Decomposition Of Jump Graph Of Cycles Into Paths, Cycles, Complete Bipartite Graphs And Banner Graphs

V. Maragatha Gomathi ${ }^{1 *}$ and P. Chithra Devi ${ }^{2}$
$1^{1^{*}, 2}$ Department of Mathematics, Sri Parasakthi College for Women, courtallam, Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627 012, Tamil Nadu, India. Email: ${ }^{11 m}$ aragathagomathi78@gmail.com; chithradevio95@gmail.com, ${ }^{1}$ Research Scholar [Reg. No. 18131202092006]
Citation: V. Maragatha Gomathi et.al (2024), Decomposition Of Jump Graph Of Cycles Into Paths, Cycles, Complete Bipartite Graphs And Banner Graphs.., Educational Administration: Theory And Practice, 30(5), 11253-11258
Doi 10.53555/kuey.v3oi5. 4927

ARTICLE INFO	ABSTRACT
	The Jump graph J(G) of a graph G is the graph whose vertices are edges of G and two vertices of $\mathrm{J}(\mathrm{G})$ are adjacent iff they are not adjacent in G . In this paper, we present necessary and sufficient condition for the decomposition of jump graph of cycles into various graphs such as paths, cycles, stars and complete bipartite graphs. Also, we give necessary and sufficient condition for the decomposition of $\left[J\left(\mathrm{C}_{\mathrm{n}}\right)-\mathrm{e}\right]$ into banner graphs and cycles.

Keywords and Phrases: Decomposition of graphs, Jump graph, Path, Cycle, Complete Bipartite graph, Banner graph.

1 Introduction

Let $G=(V, E)$ be a simple undirected graph without loops or multiple edges. A path on n vertices is denoted by P_{n}. A Cycle on vertices is denoted by C_{n}. The graph $K_{1, r}$ is called a star and is denoted by S_{r}. Let $\left\{x_{n}: x_{1}, x_{2}, \ldots, x_{r}\right\}$ denotes a star S_{r} with x_{n} as its center. The undefined terms are used in the sense of Harary[3].

A decomposition of a graph G is a family of edge disjoint subgraphs $\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$ Such that $E(G)=$ $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup \ldots \cup E\left(G_{k}\right)$. If each G_{i} is isomorphic to H for some subgraph H of G , then the decomposition is called a H - decomposition of G .

The Jump graph $J(G)$ of a graph G is the graph whose vertices are edges of G and two vertices of $J(G)$ are adjacent iff they are not adjacent in G. This concept was introduced by Chartrand in [1]. Also, complement of the line graph $L(G)$ is the Jump graph $J(G)$ of G.

In[2], N. Gnanadhas and J. Paulraj Joseph discussed Continuous Monotonic Decomposition of Graphs. M. Jenisha and P. Chithra Devi inquired Decomposition of Jump Graph of Cycles in [4]. R. Vanitha, D. Vijayalakshmi and G. Mohanapriya dealed with P_{4} Decomposition of Line and Middle Graph of some graphs in [6]. In this paper, we discuss about various decomposition of jump graph of cycles.

2 Main Result

Definition 2.1. Let $J\left(C_{n}\right)$ denote the jump graph of cycle $C_{n} . J\left(C_{n}\right)$ is connected iff $n \geq 5$. Here we consider only connected jump graph of cycles. The number of vertices of $J\left(C_{n}\right)$ is n because the number of edges of C_{n} is n . Let the edges of cycle C_{n} be labelled as $x_{1}, x_{2}, \ldots, x_{n}$. So, the vertices of $J\left(C_{n}\right)$ are labelled as $x_{1}, x_{2}, \ldots, x_{n}$.

The number of edges of $J\left(C_{n}\right)$ is $\frac{n^{2}-3 n}{2}$.
Example 2.2. Jump graph of cycle $J\left(C_{11}\right)$ is given below. It has 11 vertices and 44 edges.

Definition 2.3. n - Pan graph is the graph obtained by joining a cycle C_{n} to K_{1} with a bridge. The 3-pan graph is often known as the Paw graph and the 4-pan graph as the banner graph. In this paper, we denote the banner graph as H . It is given below.

Denote this graph as $H=\left\{x_{1} ; x_{2} x_{3} x_{4} x_{5} x_{2}\right\}$. Here x_{1} is a pendent vertex, x_{2} has degree 3 and all other vertices have degree 2 .

Theorem 2.4. Let $n \geq 6$ be an even positive integer with $q=\frac{(n-2)(n-4)}{8}, r=\frac{(n-2)}{2}$ and $t=n-3$. Then $J\left(C_{n}\right)$ is decomposed into q copies of P_{5}, one copy of S_{r} and one copy of S_{t} iff $4 q+r+t=\frac{n^{2}-3 n}{2}$.
Proof. Let $n \geq 6$ be an even positive integer with $q=\frac{(n-2)(n-4)}{8}, r=\frac{(n-2)}{2}$ and $t=n-3$.
Let $V\left(J\left(C_{n}\right)\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
(Necessity) Suppose that there exists a decomposition of $J\left(C_{n}\right)$ into q copies of P_{5}, one copy of S_{r} and one copy of S_{t}.
Since $\left|E\left(J\left(C_{n}\right)\right)\right|=\frac{n^{2}-3 n}{2}$, we have $4 q+r+t=\frac{n^{2}-3 n}{2}$.
(Sufficiency) Suppose $4 q+r+t=\frac{n^{2}-3 n}{2}$.
For $i=1,3,5, \ldots, n-5,\left\{x_{k} x_{i} x_{k+1} x_{i+1} x_{k+2} / K=i+2, i+4, \ldots, n-3\right\}$ forms P_{5} in $J\left(C_{n}\right)$.
From this, we get $\frac{(n-2)(n-4)}{8}=q$ copies of P_{5}.
For $i=n-1,\left\{x_{i}: x_{1}, x_{3}, x_{5}, \ldots, x_{n-3}\right\}$ forms a star S_{r} with x_{i} as its center where $r=\frac{(n-2)}{2}$.
Also, for $i=n,\left\{x_{i}: x_{2}, x_{3}, x_{4}, \ldots, x_{n-2}\right\}$ forms a star S_{t} with x_{i} as its center where $t=n-3$.
Hence $\mathrm{E}\left(J\left(C_{n}\right)\right)=\underbrace{E\left(P_{5}\right) \cup E\left(P_{5}\right) \cup \ldots \cup E\left(P_{5}\right)}_{q \text { times }} \cup E\left(S_{r}\right) \cup E\left(S_{t}\right)$.
Thus $J\left(C_{n}\right)$ is decomposed into q copies of P_{5}, one copy of S_{r} and one copy of S_{t}.

Theorem 2.5. Let $n \geq 5$ be an odd positive integer with $q=\frac{(n-1)(n-3)}{8}$ and $r=\frac{(n-3)}{2}$. Then $J\left(C_{n}\right)$ is decomposed into q copies of P_{5} and one copy of S_{r} iff $4 q+r=\frac{n^{2}-3 n}{2}$.
Proof. Let $n \geq 5$ be an odd positive integer with $q=\frac{(n-1)(n-3)}{8}$ and $r=\frac{(n-3)}{2}$.
Let $V\left(J\left(C_{n}\right)\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
(Necessity) Suppose that there exists a decomposition of $J\left(C_{n}\right)$ into q copies of P_{5} and one copy of S_{r}.
Since $\left|E\left(J\left(C_{n}\right)\right)\right|=\frac{n^{2}-3 n}{2}$, we have $4 q+r=\frac{n^{2}-3 n}{2}$.
(Sufficiency) Suppose $4 q+r=\frac{n^{2}-3 n}{2}$.
For $i=1,3,5, \ldots, n-4,\left\{x_{k} x_{i} x_{k+1} x_{i+1} x_{k+2} / K=i+2, i+4, \ldots, n-2\right\}$ forms P_{5} in $J\left(C_{n}\right)$.
Here we obtain $\frac{(n-1)(n-3)}{8}=q$ copies of P_{5}.
For $i=n,\left\{x_{i}: x_{3}, x_{5}, \ldots, x_{n-2}\right\}$ forms a star S_{r} with x_{i} as its center where $r=\frac{(n-3)}{2}$.
Hence $E\left(J\left(C_{n}\right)\right)=\underbrace{E\left(P_{5}\right) \cup E\left(P_{5}\right) \cup \ldots \cup\left(P_{5}\right)}_{q \text { times }} \cup E\left(S_{r}\right)$.
Thus, $J\left(C_{n}\right)$ is decomposed into q copies of P_{5} and one copy of S_{r}.
Theorem 2.6. [4] Let n be an even positive integer with $p=\frac{n}{2}$ and $q=\frac{n^{2}-6 n}{8}$. Then there exists a decomposition of $J\left(C_{n}\right)$ into p copies of P_{4} and q copies of C_{4} iff $n \geq 6$ and $3 p+4 q=\frac{n^{2}-3 n}{2}$.

Theorem 2.7. Let $n \geq 5$ be an odd positive integer with $q=\frac{(n-3)}{2}, r=\frac{(n-3)(n-5)}{8}$ and $t=n-3$. Then $J\left(C_{n}\right)$ is decomposed into $\left\{\mathrm{qP}_{4}, \mathrm{rC}_{4}, \mathrm{~S}_{\mathrm{t}}\right\}$ iff $3 q+4 r+t=\frac{n^{2}-3 n}{2}$.
Proof. Let $n \geq 5$ be an odd positive integer with $q=\frac{(n-3)}{2}, \quad r=\frac{(n-3)(n-5)}{8}$ and $t=n-3$.
Let $V\left(J\left(C_{n}\right)\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
(Necessity) Suppose $J\left(C_{n}\right)$ is decomposed into $\left\{\mathrm{qP}_{4}, \mathrm{rC}_{4}, \mathrm{~S}_{\mathrm{t}}\right\}$.
Since $\left|E\left(J\left(C_{n}\right)\right)\right|=\frac{n^{2}-3 n}{2}$, we get $3 q+4 r+t=\frac{n^{2}-3 n}{2}$.
(Sufficiency) Suppose $3 q+4 r+t=\frac{n^{2}-3 n}{2}$.
Clearly, for $i=1,3,5, \ldots, n-4,\left\{x_{i+2} x_{i} x_{i+3} x_{i+1}\right\}$ forms P_{4} in $J\left(C_{n}\right)$.
From this, we get $\frac{(n-3)}{2}=q$ copies of P_{4}.
For $i=1,3,5, \ldots, n-6,\left\{x_{i} x_{k} x_{i+1} x_{k+1} x_{i} / k=i+4, i+6, \ldots, n-2\right\}$ forms C_{4} in $J\left(C_{n}\right)$.
This gives $\frac{(n-3)(n-5)}{8}=r$ copies of C_{4}
Also, $\left\{x_{n}: x_{2}, x_{3}, \ldots, x_{n-2}\right\}$ forms a star S_{t} with x_{n} as its center and $t=n-3$.
Therefore $\mathrm{E}\left(J\left(C_{n}\right)\right)=\underbrace{E\left(P_{4}\right) \cup E\left(P_{4}\right) \cup \ldots \cup E\left(P_{4}\right)}_{q \text { times }} \cup \underbrace{E\left(C_{4}\right) \cup E\left(C_{4}\right) \cup \ldots \cup E\left(C_{4}\right)}_{r \text { times }} \cup E\left(S_{t}\right)$.
Hence $J\left(C_{n}\right)$ is decomposed into $\left\{\mathrm{qP}_{4}, \mathrm{rC}_{4}, \mathrm{~S}_{\mathrm{t}}\right\}$.
Theorem 2.8. Let $n \geq 5$ be an odd positive integer with $q=\frac{(n-5)(n+1)}{8}$ and $m=\frac{(n+1)}{2}$. Then $J\left(C_{n}\right)$ is decomposed into $\left\{\mathrm{qC}_{4}, \mathrm{P}_{\mathrm{m}}, \mathrm{P}_{4}\right\}$ iff $4 q+m=\frac{n^{2}-3 n}{2}-2$.
Proof. Let $n \geq 5$ be an odd positive integer with $q=\frac{(n-5)(n+1)}{8}$ and $m=\frac{(n+1)}{2}$.
Let $V\left(J\left(C_{n}\right)\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
(Necessity) Suppose $J\left(C_{n}\right)$ is decomposed into $\left\{\mathrm{qC}_{4}, \mathrm{P}_{\mathrm{m}}, \mathrm{P}_{4}\right\}$.
Since, $\left|E\left(J\left(C_{n}\right)\right)\right|=\frac{n^{2}-3 n}{2}$, we have $4 q+m=\frac{n^{2}-3 n}{2}-2$.
(Sufficiency) Suppose $4 q+m=\frac{n^{2}-3 n}{2}-2$.
Clearly, $\left\{x_{i} x_{1} x_{i+1} x_{2} x_{i} / i=4,6, \ldots, n-3\right\}$ forms C_{4} in $J\left(C_{n}\right)$.
This gives $\frac{n-5}{2}$ copies of C_{4}.
For $i=3,5,7 \ldots, n-4$, $\left\{x_{k} x_{i} x_{k+1} x_{i+1} x_{k} / k=i+3, i+5, \ldots, n-1\right\}$ forms C_{4} in $J\left(C_{n}\right)$.
This gives $\frac{(n-3)(n-5)}{8}$ copies of C_{4}.
Totally, we get $\frac{(n-5)(n+1)}{8}=q$ copies of C_{4} in $J\left(C_{n}\right)$.
Clearly, $x_{1} x_{3} x_{5} \ldots x_{n}$ forms P_{m} in $J\left(C_{n}\right)$ where $m=\frac{(n+1)}{2}$.
Next, $x_{1} x_{n-1} x_{2} x_{n}$ form one copy of P_{4}.

Therefore $\mathrm{E}\left(J\left(C_{n}\right)\right)=\underbrace{E\left(C_{4}\right) \cup E\left(C_{4}\right) \cup \ldots \cup E\left(C_{4}\right)}_{q \text { times }} \cup E\left(P_{m}\right) \cup E\left(P_{4}\right)$.
Hence $J\left(C_{n}\right)$ is decomposed into $\left\{\mathrm{qC}_{4}, \mathrm{P}_{\mathrm{m}}, \mathrm{P}_{4}\right\}$.
Theorem 2.9. Let $n \geq 6$ be an even positive integer with $q=\frac{(n-2)(n-4)}{8}, m=\frac{n}{2}$ and $t=n-3$. Then $J\left(C_{n}\right)$ is decomposed into $\left\{\mathrm{qC}_{4}, \mathrm{P}_{\mathrm{m}}, \mathrm{S}_{\mathrm{t}}\right\}$ iff $4 q+m+t=\frac{n^{2}-3 n}{2}+1$.
Proof. Let $n \geq 6$ be an even positive integer with $q=\frac{(n-2)(n-4)}{8}, m=\frac{n}{2}$ and $t=n-3$.
Let $V\left(J\left(C_{n}\right)\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
(Necessity) Suppose $J\left(C_{n}\right)$ is decomposed into $\left\{\mathrm{qC}_{4}, \mathrm{P}_{\mathrm{m}}, \mathrm{S}_{\mathrm{t}}\right\}$.
Since, $\left|E\left(J\left(C_{n}\right)\right)\right|=\frac{n^{2}-3 n}{2}$, we have $4 q+m+t=\frac{n^{2}-3 n}{2}+1$.
(Sufficiency) Suppose $4 q+m+t=\frac{n^{2}-3 n}{2}+1$.
Clearly, $\left\{x_{i} x_{1} x_{i+1} x_{2} x_{i} / i=4,6, \ldots, n-2\right\}$ forms C_{4} in $J\left(C_{n}\right)$.
This gives $\frac{n-4}{2}$ copies of C_{4}.
For $i=1,3,5, \ldots, n-5,\left\{x_{k} x_{i} x_{k+1} x_{i+1} x_{k} / k=i+3, i+5, \ldots, n-2\right\}$ forms C_{4} in $J\left(C_{n}\right)$.
This gives $\frac{(n-4)(n-6)}{8}$ copies of C_{4}.
Totally, we get $\frac{(n-2)(n-4)}{8}=q$ copies of C_{4} in $J\left(C_{n}\right)$.
Clearly, $x_{1} x_{3} x_{5} \ldots x_{n-1}$ forms P_{m} in $J\left(C_{n}\right)$ where $m=\frac{n}{2}$.
Next, $\left\{x_{n}: x_{2}, x_{3}, \ldots, x_{n-2}\right\}$ forms one copy of S_{t}.
Therefore $\mathrm{E}\left(J\left(C_{n}\right)\right)=\underbrace{E\left(C_{4}\right) \cup E\left(C_{4}\right) \cup \ldots \cup E\left(C_{4}\right)}_{q \text { times }} \cup E\left(P_{m}\right) \cup E\left(S_{t}\right)$.
Hence $J\left(C_{n}\right)$ is decomposed into $\left\{\mathrm{qC}_{4}, \mathrm{P}_{\mathrm{m}}, \mathrm{S}_{\mathrm{t}}\right\}$.
Theorem 2.10. [4] Let n be an odd positive integer with $p=\frac{n-3}{2}$ and $q=\frac{n-5}{2}$. Then there exists a decomposition of $J\left(C_{n}\right)$ into p copies of C_{5} and q complete bipartite graphs of the form $K_{2,2 l} ; l=1,2, \ldots, \frac{n-5}{2}$ iff $n \geq 5$ and $5 p+2 q(q+1)=\frac{n^{2}-3 n}{2}$.

Theorem 2.11. Let $n \geq 6$ be an even positive integer with $q=\frac{n-4}{2}$ and $t=\frac{n-6}{2}$. Then $\left[J\left(C_{n}\right)-e\right]$ is decomposed into $\left\{q C_{5}, S_{3}, t\right.$ copies of $\left.K_{2,2 r+1}, r=1,2, \ldots, \frac{n-6}{2}\right\}$ iff $5 q+2 t(t+2)=\frac{n^{2}-3 n}{2}-4$.
Proof. Let $n \geq 6$ be an even positive integer with $q=\frac{n-4}{2}$ and $t=\frac{n-6}{2}$.
Let $V\left(J\left(C_{n}\right)\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
Consider $\left[J\left(C_{n}\right)-e\right]$ where $e=x_{1} x_{n-1}$.
(Necessity) Suppose $\left[J\left(C_{n}\right)-e\right]$ is decomposed into
$\left\{q C_{5}, S_{3}, t\right.$ copies of $\left.K_{2,2 r+1}, r=1,2, \ldots, \frac{n-6}{2}\right\}$.
Since $\left|E\left(J\left(C_{n}\right)\right)\right|=\frac{n^{2}-3 n}{2}$, we get $5 q+2 t(t+2)=\frac{n^{2}-3 n}{2}-4$.
(Sufficiency) Assume $5 q+2 t(t+2)=\frac{n^{2}-3 n}{2}-4$.
For $i=3,5, \ldots, n-3,\left\{x_{1} x_{i} x_{i+2} x_{2} x_{i+1} x_{1}\right\}$ forms C_{5} in $J\left(C_{n}\right)$.
This gives $\frac{n-4}{2}=q$ copies of C_{5}.
For $i=3,5, \ldots, n-5, x_{i}$ and x_{i+1} are non-adjacent and they are adjacent with $x_{i+3}, x_{i+4}, \ldots, x_{n}$.
This gives $\frac{n-6}{2}=t$ complete bipartite graphs of the form $K_{2,2 r+1}, r=1,2, \ldots, \frac{n-6}{2}$.
Next, $\left\{x_{n}: x_{2}, x_{n-3}, x_{n-2}\right\}$ forms S_{3} in $J\left(C_{n}\right)$.
Hence $E\left[J\left(C_{n}\right)-e\right]=\underbrace{E\left(C_{5}\right) \cup E\left(C_{5}\right) \cup \ldots \cup E\left(C_{5}\right)}_{\text {qtimes }} \cup E\left(S_{3}\right) \cup E\left(K_{2,3}\right) \cup E\left(K_{2,5}\right) \cup \ldots$

$$
\cup E\left(K_{2, n-5}\right)
$$

Therefore $\left[J\left(C_{n}\right)-e\right]$ is decomposed into $\left\{q C_{5}, S_{3}, t\right.$ copies of $\left.K_{2,2 r+1}, r=1,2, \ldots, \frac{n-6}{2}\right\}$.
Theorem 2.12. Let $n \geq 6$ be an even positive integer with $m=\frac{n}{2}, l=n-4$ and $t=\frac{n-6}{2}$. Then $\left[J\left(C_{n}\right)-e\right]$ is decomposed into $\left\{P_{m}, S_{2}, K_{2, l}, t\right.$ copies of $\left.K_{2,2 r+1}, r=1,2, \ldots, \frac{n-6}{2}\right\}$ iff $m+2 l+2 t(t+2)=$ $\frac{n^{2}-3 n}{2}-2$.

Proof. Let $n \geq 6$ be an even positive integer with $=\frac{n}{2}, l=n-4$ and $t=\frac{n-6}{2}$.
Let $V\left(J\left(C_{n}\right)\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
Consider $\left[J\left(C_{n}\right)-e\right]$ where $e=x_{2} x_{n}$.
(Necessity) Suppose $\left[J\left(C_{n}\right)-e\right]$ is decomposed into
$\left\{P_{m}, S_{2}, K_{2, l}, t\right.$ copies of $\left.K_{2,2 r+1}, r=1,2, \ldots, \frac{n-6}{2}\right\}$.
Since $\left|E\left(J\left(C_{n}\right)\right)\right|=\frac{n^{2}-3 n}{2}$, we have $m+2 l+2 t(t+2)=\frac{n^{2}-3 n}{2}-2$.
(Sufficiency) Suppose $m+2 l+2 t(t+2)=\frac{n^{2}-3 n}{2}-2$.
$x_{1} x_{3} \ldots x_{n-1}$ forms P_{m} where $m=\frac{n}{2}$.
x_{1} and x_{2} are non-adjacent and they are adjacent with $x_{4}, x_{5}, \ldots, x_{n-1}$. This gives $K_{2, l}$ where $l=n-4$.
For $i=3,5, \ldots, n-5, x_{i}$ and x_{i+1} are non-adjacent and they are adjacent with $x_{i+3}, x_{i+4}, \ldots, x_{n}$.
This gives $\frac{n-6}{2}=t$ complete bipartite graphs of the form $K_{2,2 r+1}, r=1,2, \ldots, \frac{n-6}{2}$.
Clearly, $\left\{x_{n}: x_{n-3}, x_{n-2}\right\}$ forms star S_{2} with x_{n} as its center.
Hence $E\left[J\left(C_{n}\right)-e\right]=E\left(P_{m}\right) \cup E\left(S_{2}\right) \cup E\left(K_{2, l}\right) \cup E\left(K_{2,3}\right) \cup E\left(K_{2,5}\right) \cup \ldots \cup E\left(K_{2, n-5}\right)$.
Therefore $\left[J\left(C_{n}\right)-e\right]$ is decomposed into $\left\{P_{m}, S_{2}, K_{2, l}, t\right.$ copies of $\left.K_{2,2 r+1}, r=1,2, \ldots, \frac{n-6}{2}\right\}$ iff $m+$ $2 l+2 t(t+2)=\frac{n^{2}-3 n}{2}-2$.

Theorem 2.13. Let $n \geq 5$ be an odd positive integer with $m=\frac{n+1}{2}, l=n-4$ and $t=\frac{n-5}{2}$. Then $\left[J\left(C_{n}\right)-e\right]$ is decomposed into $\left\{P_{m}, K_{2, l}, t\right.$ copies of $\left.K_{2,2 r,} r=1,2, \ldots, \frac{n-5}{2}\right\}$ iff $\quad m+2 l+2 t(t+1)=\frac{n^{2}-3 n}{2}$.
Proof. Let $n \geq 5$ be an even positive integer with $\mathrm{m}=\frac{n+1}{2}, l=n-4$ and $t=\frac{n-5}{2}$.
Let $V\left(J\left(C_{n}\right)\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
Consider $\left[J\left(C_{n}\right)-e\right]$ where $e=x_{2} x_{n}$.
(Necessity) Suppose $\left[J\left(C_{n}\right)-e\right]$ is decomposed into
$\left\{P_{m}, K_{2, l}, t\right.$ copies of $\left.K_{2,2 r}, r=1,2, \ldots, \frac{n-5}{2}\right\}$.
Since $\left|E\left(J\left(C_{n}\right)\right)\right|=\frac{n^{2}-3 n}{2}$, we have $m+2 l+2 t(t+1)=\frac{n^{2}-3 n}{2}$.
(Sufficiency) Suppose $m+2 l+2 t(t+1)=\frac{n^{2}-3 n}{2}$.
$x_{1} x_{3} \ldots x_{n}$ forms P_{m} where $m=\frac{n+1}{2}$.
x_{1} and x_{2} are non-adjacent and they are adjacent with $x_{4}, x_{5}, \ldots, x_{n-1}$. This gives $K_{2, l}$ where $l=n-4$.
For $i=3,5, \ldots, n-4, x_{i}$ and x_{i+1} are non-adjacent and they are adjacent with $x_{i+3}, x_{i+4}, \ldots, x_{n}$.
This gives $\frac{n-5}{2}=t$ complete bipartite graphs of the form $K_{2,2 r}, r=1,2, \ldots, \frac{n-5}{2}$.
Hence $E\left[J\left(C_{n}\right)-e\right]=E\left(P_{m}\right) \cup E\left(K_{2, l}\right) \cup E\left(K_{2,2}\right) \cup E\left(K_{2,4}\right) \cup \ldots \cup E\left(K_{2, n-5}\right)$.
Therefore $\left[J\left(C_{n}\right)-e\right]$ is decomposed into $\left\{P_{m}, K_{2, l}, t\right.$ copies of $\left.K_{2,2 r}, r=1,2, \ldots, \frac{n-5}{2}\right\}$.
Theorem 2.14. Let $n \geq 6$ be an even positive integer with $q=\frac{n-4}{2}, r=\frac{(n-4)(n-6)}{8}$ and $t=n-3$. Then $\left[J\left(C_{n}\right)-e\right]$ is decomposed into $\left\{q H, r C_{4}, S_{t}\right\}$ iff $5 q+4 r+t=\frac{n^{2}-3 n}{2}-1$.
Proof. Let $n \geq 6$ be an even positive integer with $\mathrm{q}=\frac{n-4}{2}, r=\frac{(n-4)(n-6)}{8}$ and $t=n-3$.
Let $V\left(J\left(C_{n}\right)\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
Consider $\left[J\left(C_{n}\right)-e\right]$ where $e=x_{n-3} x_{n-1}$.
(Necessity) Suppose $\left[J\left(C_{n}\right)-e\right]$ is decomposed into $\left\{q H, r C_{4}, S_{t}\right\}$.
Since $\left|E\left(J\left(C_{n}\right)\right)\right|=\frac{n^{2}-3 n}{2}, 5 q+4 r+t=\frac{n^{2}-3 n}{2}-1$.
(Sufficiency) Suppose $5 q+4 r+t=\frac{n^{2}-3 n}{2}-1$.
For $i=3,5,7, \ldots, n-3,\left\{x_{i} ; x_{i-2} x_{i+1} x_{i-1} x_{i+2} x_{i-2}\right\}$ forms H in $J\left(C_{n}\right)$.
This gives $\frac{n-4}{2}=q$ copies of H .
Also, for $i=1,3,5, \ldots, n-7,\left\{x_{i} x_{k} x_{i+1} x_{k+1} x_{i} / k=i+5, i+7, \ldots, n-2\right\}$ forms C_{4} in $J\left(C_{n}\right)$.
From this, we get $\frac{(n-4)(n-6)}{8}=r$ copies of C_{4}.
Next, $\left\{x_{n}: x_{2}, x_{3}, \ldots, x_{n-2}\right\}$ forms a star S_{t} where $t=n-3$ with x_{n} as its center.
Hence $E\left[J\left(C_{n}\right)-e\right]=\underbrace{E(H) \cup E(H) \cup \ldots \cup E(H)}_{q \text { times }} \cup \underbrace{E\left(C_{4}\right) \cup E\left(C_{4}\right) \cup \ldots \cup E\left(C_{4}\right)}_{r \text { times }} \cup E\left(S_{t}\right)$
Therefore $\left[J\left(C_{n}\right)-e\right]$ is decomposed into $\left\{q H, r C_{4}, S_{t}\right\}$.

Theorem 2.15. Let $n>5$ be an odd positive integer with $\mathrm{q}=\frac{n-3}{2}, r=\frac{(n-1)(n-7)}{8}$ and $\quad t=n-3$. Then $\left[J\left(C_{n}\right)-e\right]$ is decomposed into $\left\{q H, r C_{4}, P_{4}\right\}$ iff $5 q+4 r=\frac{n^{2}-3 n}{2}-4$.
Proof. Let $n>5$ be an odd positive integer with $q=\frac{n-3}{2}, r=\frac{(n-1)(n-7)}{8}$ and $t=n-3$.
Let $V\left(J\left(C_{n}\right)\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
Consider $\left[J\left(C_{n}\right)-e\right]$ where $e=x_{n-2} x_{n}$.
(Necessity) Suppose $\left[J\left(C_{n}\right)-e\right]$ is decomposed into $\left\{q H, r C_{4}, P_{4}\right\}$.
Since $\left|E\left(J\left(C_{n}\right)\right)\right|=\frac{n^{2}-3 n}{2}, 5 q+4 r=\frac{n^{2}-3 n}{2}-4$.
(Sufficiency) Suppose $5 q+4 r=\frac{n^{2}-3 n}{2}-4$.
For $i=3,5,7, \ldots, n-2,\left\{x_{i} ; x_{i-2} x_{i+1} x_{i-1} x_{i+2} x_{i-2}\right\}$ forms Hin $J\left(C_{n}\right)$.
This gives $\frac{n-3}{2}=q$ copies of H .
$\left\{x_{1} x_{k} x_{2} x_{k+1} x_{1} / k=6,8, \ldots, n-3\right\}$ forms C_{4} in $J\left(C_{n}\right)$.
This gives $\frac{n-7}{2}$ copies of C_{4}.
Also, for $i=3,5, \ldots, n-6,\left\{x_{i} x_{k} x_{i+1} x_{k+1} x_{i} / k=i+5, i+7, \ldots, n-1\right\}$ gives C_{4} in $J\left(C_{n}\right)$.
This gives $\frac{(n-5)(n-7)}{8}$ copies of C_{4}.
Totally, we get $r=\frac{(n-1)(n-7)}{8}$ copies of C_{4}
Next, $\left\{x_{1} x_{n-1} x_{2} x_{n}\right\}$ forms P_{4} in $J\left(C_{n}\right)$.
Hence $E\left[J\left(C_{n}\right)-e\right]=\underbrace{E(H) \cup E(H) \cup \ldots \cup E(H)}_{q \text { times }} \cup \underbrace{E\left(C_{4}\right) \cup E\left(C_{4}\right) \cup \ldots \cup E\left(C_{4}\right)}_{r \text { times }} \cup E\left(P_{4}\right)$
Therefore $\left[J\left(C_{n}\right)-e\right]$ is decomposed into $\left\{q H, r C_{4}, P_{4}\right\}$.

References

1. Chartrand. G, Hevia. H, Jarrette. E. B \& Schultz. M 1997, Subgraph Distances in Graphs defined by Edge Transfers, Discrete Mathematics, 170, pp: 63-79.
2. Gnanadhas. N \& Paulraj Joseph. J 2000, Continuous Monotonic Decomposition of Graphs, International Journal of Management and Systems, vol.16, no.3, pp: 333-334.
3. Harary. F 1969, Graph Theory, Addison-Wesley, Reading M.A.
4. Jenisha. M \& Chithra Devi. P 2020, Decomposition of Jump Graph of Cycles, Advances in Mathematics: Scientific Journal, 9, no.5, pp: 2489-2495.
5. Priyanka. B.R \& Rajeshwari. M 2022, AVD-Total-Colouring of Pan, Sunlet and Other Related Graphs, Advances in Dynamical Systems and Applications, vol.17, pp: 285-293.
6. Vanitha. R, Vijayalakshmi. D \& Mohanapriya. G 2018, P4 Decomposition of Line and Middle Graph of some Graphs, Kong. Res. J,5(2), pp:1-6.
