Educational
Administration
Theory and Practice

Educational Administration: Theory and Practice
2024, 30(5), 11645-11650

ISSN: 2148-2403

https://kuey.net Research Article

A New Hybrid Approach For Key And Data Exchange In
Cloud Computing

Priya Singh?*, Gaurav Tyagi2

", 2Department of Computer Science and Engineering, SCRIET, Chaudhary Charan Singh University, Meerut, India.
Email: priyag76096@gmail.com@gmail.com, gauravtyagi.ccsu@gmail.com

Citation: Priya Singh, Gaurav Tyagi (2024), A New Hybrid Approach For Key And Data Exchange In Cloud Computing, Educational
Administration: Theory and Practice, 30(5), 11645-11650
Doi: 10.53555/kuey.v30i5.4989

ARTICLEINFO ABSTRACT

The rapid adoption of cloud computing has led to a need for robust security
measures. Traditional encryption methods may not be sufficient for secure data
transfer in the cloud. This paper introduces a hybrid approach for key and data
transfer in cloud computing, combining the strengths of Advanced Encryption
Standard (AES), RSA, Diffie-Hellman key exchange, and one-time password (OTP)
authentication. The method uses AES for efficient data encryption, RSA for secure
key exchange, and Diffie-Hellman for generating shared keys. OTP adds an
additional layer of authentication during user access. The approach consists of a
three-phase process: registration, login, and data transfer, ensuring secure sharing
of keys and data between authorized parties. This hybrid approach aims to provide
data protection and user authentication, mitigating risks of unauthorized access and
data breaches.

Keywords— AES, Diffie Hellman, OTP, RSA.

Introduction

In earlier time, we used to manage and store data by ourself limiting us on the aspect of storage and data
management. As the size of data increases these limitations developed into serious issues in the business world.
And then storing data at a remote location where you do not need to worry about its management and storage
called cloud storage was introduced. This technology developed rapidly as this provided user with convenience
in storing their data. But with allowing others the access to manage and store our data there arises issue of
potential threat to data security. The remote data centers that are accessed via the internet and managed by
cloud service providers have replaced the on-site infrastructure of the personal and corporate computing
models. However, this paradigm shift in computers has led to security concerns for both corporations and
consumers. These security issues need to be carefully considered and resolved in order to boost cloud
implementation (Mohammed et.al, 2021). To tackle these threats many cryptographic algorithms were
introduced, which encrypt the data so no other than the one who had ethical access could read the data. There
are 3 types of cryptography algorithms based on the type of key used- symmetric, asymmetric algorithms and
hash functions (Kaushik et.al, 2023). Asymmetric algorithms operate on the principle of a public and private
key, where the public key is shared with another individual while the private key is kept to oneself. Thus, if
another party encrypts data using its public key, only the first party will be able to decode it since he only has
the private key (Pansotra & Singh, 2015). Symmetric algorithms utilize the same key for both data encryption
and decryption.

Though there are many strong symmetric key algorithms like AES (advanced encryption standard) but the
main security threat is in sharing the symmetric key to the other party. In this paper, we tried to introduce an
approach to share the key securely so data can be transmitted between two parties securely. When Data
Encryption Standard (DES) algorithm was breached, there rises the need of a more secure algorithm and thus
came Advanced Encryption Standard (AES) algorithm. AES is a symmetric key encryption algorithm, where
data is encrypted and decrypted using the same key thus making the processing faster. But issue of security
attack rises on sharing the shared key to the receiver so it can decrypt the data. This issue is not present in
asymmetric key encryption algorithm like RSA where a key pair of public and private key are generated on
both sender and receiver side.

Copyright © 2024 by Authotr/s and Licensed by Kuey. This is an open access article distributed under the Creative Commons Attribution
License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://kuey.net/

11646 Priya Singh, Gaurav Tyagi/ Kuey, 30(5), 4989

In this paper our objective is to provide AES level encryption to data without sharing actual key on the
connection between user and cloud service provider. It is to introduce an approach to provide a secure key and
data exchange in symmetric key encryption in Cloud Computing. We are proposing a hybrid paradigm where
we will use Diffie-Hellman algorithm (Verma et.al, 2017), RSA and AES algorithm. This is to maintain security
in sharing key and data in symmetric key algorithm AES (Advanced Encryption Standard).

Cryptography Algorithms

Cryptography is the art of ensuring security and safety of data by transforming it into form that unauthorised
receivers cannot understand. It is the technique of encrypting or coding data such that a communication is
only read by the intended rec1p1ent (“What is Cryptography?”, n.d.). Asymmetric and symmetric cryptography
algorithms make up the two main categories of cryptography algorithms. The same key, or symmetric
cryptography algorithm, uses the same key for both data encoding and decoding. Symmetric key algorithms
abound and include DES, AES, and others. Additionally, two distinct keys were employed by asymmetric
cryptography techniques to encode and decode data. Here one key is kept hidden while other is made public
thus called private and public keys respectively. Asymmetric Key Encryption is having more benefit over the
Symmetric Key Encryption as they can be used easily and effectively for transferring of the encryption keys or
other information securely even when both the users are not there, also since Asymmetric Key algorithms
uses longer keys than Symmetric Key its data is more securely transferred. Asymmetric Key have a drawback
that it works on low speed i.e. it is slow and not feasible to encrypt massive data (Chopra, 2015). The
asymmetric enciphering strategies are roughly 1,000 times slower than symmetric encoding, which makes it
unfeasible upon encoding big amounts of information (Abood & Guirguis, 2018).

In this paper we are going to use asymmetric key algorithm RSA and symmetric key algorithm AES (Advanced
Encryption Standard) and Diffie Hellman key exchange to enhance the security in key and data exchange in
cloud computing.

Related Work

As cloud computing becomes more and more popular, people are storing an increasing amount of private and
sensitive data on the cloud. One of the key security concerns in cloud computing is cloud storage security (Min
& Yang, 2019). For a particular cloud service, R. K. Seth, Rimmy Chuchra (2014), and Simran suggested a
system that uses digital signatures with automatically issued TOKEN IDs to offer security. A completely
homomorphic encryption method, Amit Verma, Ramandeep Brar, and Amandeep Ummat (2017) created novel
modalities for key management and sharing. A symmetric key encryption system was created by Md. Abu Musa
and Md. Ashiqg Mahmood (2021). A file would be encrypted locally at the client-side before being uploaded to
the cloud, and it would use the key obtained during encryption to decode the file once it was downloaded on
the client-side. In 2023, Bharti Kaushik, Vikas Malik, Vinod Saroha provide review of various types of
cryptography techniques. In 2014, Richa Singh and Amit Kumar Sharma provide review of RSA, Random
mask, Hash and MAC for cloud data security and their limitations. The privateDH algorithm was invented by
Ripon Patgiri (2021). It encrypts all shareable data during key exchange using the AES algorithm and utilizes
the RSA technique to transfer the AES symmetric key. This prevents any data from being shared publicly with
the intended party. In 2023, Aviral Srivast and Aryaman Kumar introduces a hybrid approach by employing
AES, With a symmetric block cipher, files may be encrypted using a 128-bit key that is created at random for
every encryption instance. The AES key is then encrypted using a strong RSA 2048-bit public key to provide
an additional degree of protection. Three variations of the Diffie-Hellman protocol were studied by Manoj
Ranjan Mishra and Jayaprakash Kar (2017) the authenticated key exchange protocol, the one-pass key
exchange protocol, and the Diffie-Hellman protocol itself. ECC and Blowfish were merged by Chinnasamy
Ponnusamy (2020) to create a hybrid algorithm. When the hybrid system's performance is compared to the
current hybrid approach, it becomes clear that the suggested approach offers the highest level of patient data
security and confidentiality. By using hybrid cryptography, the drawbacks of symmetric and asymmetric
algorithms are overcome.

Methodology

There will be two parties involved in this methodology: the cloud client and the cloud service provider (Seth
et.al, 2014). We may refer to them as sender and recipient, user and supplier, etc., for the sake of convenience
and clarity.
Three steps comprise the methodology: the registration phase, the login phase, and the data transmission
phase.

1. Registration Phase

This stage involves the user registering for the first time to utilize the cloud service provider's services. We will
utilize the Diffie-Hellman method with RSA for sharing to produce a shared key when the user initiates the
request to register on the Cloud Service Provider Interface. The sender and the recipient will each produce
variables a and b according to the Diffie-Hellman algorithm (Verma et.al, 2017). Before creating a symmetric
key, they will both need to select two numbers, n and p, where n is a prime number and p is a primitive root

Priya Singh, Gaurav Tyagi/ Kuey, 30(5), 4989 11647

mod n that will be made public. Now both sender and receiver will have the values of n and p. The Sender will
calculate value of variable M where M= (p2mod n) and Receiver will calculate value of variable S where S= (pP
mod n).

Sender Receiver

‘ = n prime no b ‘ll

M=p*amodn S=p*bmodn

p primitive root mod n

Figure 1. Sender and Receiver calculating values of M and S using n, p.
Now these values of variable M and S needs to be exchanged between the sender and the receiver so they can
calculate the symmetric key. To share value of M and S we will use RSA Algorithm. As per RSA Algorithm both
sender and receiver will generate key pair- public and private key. Sender will share its public key with the
receiver and receiver will share its public key with the sender.

Public key

(i

A ST
Public key B
@ == © o
Private key Private key

Figure 2. Sender and Receiver generated key pair.

Sender will encrypt M value by receiver’s public key thus it can be decrypted only by receiver’s private key.
Sender will also generate a hash from M value and will encrypt this hash using its own private key. Sender will
send both the encrypted M value as well as the encrypted hash to receiver. On the receiver side, it will decrypt
the M value using its own private key and will ensure data integrity by decrypting the hash value and calculate
a hash by M value decrypted and check whether both hash matches to ensure that data is not altered.
Similarly, Receiver will also encrypt the value of S using the public key of sender and will also encrypt the hash
generated from value of S using its own private key. When sender will receive the data, it will decrypt the value
of S using its own private key and will also decrypt the hash value using the public key of receiver and will check
whether hash generated from decrypted value of S will match with the decrypted value of hash to ensure data

integrity.
Encrypted M value +
Encrypted hash digest

Encrypted S value +
Sender @ encrypted hash digest Receiver
Figure 3. Sender and Receiver sharing M and S values.

Now Sender and Receiver can calculate value of shared key K. Sender have the value of a and S and will
calculate shared key K=S2 = (p2P)mod n. Receiver have value of b and M and will calculate the value of shared
key K = MP = (p#*) mod n. After the shared key K is generated successfully on both the side, cloud service
provider will provide a unique user-id to the user for future login to avail services provided by the cloud service
provider. After generating user-id, user will also provide basic details like name, age, personal mobile number
or email id etc.

Sender Receiver

8 User ID .I

a,s b,M
Key K=5*3 = (p*b)*a modn Key K= MAb = (p*a)*b modn

Figure 4. Sender and Receiver generating the shared key K.
At this stage the registration phase is complete and user has successfully registered with the cloud storage
provider.

11648 Priya Singh, Gaurav Tyagi/ Kuey, 30(5), 4989

2. Login Phase

Whenever after the first-time registration of the user, if the user tries to avail the services it will login with the
interface provided. From this stage the login phase will start. In the login phase, user will first provide its user-
id to login with the provider. In response provider will generate an OTP and send it on the registered mobile

number.
User csp

. User ID .I
QTP
Figure 5. User Login

User will have to enter a password at this stage. Password will be OTP + Key K and sender will generate the
hash value from the password and will send it to the provider. Provider also have the shared key K so it will
validate the hash by generating the password on its side (OTP +Key K) and generate its hash. If hash provided
by user and hash generated by provider matches then the user will be provided access and thus successfully
logged in.

User csp

* o
L = -
Final Password =
OTP + Key K

Final Password =
OTP + Key K

Figure 6. Generating password from OTP and shared key K.
After the successful login, user can perform the data transfer operation which will be discussed briefly in the
data transfer phase.

3. Data Transfer Phase

This is the phase where actual data transfer takes place. For data transfer we will use AES encryption algorithm
which is a symmetric key algorithm. Both parties need to have the symmetric key to perform encryption or
decryption. To generate symmetric key, user will generate a string and will share it to the provider in encrypted
form. The string s will be encrypted by public key of other party to generate cipher text, which will be shared
to the provider. Provider will decrypt the string from the cipher text using its own private key. From this string
we will generate the final string used to form the symmetric key for AES encryption. Final String str = s + Key
K, here final string will be formed by concatenating the string shared by user with the shared key K generated
using Diffie-Hellman algorithm. This final string str will be used to generate the AES symmetric key.

User csp
| String message s will be .
‘ — | encrypted using receiver’s
. public key .

Final String = s + Key K Final String = s + Key K

—\):D AES symmetric key /\,,m AES symmetric key

Figure 7. Generating AES symmetric key
Now the symmetric key is generated on both the sides. User will send its data encrypted using the AES
symmetric key generated to the provider where the provider can decrypt the data when needed to perform
operations on it.

Encrypted data using AES
. symmetric key .ll

Sender Receiver

Figure 8. data transfer

Priya Singh, Gaurav Tyagi/ Kuey, 30(5), 4989 11649

Implementation
Refer to Table 1 for nomenclature.
Table 1. Nomenclature for algorithm

CSP Cloud Service Provider

DH Diffie Hellman

REQ Request

RES Response

ACK Acknowledgement

REG Registration

DAPP Decentralised Application
CSPMS Cloud Service Provider Microservice
CSPDB Cloud Service Provider Database
EN Encryption

DE Decryption

PUBK Public Key

PRIK Private Key

U_ID User Identification Number

1. When user send REQ through DAPP for the first time, then REG phase will start:
1.1 RSA key pair generation : Event : KEYSHARE

1.1.1 both parties will generate PUBK, PRIK.

1.1.2 PUBK will be shared to each other.

1.2 DH key exchange Event : SHAREDKEYGEN

1.2.1 CSPMS will generate value of n (prime no) and p (primitive root mod n)
1.2.2 CSPMS send n, p values in RES.

1.2.3 User generate a random value a and CSPMS generate a random value b.
1.2.4 Calculation User: M = p”a mod n & CSPMS: S = p”*b mod n.

1.2.5 User RES: send M EN by PUBK of CSPMS + hash of M EN by PRIVK of User
1.2.6 CSPMS Side Calculation:

* DE of M and check hash(Mge)==hash given

®» Derive final key K=M"b = (p~a)"b modn

1.2.7 CSPMS ACK :

» send S encrypted by PUBK of User + hash of S EN by PRIVK of CSPMS

» a unique U_ID to user.

= Store key K corresponding to U_ID in CSPDB.

» 1.2.8 User Side Calculation :

* DE of S and check hash(Sqe)==hash given

* Derive final key K=S"a = (p~b)”*a modn

» Key K stored in DAPP storage.

2. When existing User send REQ: Login Phase Starts

2.1 User send U_ID in REQ Event: LOGIN

2.2 CSPMS send OTP to User.

2.3 User send RES= hash(OTP+K)

2.4 CSPMS validate RES

3. When User try to upload or download any data: Data Transfer Phase

3.1 User generate string s, send to CSPMS EN by PUBK of CSPMS

3.2 User Side: s + Key K string used to generate AES Key

CSPMS Side : s+ K string used to generate AES key.

3.3 Data EN by AES Key from User side and can be decrypted by CSPMS if req Similar data transfer phase will
follow in case of download data as well.

Result

A hybrid technique has been presented to address the security issue of sharing a symmetric key between two
parties for AES encryption while exchanging data The adoption of a hybrid cloud security strategy has
significantly improved user authentication and data security in cloud settings. This approach uses Advanced
Encryption Standard (AES), RSA, Diffie-Hellman key exchange, and one-time password (OTP) approaches to
create a secure framework for data transmission and communication. AES data encryption ensures privacy,
while RSA and Diffie-Hellman protocols facilitate secure key exchange and shared keys. The incorporation of
OTP adds verification to the login process, assisting in user identity verification and guarding against unwanted
access. The hybrid solution effectively solves common cloud security issues by providing a smooth and safe
channel for data and key transfer, reducing risks of data breaches, illegal access, and phishing attempts. The
hybrid method's flexible procedures and layered security architecture make it suitable for various cloud
computing scenarios, offering potential for future real-world applications and further research into safe data
transmission techniques.

11650 Priya Singh, Gaurav Tyagi/ Kuey, 30(5), 4989

Conclusion

In context of the security issue in sharing symmetric key between the two parties for performing AES
encryption in sharing data, a hybrid methodology has been introduced where we are using AES, RSA and
Diffie-Hellman algorithm to provide security in sharing key and data in cloud computing. The proposed
approach is divided into three phases — registration phase, login phase and data transfer phase. In registration
phase, user will register with the provider for the first time. In this, we will generate shared key using Diffie-
Hellman and RSA for secure exchange. A user-id will be provided to the user for future login. In login phase,
user will provide the user-id and an OTP will be generated. User will share the hash of the final password
generated = OTP + Key K. This will be authenticated on provider side as well. After successful login, user can
share data in data transfer phase. User will generate a string and will share it in encrypted form by using public
key of other party. Final string will be form by adding shared key K to the string. Final string will be used to
generate the symmetric key for AES encryption. After the symmetric key is generated, it is used for sending
data in encrypted form and for decrypting it on provider side. The proposed approach may provide security in
sharing symmetric key and data in cloud computing.

Future Work

Future research will concentrate on putting the hybrid technique for key and data transmission in cloud
computing into practice and evaluating it. This entails testing the technique's scalability and performance in
actual cloud settings. Its resilience will be confirmed by security testing against a range of attacks and
vulnerabilities. Usability will be improved by initiatives to improve user experience, especially with regard to
integration and authentication procedures. Strengthening security and privacy will need research into
sophisticated authentication mechanisms and privacy-preserving strategies. Working together with business
partners will make it easier to get feedback and real-world data, which will lead to focused changes. Finally,
the approach's description and distribution will help to further current developments in cloud security by
disseminating information to the research community.

References

1. Abood, O. & Guirguis, S. (2018). A Survey on Cryptography Algorithms, International Journal of Scientific
and Research Publications, 8. 495-516. 10.29322/IJSRP.8.7.2018.p7978.

2. Chopra, A. (2015). Comparative Analysis of Key Exchange Algorithms in Cryptography and its
Implementation, IMS Manthan (The Journal of Innovations). 8.10.18701/imsmanthan.v8i2.5126

3. Kaushik, B., Malik, V. & Saroha, V. (2023). A Review Paper on Data Encryption and Decryption,
International Journal for Research in Applied Science & Engineering Technology (IJRASET), ISSN: 2321-
9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 11 Issue IV

4. Min, Z. E., Yang, G. (2019). Homomorphic Encryption Technology for Cloud Computing, 8th
International Congress of Information and Communication

5. Mishra, M. & Kar, J. (2017). A study on diffie-hellman key exchange protocols, International Journal of
Pure and Apllied Mathematics. 114. 10.12732/ijpam.v114i2.2.

6. Mohammed, K. K., Abdulrahman, A. A. & Muhammad, A. (2021). Cloud Security.
10.13140/RG.2.2.13876.58242.

7. Musa, Md. & Mahmood, Md. A. (2021). Client-side Cryptography Based Security for Cloud Computing
System, 10.1109/ICAIS50930.2021.9395890.

8. Pansotra, Er. & Singh, S. P. (2015). Cloud Security Algorithms, International Journal of Security and Its
Applications, 9. 353-360. 10.14257/ijsia.2015.9.10.32.

9. Patgiri, R. (2021). privateDH: An Enhanced Diffie-Hellman Key-Exchange Protocol using RSA and AES
Algorithm, 10.13140/RG.2.2.23938.40647.

10. Ponnusamy, C., Padmavathi, S. & Swathy, R. (2020). Efficient Data Security Using Hybrid Cryptography
on Cloud Computing, 10.1007/978-981-15-7345-3_46.

11. Seth, R. K., Chuchra, R. & Simran. (2014). TBDS- A New Data Security Algorithm in Cloud Computing,
(IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3), 2014,
2703-2706

12. Singh, R. & Sharma, A. K. (2014). A Comparative Study: Various Approaches for Cloud Data Security,
(IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2).

13. Srivast, A. & Kumar, A. (2023). A Robust Approach to Secure Data Encryption: AES-RSA Hybrid with
Kernel Key Protection, 10.21203/1s.3.r5-3565782/v1.

14. Verma, A., Brar, R. & Ummat, A. (2017). Cloud Computing and Homomorphic Encryption International
Journal of Computer Science and Information Security (IJCSIS), Vol. 15, No. 3, March 2017

15. “What is Cryptography?” [Online] Available: https://www.fortinet.com/resources/cyberglossary/what-
is-cryptography [Accessed January 1, 2024].

