Totally, we get 
(𝑛−2)(𝑛−4)

8
 = 𝑞 copies of C4 in J(Cn). 

Clearly,  𝑥1 𝑥3 𝑥5…𝑥𝑛−1 forms Pm in J(Cn) where 𝑚 =
𝑛

2
 . 

Next, {𝑥𝑛: 𝑥2 , 𝑥3 , … , 𝑥𝑛−2 }  forms one copy of St. 

Therefore  E(𝐽(𝐶𝑛)) =  𝐸(𝐶4) ∪ 𝐸(𝐶4) ∪ …∪ 𝐸(𝐶4)⏟                  
𝑞 𝑡𝑖𝑚𝑒𝑠

 ∪ 𝐸(𝑃𝑚) ∪ 𝐸(𝑆𝑡). 

Hence J(Cn) is decomposed into {qC4, Pm, St}.  
 

Theorem 2.10. [4] Let 𝑛 be an odd positive integer with 𝑝 =  
𝑛−3

2
  and 𝑞 =  

𝑛−5

2
.  Then there exists a 

decomposition of J(Cn) into p copies of C5 and q complete bipartite graphs of the form 𝐾2,2𝑙; 𝑙 = 1,2, … ,
𝑛−5

2
 iff 

𝑛 ≥ 5 and  5𝑝 + 2𝑞(𝑞 + 1) =  
𝑛2−3𝑛

2
. 

 

Theorem 2.11. Let 𝑛 ≥ 6 be an even positive integer with 𝑞 =  
𝑛−4

2
 and  𝑡 =  

𝑛−6

2
 . Then [𝐽(𝐶𝑛) − 𝑒] is 

decomposed into {𝑞𝐶5, 𝑆3, 𝑡 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝐾2,2𝑟+1, 𝑟 = 1, 2, … ,
𝑛−6

2
 }  iff 5𝑞 + 2𝑡(𝑡 + 2) =  

𝑛2−3𝑛

2
− 4. 

Proof. Let 𝑛 ≥ 6 be an even positive integer with 𝑞 =  
𝑛−4

2
 and   𝑡 =  

𝑛−6

2
 . 

Let  𝑉(𝐽(𝐶𝑛)) = {𝑥1 , 𝑥2 , … , 𝑥𝑛}. 
Consider [𝐽(𝐶𝑛) − 𝑒] where 𝑒 = 𝑥1𝑥𝑛−1. 
(Necessity) Suppose [𝐽(𝐶𝑛) − 𝑒] is decomposed into                   

{𝑞𝐶5, 𝑆3, 𝑡 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝐾2,2𝑟+1, 𝑟 = 1, 2, … ,
𝑛−6

2
 }. 

Since |𝐸(𝐽(𝐶𝑛))| =
𝑛2−3𝑛

2
, we get 5𝑞 + 2𝑡(𝑡 + 2) =  

𝑛2−3𝑛

2
− 4. 

(Sufficiency) Assume 5𝑞 + 2𝑡(𝑡 + 2) =  
𝑛2−3𝑛

2
− 4. 

For 𝑖 = 3, 5, … , 𝑛 − 3,  {𝑥1 𝑥𝑖 𝑥𝑖+2 𝑥2𝑥𝑖+1𝑥1} forms C5 in J(Cn). 

This gives 
𝑛−4

2
= 𝑞 copies of C5. 

For 𝑖 = 3, 5, … , 𝑛 − 5,  𝑥𝑖 and 𝑥𝑖+1 are non-adjacent and they are adjacent with 𝑥𝑖+3, 𝑥𝑖+4, … , 𝑥𝑛. 

This gives 
𝑛−6

2
 = 𝑡 complete bipartite graphs of the form 𝐾2,2𝑟+1, 𝑟 = 1, 2, … ,

𝑛−6

2
. 

Next,  {𝑥𝑛: 𝑥2 , 𝑥𝑛−3 ,𝑥𝑛−2 } forms S3 in J(Cn). 

 

Hence 𝐸[𝐽(𝐶𝑛) − 𝑒] =  𝐸(𝐶5) ∪ 𝐸(𝐶5) ∪ …∪ 𝐸(𝐶5)⏟                  
𝑞 𝑡𝑖𝑚𝑒𝑠

∪ 𝐸(𝑆3) ∪  𝐸(𝐾2,3) ∪ 𝐸(𝐾2,5) ∪ … 

                                           ∪ 𝐸(𝐾2,𝑛−5). 

Therefore [𝐽(𝐶𝑛) − 𝑒] is decomposed into {𝑞𝐶5, 𝑆3, 𝑡 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝐾2,2𝑟+1, 𝑟 = 1, 2, … ,
𝑛−6

2
 }. 

 

Theorem 2.12. Let 𝑛 ≥ 6 be an even positive integer with  𝑚 =  
𝑛

2
 , 𝑙 = 𝑛 − 4  and 𝑡 =  

𝑛−6

2
 . Then [𝐽(𝐶𝑛) − 𝑒] 

is decomposed into {𝑃𝑚 ,  𝑆2, 𝐾2,𝑙 , 𝑡 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝐾2,2𝑟+1, 𝑟 = 1, 2, … ,
𝑛−6

2
 }  iff                      𝑚 + 2𝑙 + 2𝑡(𝑡 + 2) =

 
𝑛2−3𝑛

2
− 2. 
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Proof. Let 𝑛 ≥ 6 be an even positive integer with = 
𝑛

2
 , 𝑙 = 𝑛 − 4  and 𝑡 =  

𝑛−6

2
 . 

Let  𝑉(𝐽(𝐶𝑛)) = {𝑥1 , 𝑥2 , … , 𝑥𝑛}. 
Consider [𝐽(𝐶𝑛) − 𝑒] where 𝑒 = 𝑥2𝑥𝑛. 
(Necessity) Suppose [𝐽(𝐶𝑛) − 𝑒] is decomposed into                   

{𝑃𝑚 , 𝑆2, 𝐾2,𝑙 , 𝑡 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝐾2,2𝑟+1, 𝑟 = 1, 2, … ,
𝑛−6

2
 }. 

Since |𝐸(𝐽(𝐶𝑛))| =
𝑛2−3𝑛

2
, we have 𝑚+ 2𝑙 + 2𝑡(𝑡 + 2) =  

𝑛2−3𝑛

2
− 2. 

(Sufficiency) Suppose 𝑚 + 2𝑙 + 2𝑡(𝑡 + 2) =  
𝑛2−3𝑛

2
− 2. 

𝑥1 𝑥3 … 𝑥𝑛−1 forms Pm  where 𝑚 = 
𝑛

2
. 

𝑥1 and 𝑥2 are non-adjacent and they are adjacent with 𝑥4, 𝑥5, … , 𝑥𝑛−1. This gives 𝐾2,𝑙 where 𝑙 = 𝑛 − 4. 

For 𝑖 = 3, 5, … , 𝑛 − 5,  𝑥𝑖 and  𝑥𝑖+1 are non-adjacent and they are adjacent with 𝑥𝑖+3, 𝑥𝑖+4, … , 𝑥𝑛. 

This gives 
𝑛−6

2
 = 𝑡 complete bipartite graphs of the form 𝐾2,2𝑟+1, 𝑟 = 1, 2, … ,

𝑛−6

2
. 

Clearly,  {𝑥𝑛: 𝑥𝑛−3 , 𝑥𝑛−2 } forms star S2 with 𝑥𝑛 as its center. 

Hence 𝐸[𝐽(𝐶𝑛) − 𝑒] =  𝐸(𝑃𝑚) ∪ 𝐸(𝑆2) ∪ 𝐸(𝐾2,𝑙) ∪  𝐸(𝐾2,3) ∪ 𝐸(𝐾2,5) ∪ …∪ 𝐸(𝐾2,𝑛−5). 

Therefore [𝐽(𝐶𝑛) − 𝑒] is decomposed into {𝑃𝑚 , 𝑆2, 𝐾2,𝑙 , 𝑡 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝐾2,2𝑟+1, 𝑟 = 1, 2, … ,
𝑛−6

2
 }  iff                      𝑚 +

2𝑙 + 2𝑡(𝑡 + 2) =  
𝑛2−3𝑛

2
− 2. 

 

Theorem 2.13. Let 𝑛 ≥ 5 be an odd positive integer with  𝑚 =  
𝑛+1

2
 , 𝑙 = 𝑛 − 4  and 𝑡 =  

𝑛−5

2
 . Then [𝐽(𝐶𝑛) − 𝑒] 

is decomposed into {𝑃𝑚 , 𝐾2,𝑙 , 𝑡 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝐾2,2𝑟, 𝑟 = 1, 2, … ,
𝑛−5

2
 }  iff                      𝑚 + 2𝑙 + 2𝑡(𝑡 + 1) =  

𝑛2−3𝑛

2
. 

Proof. Let 𝑛 ≥ 5 be an even positive integer with  m =  
𝑛+1

2
 , 𝑙 = 𝑛 − 4  and 𝑡 =  

𝑛−5

2
 . 

Let  𝑉(𝐽(𝐶𝑛)) = {𝑥1 , 𝑥2 , … , 𝑥𝑛}. 
Consider [𝐽(𝐶𝑛) − 𝑒] where 𝑒 = 𝑥2𝑥𝑛. 
(Necessity) Suppose [𝐽(𝐶𝑛) − 𝑒] is decomposed into                   

{𝑃𝑚 , 𝐾2,𝑙 , 𝑡 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝐾2,2𝑟 , 𝑟 = 1, 2, … ,
𝑛−5

2
 }. 

Since |𝐸(𝐽(𝐶𝑛))| =
𝑛2−3𝑛

2
, we have 𝑚+ 2𝑙 + 2𝑡(𝑡 + 1) =  

𝑛2−3𝑛

2
. 

(Sufficiency) Suppose 𝑚 + 2𝑙 + 2𝑡(𝑡 + 1) =  
𝑛2−3𝑛

2
. 

𝑥1𝑥3 …𝑥𝑛 forms Pm  where 𝑚 = 
𝑛+1

2
. 

𝑥1 and 𝑥2 are non-adjacent and they are adjacent with 𝑥4, 𝑥5, … , 𝑥𝑛−1. This gives 𝐾2,𝑙 where 𝑙 = 𝑛 − 4. 
For 𝑖 = 3, 5, … , 𝑛 − 4,  𝑥𝑖 and 𝑥𝑖+1 are non-adjacent and they are adjacent with  𝑥𝑖+3, 𝑥𝑖+4, … , 𝑥𝑛. 

This gives 
𝑛−5

2
 = 𝑡 complete bipartite graphs of the form 𝐾2,2𝑟 , 𝑟 = 1, 2, … ,

𝑛−5

2
. 

Hence 𝐸[𝐽(𝐶𝑛) − 𝑒] =  𝐸(𝑃𝑚) ∪ 𝐸(𝐾2,𝑙) ∪ 𝐸(𝐾2,2) ∪  𝐸(𝐾2,4) ∪ …∪ 𝐸(𝐾2,𝑛−5). 

Therefore [𝐽(𝐶𝑛) − 𝑒] is decomposed into {𝑃𝑚 , 𝐾2,𝑙 , 𝑡 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝐾2,2𝑟 , 𝑟 = 1, 2, … ,
𝑛−5

2
 }. 

 

Theorem 2.14. Let 𝑛 ≥ 6 be an even positive integer with  𝑞 =  
𝑛−4

2
 , 𝑟 =

(𝑛−4)(𝑛−6)

8
 and 𝑡 =  𝑛 − 3 . Then 

[𝐽(𝐶𝑛) − 𝑒] is decomposed into {𝑞𝐻, 𝑟𝐶4, 𝑆𝑡}  iff   5𝑞 + 4𝑟 + 𝑡 =  
𝑛2−3𝑛

2
− 1. 

Proof. Let 𝑛 ≥ 6 be an even positive integer with q =  
𝑛−4

2
 , 𝑟 =

(𝑛−4)(𝑛−6)

8
 and 𝑡 =  𝑛 − 3 . 

Let  𝑉(𝐽(𝐶𝑛)) = {𝑥1 , 𝑥2 , … , 𝑥𝑛}. 
Consider [𝐽(𝐶𝑛) − 𝑒] where 𝑒 = 𝑥𝑛−3𝑥𝑛−1. 
(Necessity) Suppose [𝐽(𝐶𝑛) − 𝑒] is decomposed into {𝑞𝐻, 𝑟𝐶4, 𝑆𝑡}. 

Since |𝐸(𝐽(𝐶𝑛))| =
𝑛2−3𝑛

2
, 5𝑞 + 4𝑟 + 𝑡 =  

𝑛2−3𝑛

2
− 1. 

(Sufficiency) Suppose 5𝑞 + 4𝑟 + 𝑡 =  
𝑛2−3𝑛

2
− 1. 

For 𝑖 = 3, 5, 7, … , 𝑛 − 3, {𝑥𝑖 ; 𝑥𝑖−2 𝑥𝑖+1 𝑥𝑖−1𝑥𝑖+2𝑥𝑖−2} forms H in 𝐽(𝐶𝑛). 

This gives 
𝑛−4

2
 = 𝑞 copies of H. 

Also, for 𝑖 = 1, 3, 5,… , 𝑛 − 7, {𝑥𝑖 𝑥𝑘𝑥𝑖+1 𝑥𝑘+1 𝑥𝑖/ 𝑘 = 𝑖 + 5, 𝑖 + 7,… , 𝑛 − 2} forms C4 in J(Cn). 

From this, we get  
(𝑛−4)(𝑛−6)

8
 = 𝑟 copies of C4. 

Next, {𝑥𝑛: 𝑥2 , 𝑥3 , … , 𝑥𝑛−2 }  forms a star St where 𝑡 =  𝑛 − 3 with 𝑥𝑛 as its center. 
Hence 𝐸[𝐽(𝐶𝑛) − 𝑒] =  𝐸(𝐻) ∪ 𝐸(𝐻) ∪ …∪ 𝐸(𝐻)⏟                

𝑞 𝑡𝑖𝑚𝑒𝑠

∪ 𝐸(𝐶4) ∪ 𝐸(𝐶4) ∪ …∪ 𝐸(𝐶4)⏟                  
𝑟 𝑡𝑖𝑚𝑒𝑠

∪ 𝐸(𝑆𝑡) 

Therefore [𝐽(𝐶𝑛) − 𝑒] is decomposed into {𝑞𝐻, 𝑟𝐶4, 𝑆𝑡}. 
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Theorem 2.15. Let 𝑛 > 5 be an odd positive integer with q = 
𝑛−3

2
 , 𝑟 =

(𝑛−1)(𝑛−7)

8
 and            𝑡 =  𝑛 − 3 . Then 

[𝐽(𝐶𝑛) − 𝑒] is decomposed into {𝑞𝐻, 𝑟𝐶4, 𝑃4}  iff   5𝑞 + 4𝑟 =  
𝑛2−3𝑛

2
− 4. 

Proof. Let 𝑛 > 5 be an odd positive integer with  𝑞 =  
𝑛−3

2
 , 𝑟 =

(𝑛−1)(𝑛−7)

8
    and  𝑡 =  𝑛 − 3. 

Let  𝑉(𝐽(𝐶𝑛)) = {𝑥1 , 𝑥2 , … , 𝑥𝑛}. 
Consider [𝐽(𝐶𝑛) − 𝑒] where 𝑒 = 𝑥𝑛−2𝑥𝑛. 
(Necessity) Suppose [𝐽(𝐶𝑛) − 𝑒] is decomposed into {𝑞𝐻, 𝑟𝐶4, 𝑃4}. 

Since |𝐸(𝐽(𝐶𝑛))| =
𝑛2−3𝑛

2
,  5𝑞 + 4𝑟 =  

𝑛2−3𝑛

2
− 4. 

(Sufficiency) Suppose 5𝑞 + 4𝑟 =  
𝑛2−3𝑛

2
− 4. 

For 𝑖 = 3, 5, 7, … , 𝑛 − 2,  {𝑥𝑖 ; 𝑥𝑖−2 𝑥𝑖+1 𝑥𝑖−1𝑥𝑖+2𝑥𝑖−2} forms H in 𝐽(𝐶𝑛). 

This gives 
𝑛−3

2
 = 𝑞 copies of H. 

{𝑥1𝑥𝑘𝑥2 𝑥𝑘+1 𝑥1/ 𝑘 = 6, 8, … , 𝑛 − 3} forms C4 in J(Cn). 

This gives 
𝑛−7

2
 copies of C4. 

Also, for 𝑖 =  3, 5, … , 𝑛 − 6,  {𝑥𝑖 𝑥𝑘𝑥𝑖+1 𝑥𝑘+1 𝑥𝑖/ 𝑘 = 𝑖 + 5, 𝑖 + 7,… , 𝑛 − 1} gives C4 in J(Cn). 

This gives  
(𝑛−5)(𝑛−7)

8
  copies of C4. 

Totally, we get 𝑟 =
(𝑛−1)(𝑛−7)

8
  copies of C4 

Next, {𝑥1 𝑥𝑛−1 𝑥2 𝑥𝑛 }  forms P4 in J(Cn). 
Hence 𝐸[𝐽(𝐶𝑛) − 𝑒] =  𝐸(𝐻) ∪ 𝐸(𝐻) ∪ …∪ 𝐸(𝐻)⏟                

𝑞 𝑡𝑖𝑚𝑒𝑠

∪ 𝐸(𝐶4) ∪ 𝐸(𝐶4) ∪ …∪ 𝐸(𝐶4)⏟                  
𝑟 𝑡𝑖𝑚𝑒𝑠

∪ 𝐸(𝑃4) 

Therefore [𝐽(𝐶𝑛) − 𝑒] is decomposed into {𝑞𝐻, 𝑟𝐶4, 𝑃4}. 
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