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ARTICLE INFO ABSTRACT 

 The Probability Generating Functions (PGFs) are used for the proposed batch 
arrival N-policy vacation two phase service queuing model with server startup, 
timeout and breakdowns. In this paper, we obtained system state equations and 
its probability distribution to get operating characteristics, optimum threshold 
and cost. Proposed an algorithm to obtain Preliminary numerical experiments 
reported to show the performance of the characteristics and total cost of the 
proposed queuing Model. 
 
Key words: N-policy, two-phase, queuing model, timeout and breakdown. 

 
1 INTRODUCTION 

 
This paper analyzes the optimal strategy analysis has been carried out for an infinite capacity two-phase 
Mx/M/1 vacation queuing system with an N-policy, server start-up, time-out and breakdown. In the proposed 
model, the arrivals in the system are considered to be in the batch mode. The waiting units in the system will 
receive the service in batch mode in first phase and service in individual mode in second phase. The server 
does the service for the waiting units exhaustively without gating. After completed of the first phase first 
phase service, every one of this batch receives second phase second phase service. Assume that the server is 
considered to be breakdown at any point of time in second phase, it can be instantly repaired and resumes 
service immediately. After completing second phase service the server returns to the first phase to serve if any 
unit in the system. If there is no unit waiting in first phase, the server waits for a fixed time for units before 
vacation which is called server Time-out. If no unit found in the system even after timeout period is 
completed serve takes vacation. The server needs random start-up time after waiting units or units reaches a 
threshold value before providing service to the waiting customer in the system. 
The proposed system assumptions are as follows: 
Arriving units are assumed to follow Compound Poisson Process with parameter λ. Units will get service in 
FIFO. The service is provided in two phases (batch and second phase service). First phase-first phase service 
and second phase-second phase services are assumed to be exponentially distributed with mean service rates 
1/β and 1/μ respectively. Assume that the server may fail with a failure rate α is assumed to be exponentially 
distributed in the first phase service, and it can be instantly repaired with a repair rate γ, which is 
exponentially distributed. If no waiting unit find in the system, the server waits for some fixed time C, 
called server time-out. Vacation period is assumed exponentially distributed. The server returns from the 
vacation only after waiting units reaches to size N (≥1) and then the server immediately begins a random 
start-up. Start-up times or pre-service times are assumed to follow an exponential distribution with mean 1/θ. 
After this startup time the server begins service to all units waiting units in the system. 
 
These models can be observed in many real life service applications like machine production, maintenance in 
automobile industry, computer network models and inventory systems etc. Some important literature is 
presented as follows: Levy and Yechiali (1975) [5], Tony T. Lee (1982) [9] were studied queuing system with 
idle time or vacation times of server with random length and also generalization of queuing system of 
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similar nature. Jianjun Li and Liwei Lu (2017) [4] studied performance analysis of a complex queuing 
system with vacations in random environment. The concept of N-policy was introduced by Yadin and Naor 
(1963) [14]. Firstly, Baker (1973) [2] was proposed N-policy M/M/1 queuing system with exponential 
startups. Hyo-Seong Lee and Mandyam M. Srinivasan (1989) [3] studied the Mx/G/1 queuing system 
control policies. Wei Li (1997) [13] studied reliability analysis of the M/G/1 queueing system with server 
breakdowns and vacation. V. Vasanta Kumar et al. (2010) [12], V.Vasanta Kumar and T.Srinivasa Rao 
(2013) [11] studied Two-phase N-policy Mx/M/1 queuing systems with server startup, breakdown and 
repairs. V.N.Rama Devi et al. (2019) [10] studied the M/M/1 queuing system with two-phase N-policy, 
server breakdowns of customer impatient behavior. Oliver C.Ibe (2007) [6] and Ramesh Kumar, E. and 
Praby Loit, Y. (2016) [7] were studied vacation queuing system with server timeout. K.Satish Kumar et al. 
(2017) [8], A.Ankamma Rao et al. (2019) [1] studied the N-policy M/M/1 vacation queuing systems with 
server startupand timeout. V.N. Rama Devi, et.al. (2020) studied the M/G/1 queue with vacation, two 
cases of repair facilities and server timeout. A.P.Panta et.al., (2021) reviewed vacation queueing 
modelsin different frameworks. Kalyanaraman. R. and Sundaramoorthy A. (2022), studied A Multi Server 
Markovian Working Vacation queue With Breakdown, N-policy and with Server State Dependent Rates. 
 
The findings of the paper organized as follows: The system size distribution by using PGFs is derived 
(section 2). Obtained the system characteristics (section 3) and expected system length, total cost function 
per unit time is considered to obtain the optimal threshold policy (N*) (see section 4). Considered the 
specific batch size distribution and illustrated the sensitivity analysis for optimal system length and cost 
(see section 5 and 6) has been carried out to examine the effect of different parameters in the system. 
 

2. STAEDY STATE ANALYSIS 
 

Steady state probabilities for the proposed system are defined as follows: 
P(0,1,2,3,4,5),i,j : Probability of the server is in different states like 0-vacation, 1-startup, 3-first phase service, 4-
breakdoen, 5-second phase service and there are i number of units in first phase and j number of units in 
second phase. 
P0,i,0 (for i=0,1,2,3,…,N-1) - probability of the server is in vacation 
P1,i,0 (for i=N,N+1,N+2,…) - probability of the server is in Startup  
P2,i,0 (for i=0,1,2,3,…) - probability of the server is in Timeout 
P3,i,0 (for i=1,2,3,…) - probability of the server is in First phase service 
P4,i,j (for i=0,1,2,3,… and j=1,2,3,…) - probability of the server is in second phase service 
P5,i,j (for i=0,1,2,3,… and j=1,2,3,…) - probability of the server is in Breakdown  
 
Steady state equations are derived as given below: 

λP0,0,0 = CP2,0,0                  (1) 

λP0,i,0 = λ ∑ ak
i
k=1 P0,i−k,0 ;   1 ≤ i ≤ N − 1                   (2) 

(λ + θ)P1,N,0 = λ ∑ ak
N
k=1 P0,N−k,0                       (3) 

(λ + θ)P1,i,0 = λ ∑ ak
i−N
k=1 P1,i−k,0 + λ ∑ akP0,i−k,0

i
k=i−(N−1)  ;   i ≥ N + 1              (4) 

(λ + C)P2,0,0 = μP4,0,1                                    (5) 

(λ + β)P3,1,0 = λa1P2,0,0 + μP4,1,1                           (6) 

(λ + β)P3,i,0 = λ ∑ ak
i
k=1 P3,i−k,0 + μP4,i,1 ;   2 ≤ i ≤ N − 1                 (7) 

(λ + β)P3,i,0 = λ ∑ ak
i
k=1 P3,i−k,0 + μP4,i,1 + θP1,i,0 ;    i ≥ Nk                    (8) 

(λ + α + μ)P4,0,j = μP4,0,j+1 + βP3,j,0 + γP5,0,j ;   j ≥(9) 

(λ + α + μ)P4,i,j = μP4,i,j+1 + λ ∑ ak
i
k=1 P4,i−k,j + γP5,i,j ;    i, j ≥ 1                     (10) 

(λ + γ)P5,0,j = αP4,0,j ;     j ≥ 1                                                                                (11) 

(λ + γ)P5,i,j = αP4,i,j + λ ∑ ak
i
k=1 P5,i−k,j ;     i, j ≥ 1                                            (12) 

To solve the above steady state equations, we use the following Probability Generating Functions for each 
individual state separately: 

G0(𝑧) = ∑ P0,i,0zi  ,      G1(z) = ∑ P1,i,0zi ,       G2(z) = P2,0,0 ,      G3(z) = ∑ P3,i,ozi ,

∞

i=1

∞

i=N

N−1

i=0

 

G4(z, y) = ∑ ∑ P4,i,jz
iyj ,   G5(z, y) = ∑ ∑ P5,i,jz

iyj , Ri(z) = ∑ P4,i,jz
i  ∞

i=0
∞
j=1

∞
i=0

∞
j=1

∞
i=0 , 

Sj(z) = ∑ P5,i,jz
i ∞

i=0 , A(z) = ∑ aiz
i∞

i=0  , |z|, |y| ≤ 1 and for  yi = ∑ akyi−k
i
k=1  , YN(1)= ∑ yi

N−1
i=0  

G(z,y) - probability generating function for the entire system is given by 
G(z, y) = G0(z) + G1(z) + G2(z) + G3(z) + G4(z, y) + G5(z, y) 
The normalizing condition - 

G(1,1) = G0(1) + G1(1) + G2(1) + G3(1) + G4(1,1) + G5(1,1) = 1                   (13) 
After solving the equations (1) – (12), we get  

G0(1) = YN(1)P0,0,0                                 (14) 
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G1(1) =
λ

θ
P0,0,0                                           (15) 

G2(1) =
λ

C
P0,0,0                                                (16) 

G3(1) =
λ2(a1−1)

βC
P0,0,0 +

μ

β
R1(1)                      (17) 

G4(1,1) =
γλ

[μγ−λA′(1)(α+γ)]
[

λ(2a1−1)

C
+ A′(1) (

λ2(a1−1)

βC
+

λ

θ
+ YN(1))] P0,0,0 +

λγμA′(1)R1(1)

β[μγ−λA′(1)(α+γ)]
                                                                                        

                                                                                                                         (18) 

G5(1,1) =
α

γ
G4(1,1)                      (19) 

Where 

P0,0,0 =
1−[

λA′(1)

μ
(1+

α

γ
)+

λA′(1)

β
]

[YN(1)+
λ

θ
+

λ

C
]+λ2[

a1−1

βC
−

(α+γ)(A′(1)−2a1+1)

μγC
]
                          (20) 

Normalizing condition (13) gives,  R1(1) =
λA′(1)

μ
 

 
3. CHARACTERISTICS 

 
In this section, the average number of units in the system at various states is presented by using probability 
generating functions. Expected number of units in the system when the server is in different states are 
assumed as L0, L1, L2, L3, L4 and L5 and are given as 

L0 = G0
′ (1) = Y′

N(1)P0,0,0                                                                                      (21) 

L1 = G1
′ (1) =

λA′(1)

θ
[YN(1) +

λ

θ
] P0,0,0                                                                    (22) 

L2 = G2
′ (1) = 0                                                                                                       (23) 

R1
′ (1) =

λA′(1)

μ
(1 +

α

γ
) G4(1,1) 

L3 = G3
′ (1) =

λ

β
[
λa1

C
+ A′(1) (

λ2(a1 − 1)

βC
+

λ

θ
+ YN(1))] P0,0,0 +

μ

β
[
λA′(1)

β
R1(1) + R′

1(1)] 

(24) 

L4 = G4
′ (1,1) =

[2λA′(1)(λαA′(1) + αγ + γ2) + λγ2A"(1)]

2γ[μγ − λA′(1)(α + γ)]
G4(1,1) +

λγA′(1)[λA′(1)(λ + θYN(1)) + θ2YN
′ (1)]

θ2[μγ − λA′(1)(α + γ)]
P0,0,0

+
2λ2γ(A′(1))2[λA′(1) + β] + βλ2γA′(1)A"(1)

2β2[μγ − λA′(1)(α + γ)]

+
[λαβA"(1) + 2λA′(1)(α + γ)[λA′(1) + β] − 2λβA′(1)(α + γ)]

2β[μγ − λA′(1)(α + γ)]
G4(1,1)

+
γ

2[μγ − λA′(1)(α + γ)]
{

λ3A"(1)(a1 − 1)

βC
+

λA"(1)[λ + θYN(1)]

θ

+
2λ[λA′(1) + β]

β
[
λa1

C
+ A′(1) (

λ2(a1 − 1)

βC
+

λ

θ
+ YN(1))]} P0,0,0 

(25) 

L5 = G5
′ (1,1) =

λαA′(1)

γ2 G4(1,1) +
α

γ
G4

′ (1,1)                                                    (26) 

The expected system length is 
L(N) = L0 + L1 + L2 + L3 + L4 + L5                    (27) 

 
4. TOTAL COST STRUCTURE and OPTIMAL THRESHOLD 

 
Let E0, E1, E2, E3, E4 and E5 are idle, startup, timeout, first phase service, second phase service and breakdown 
state expected lengths of different periods and cycle expected length is given by 

EC=E0+E1+E2+E3+E4+E5                (28) 
The long run fractions of time that the server is in different modes are obtained as follows: 

E0

EC
= P0 = G0(1) = YN(1)P0,0,0               (29) 

E1

EC
= P1 = G1(1) =

𝜆

𝜃
P0,0,0              (30) 

E2

EC
= P2 = G2(1) =

λ

C
P0,0,0               (31) 

E3

EC
= P3 = G3(1) =

λ2(a1−1)

βC
P0,0,0 +

μ

β
R1(1)    (32) 

E4

EC
= P4 = G4(1,1) =

γλ

[μγ−λA′(1)(α+γ)]
[

λ(2a1−1)

C
+ A′(1) (

λ2(a1−1)

βC
+

λ

θ
+ YN(1))] P0,0,0 +

λγμA′(1)R1(1)

β[μγ−λA′(1)(α+γ)]
    

                  (33) 
and 
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E5

EC
= P5 = G5(1,1) =

α

γ
G4(1,1)              (34) 

For the idle period, the expected length is 

E0 =
YN(1)

λ
  

Substitute this in equation (29) then  

1

EC

=
λ [1 −

λA′(1)
μ

(1 +
α
γ

) −
λA′(1)

β
]

[YN(1) +
λ
θ

+
λ
C

] + λ2 [
a1 − 1

βC
−

(α + γ)(A′(1) − 2a1 + 1)
μγC

]
 

 
TOTAL COST and OPTIMAL THRESHOLD (N*) 
In this section, we discussed the total cost function for the proposed queuing model to find a threshold N 
which minimizes the cost function. Define various costs that incur per unit of time to optimize the cost as 
shown below: 
Ch: holding cost per unit, Co: operational cost of the server, Cm: pre service cost per cycle, Ct: timeout cost per 
cycle, Cs: setup cost per cycle, Cb: breakdown cost, Cr: reward for the server being on vacation. 
The total expected cost function per unit time is given as 

T(N) =  ChL(N) + Co [
E3+E4

Ec
] + Cm [

E1

Ec
] + Ct [

E2

Ec
] + Cb [

E5

EC
] + Cs [

1

Ec
] − Cr [

Eo

Ec
]     (35) 

Differentiating equation (35) with respect to N and equate to zero, then we will get optimal threshold N*. It is 
difficult to get closed form for N*. Hence, alternatively, we used computer program to find the expected 
system length and optimum cost function by taking batch size distributions (section 5). By using the cost 
function, we can identify the optimum threshold N by varying the values of N in both length and cost 
function. At some value of N, we observe that the resulting cost function is convex. This value is represented 
as an optimum value N* for N. 
 

5. SPECIFIC BATCH SIZE DISTRIBUTION 
 

Here we consider the Geometric distribution for batch size with parameter p and the corresponding 

generating functions is A(Z)=p(Z-1-(1-p))-1, which gives 𝐴′(1)=
1

p
 and 𝐴′′(1)=

2(1−p)

p2 , yi = ∑ akyi−k
i
k=1  , YN(1)= 

∑ yi
N−1
i=0  and B = YN

′ (1) = ∑ iyi
N−1
i=0 , y0=1, ak=p(1-p)k-1 and 1/p is the mean size of arrival batch. Then the 

expected number of units in the system is  

L(N) =  [
λ

1

p
[λ+θ ∑ yi

N−1
i=0 ]

θ2 + ∑ iyi
N−1
i=0 ] P0,0,0 +

λ

β
[

λa1

C
+

1

p
(

λ2(a1−1)

βC
+

λ

θ
+ ∑ yi

N−1
i=0 )] P0,0,0 +

μ

β
[

λ
1

p

β
R1(1) + R1

′ (1)] +

(α+γ)[2λ
1

p
[λα

1

p
+αγ+γ2]+λγ22(1−p)

p2 ]

2γ2[μγ−λ
1

p
(α+γ)]

G4(1,1) +
λ

1

p
(α+γ)[λ

1

p
(λ+θ ∑ yi

N−1
i=0 )+θ2 ∑ iyi

N−1
i=0 ]

θ2[μγ−λ
1

p
(α+γ)]

P0,0,0 +
(α+γ)[2λ2(

1

p
)

2
[λ

1

p
+β]+βλ21

p
(

2(1−p)

p2 )]

2β2[μγ−λ
1

p
(α+γ)]

+

(α+γ)[λαβ
2(1−p)

p2 +2λ
1

p
(α+γ)[λ

1

p
+β]−2λβ

1

p
(α+γ)]

2γβ[μγ−λ
1

p
(α+γ)]

G4(1,1) +
(α+γ)

2[μγ−λ
1

p
(α+γ)]

{
λ32(1−p)

p2 (a1−1)

βC
+

λ
2(1−p)

p2 [λ+θ ∑ yi
N−1
i=0 ]

θ
+

2λ[λ
1

p
+β]

β
[

λa1

C
+

1

p
(

λ2(a1−1)

βC
+

λ

θ
+ ∑ yi

N−1
i=0 )]} P0,0,0 +

λα
1

p

γ2 G4(1,1)                                                                                                                                                    

                  (36)
 

Where, 

P0,0,0 =
1−[

λ

μ

1

p
(1+

α

γ
)+

λ

β

1

p
]

[∑ yi
N−1
i=0 +

λ

θ
+

λ

C
]+λ2[

a1−1

βC
−

(α+γ)(
1
p−2a1+1)

μγC
]

  , 

R1(1) =
λ

μ

1

p
  , R1

′ (1) =
λ

μ

1

p
(1 +

α

γ
) G4(1,1)  , and 

G4(1,1) =
λγ

[μγ − λ
1
p

(γ + α)]
[
λ(2a1 − 1)

C
+

1

p
(

λ2(a1 − 1)

βC
+

λ

θ
+ ∑ yi

N−1

i=0

)] P0,0,0 +
λγμ

1
p

β [μγ − λ
1
p

(γ + α)]
R1(1) 

 
6. SENSITIVITY ANALYSIS 

 
In this section, sensitivity analysis has been carried out for the proposed model. Numerical results are 
presented for the different values of monetary and non-monetary parameters to illustrate the validity of the 
proposed model by taking Geometric distribution for batch size variable to find-out an optimum value N* by 
writing a computer program. By using expected system length defined in equation (36), write the cost 
equation and find-out optimum cost values by varying N* value. 
The sensitivity analyses over fixing Non-monetary and Monitoring parameters are as follows: 
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Case-I: Effect of Non-monetary parameters (λ=2, m=3, μ=6, α=2, C=0.5, θ=4, β=4, γ=4) on N*, L(N*) 
and T(N*) 
 

Table-1: 
The variation effect of λ 
λ 2 2.2 2.4 2.6 2.8 
N* 13 13 17 22 27 
L(N*) 8.499993 31.62182 285.4083 436.6824 855.6339 
T(N*) 955.5571 5134.821 13678.03 15918.87 27998.99 
The variation effect of μ 
µ 4 5 6 7 8 
N* 19 13 13 13 13 
L(N*) 413.8169 61.264 8.499993 7.549738 11.57891 
T(N*) 19716.81 8327.47 955.5571 629.9273 601.5784 
The variation effect of α 
α 2 2.5 3 3.5 4 
N* 13 13 13 15 16 
L(N*) 8.499993 9.800005 18.00013 52.33379 122.7524 
T(N*) 955.5571 1391.005 3134.318 3516.7 7115.139 
The variation effect of C 

C 0.5 0.55 0.6 0.65 0.7 
N* 13 12 12 12 11 
L(N*) 8.499993 2.480181 4.136352 5.162567 0.692758 
T(N*) 955.5571 748.5158 660.6066 606.1353 493.0122 
The variation effect of θ 
θ 4 5 6 7 8 
N* 13 13 13 13 14 
L(N*) 8.499993 5.014269 2.499976 0.595208 8.026305 
T(N*) 955.5571 979.8113 1000.002 1016.722 1049.475 
The variation effect of β 
β 4 5 6 7 8 
N* 13 13 13 13 13 
L(N*) 8.499993 5.030181 2.971421 1.591126 0.596147 
T(N*) 955.5571 687.0197 543.4291 453.4322 391.5387 
The variation effect of γ 
γ 4 5 6 7 8 
N* 13 12 12 12 12 
L(N*) 8.499993 2.550842 4.206292 5.377791 6.335347 
T(N*) 955.5571 748.1215 687.4276 659.916 647.0733 

From Table-1, identified the following observations: 

 as λ, α increases, optimum threshold, optimum cost and optimum expected system length are also 
increasing 

 as μ increases, optimum threshold, optimum cost and optimum expected system length are decreasing. 

 as C increases, optimum threshold and optimum cost are decreases, whereas optimum expected system 
length is  convex. 

 as θ increases, optimum threshold and optimum cost are also increases, and optimum expected system 
length is decreases. 

 as β increases, optimum threshold is stable, whereas optimum cos and optimum expected system length 
are decreases. 

 as γ increases, optimum threshold and optimum cost are decreases and optimum expected system length is 
increases. 

 
Case-II: Effect of Monetary parameters (for Ch=20, Co=100, Cb=40, Cs=35, Ct=15, Cm=400, Cr=10) on 
N*, L(N*) and T(N*). 

Table-2: 

The variation effect of Ch 

Ch 20 30 40 50 60 

N* 13 13 13 13 13 

L(N*) 8.499993 8.499993 8.499993 8.499993 8.499993 
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T(N*) 955.5571 1040.557 1125.557 1210.557 1295.557 

The variation effect of Co 

Co 100 200 300 400 500 

N* 13 13 13 13 13 

L(N*) 8.499993 8.499993 8.499993 8.499993 8.499993 

T(N*) 955.5571 1975.93 2996.303 4016.676 5037.048 

The variation effect of Cb 

Cb 40 80 120 160 200 

N* 13 13 13 13 13 

(N*) 8.499993 8.499993 8.499993 8.499993 8.499993 

T(N*) 955.5571 1094.076 1232.595 1371.114 1509.633 

The variation effect of Cs 

Cs 35 40 45 50 55 

N* 13 13 13 13 13 

L(N*) 8.499993 8.499993 8.499993 8.499993 8.499993 

T(N*) 955.5571 942.2237 928.8904 915.557 902.2236 

The variation effect of Ct 

Ct 15 20 25 30 35 

N* 13 13 13 13 13 

L(N*) 8.499993 8.499993 8.499993 8.499993 8.499993 

T(N*) 955.5571 928.8904 902.2236 875.5569 848.8901 

The variation effect of Cm 

Cm 400 450 500 550 600 

N* 13 13 13 13 13 

L(N*) 8.499993 8.499993 8.499993 8.499993 8.499993 

T(N*) 955.5571 922.2237 888.8902 855.5568 822.2234 

The variation effect of Cr 

Cr 10 15 20 25 30 

N* 13 13 13 13 13 

L(N*) 8.499993 8.499993 8.499993 8.499993 8.499993 

T(N*) 955.5571 988.8905 1022.224 1055.557 1088.891 

From Table-2, identified the following observations: 
 

 as Ch, Co, Cb and Cr are increases, optimum threshold and optimum expected system length are stable 
and optimum cost increases 

 as Cs, Ct and Cm are increases optimum threshold and optimum expected system length are stable, 
whereas optimum cost decreases. 
 

7. CONCLUSION 
 

We derived steady state probability distribution and designed a cost structure for the bulk arrival two-phase 
vacation queueing system with server startup, breakdown and timeout. Explicit expressions like Optimum 
threshold, Expected system length and Optimum costs are derived for the proposed queuing model. Also 
Sensitivity analysis has been made for the validity of the proposed model for some fixed values of the 
parameters. 
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