Analyzing The Inflow And Outflow Of Water In Mettur Dam Using Fuzzy Time Series

T. Aparna^{1*}

^{1*}Assistant Professor, Dhanalakshmi Srinivasan University. Email: aparnat2012@gmail.com.

Citation: T. Aparna , (2024) Analyzing The Inflow And Outflow Of Water In Mettur Dam Using Fuzzy Time Series *Educational Administration: Theory And Practice*, *30* (4), 9848-9853 Doi: 10.53555/kuey.v30i4.5307

ARTICLEINO	ABSTRACT		
AKTICLEINO	Farming is said to play a leading role in present day situation. The crucial part for forming is water. So, the water for farming in the Cauvery delta areas is routinely got from the mettur dam. Here, we are studying water inflow and outflow by Fuzzy time series, Fuzzy time series was acquainted in nearly 1990's to handle uncertainty data. Fuzzy time series model cannot deal with incomplete data. So here we present the complete inflow and outflow of water in mettur dam for continuous years and develop the algorithm using fuzzy time series and also compute the graphical representation of water inflow and outflow .Using proposed algorithm we also predict the inflow and inflow of water for the future.		
	Keywords: Fuzzy sets, Fuzzy logic, Fuzzy time series, Inflow of water, Outflow of		

water.

1.INTRODUCTION

Water plays a major role in agriculture sector; a major source of water for agriculture is from the dams. In Cauvery delta areas Mettur dam plays a predominant role in supply of water for agriculture. Mettur dam was supposed to be storing place of water for agriculture if sufficient quantity of water is not released for agriculture there arises great crisis in agriculture sector. Fuzzy time series model is being applied here for prediction of inflow of water .Fuzzy was first introduced by Zadeh in 1965[1],following that many concepts have been developed in fuzzy by various peoples. In current situation forecasting plays a important role in all places. Forecasting is something where we can predict about future outcomes.

Chen [5] has proposed a fuzzy time series model in forecasting of students enlistment in Alabama University. Chen and Chung [2] also proposed fuzzy logic problems for problems related to forecasting. Huarng and Yu[3] used proportion premised duration of meantime to enhance forecasting perfection, digital fuzzy time series analysis depending on disorder and fast fourier transform was given by Chen and Chung[4].

2. FUZZY TIME SERIES

The rudimentary notions associated to fuzzy time series are constituted as follows **Definition 2.1.**

The fuzzy time series be denoted as G(r), (r = ..., 0, 1, 2, ...) and $r_1 \neq r_2$. There exists $g_i(r_2) \in G(r_2)$ for any $g_i(r_1) \in G(r_1)$ and There exists $g_i(r_1) \in G(r_1)$ for any $g_i(r_2) \in G(r_2)$, define $G(r_1) = G(r_2)$ [6-8].

Definition 2.2.

A fuzzy affinity
$$S_{ij}(r,r-1)$$
 and $g_i(r-1) \in G(r-1)$, $i \in R$ subsist for any $g_j(r) \in G(r)$ [6-8]. Such that $g_j(r) = g_i(r-1) \circ S_{ij}(r,r-1)$, let $S(r,r-1) = \bigcup_{i,j} S_{ij}^2(r,r-1)$ then $S(r,r-1)$ is said to be fuzzy affinity

allying G(r) and G(r-1) given by

 $G(r) = G(r-1) \circ S(r, r-1)$ (1)

Definition 2.3.

Let U indicate the universe of discourse $U = \{u_1, u_2, u_3, \dots, u_n\}$. In U, a fuzzy set A_i is interpreted as [6-8] $A_i = g_{A_i}(u_1)/u_1 + g_{A_i}(u_2)/u_2 + g_{A_i}(u_3)/u_3 + \dots + g_{A_i}(u_n)/u_n$ (2)

Copyright © 2024 by Author/s and Licensed by Kuey. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cite

The grade of membership of u_j is $g_{A_i}(u_j)$ in the fuzzy set A_i and $1 \le j \le n, 1 \le i \le n \cdot g_{A_i} : U \to [0,1]$. **Definition. 2.4.**

Let X(r) (r = 0,1,2,...) be universe of discourse, $g_i(r)(i = 1,2,3,...)$ are fuzzy sets elucidated in X(r). The accumulation of $g_i(r)(i = 1,2,3,...)$ is designated as G(r). G(r) is a fuzzy time series on X(r) [6-8]. **Definition. 2.5.**

Suppose $G(r-1) = A_i$ and $G(r) = A_j$ where they are said to be fuzzy sets. Let $A_i \to A_j$ indicates the fuzzy logic relationship between G(r-1) and G(r), A_i and A_j are left hand side and right hand side of the fuzzy logical relationship [6-8].

Definition. 2.6.

If $G(r-n) = A_{in},...,G(r-2) = A_{i2}, G(r-1) = A_{i1}$ and $G(r) = A_j$, where $A_{in},...,A_{i2}, A_{i1}$ and A_j are fuzzy sets, then fuzzy logical relationship of nth order can be specified as $A_{in},...,A_{i2}, A_{i1} \rightarrow A_j$ [6-8].

3. FUZZY TIME SERIES FORECASTING ALGORITHM

Step 1:

The universe of discourse is contemplated as $R = [S_{\min} - S_1, S_{\max} + S_1]$ into period of identical stretch, here $S_{\min} \& S_{\max}$ are maximum and minimum values of the data, we divide R into equal intervals of length n.

Step 2:

The universe of discourse are calculated as $[\mu - 3\sigma, \mu + 3\sigma]$, Here μ refers to mean of the data and σ refers to the volatility of the data. Then calculate the universe of discourse and split them into n period of identical stretch. **Step 3:**

Now in fuzzy sets we specify the linguistic terms as given below

$$A_{1} = \frac{1}{r_{1}} + \frac{0.5}{r_{2}} + \frac{0}{r_{3}} + \frac{0}{r_{4}} + \frac{0}{r_{5}} + \frac{0}{r_{6}} + \frac{0}{r_{7}} + \frac{0}{r_{8}}$$

$$A_{2} = \frac{0.5}{r_{1}} + \frac{1}{r_{2}} + \frac{0.5}{r_{3}} + \frac{0}{r_{4}} + \frac{0}{r_{5}} + \frac{0}{r_{6}} + \frac{0}{r_{7}} + \frac{0}{r_{8}}$$

$$A_{3} = \frac{0}{r_{1}} + \frac{0.5}{r_{2}} + \frac{1}{r_{3}} + \frac{0.5}{r_{4}} + \frac{0}{r_{5}} + \frac{0}{r_{6}} + \frac{0}{r_{7}} + \frac{0}{r_{8}}$$

$$A_{4} = \frac{0}{r_{1}} + \frac{0}{r_{2}} + \frac{0.5}{r_{3}} + \frac{1}{r_{4}} + \frac{0.5}{r_{5}} + \frac{0}{r_{6}} + \frac{0}{r_{7}} + \frac{0}{r_{8}}$$

$$A_{5} = \frac{0}{r_{1}} + \frac{0}{r_{2}} + \frac{0}{r_{3}} + \frac{0.5}{r_{4}} + \frac{1}{r_{5}} + \frac{0.5}{r_{6}} + \frac{0}{r_{7}} + \frac{0}{r_{8}}$$
....
$$A_{8} = \frac{0}{r_{1}} + \frac{0}{r_{2}} + \frac{0}{r_{3}} + \frac{0}{r_{4}} + \frac{0}{r_{5}} + \frac{0}{r_{6}} + \frac{0.5}{r_{7}} + \frac{1}{r_{8}}$$

Here $A_1 A_2 \dots A_8$ are the linguistic terms.

Step 4:

The fuzzified data in ith year is A_j , the two states fuzzy logical relationship is prescribed as $A_j \rightarrow A_k$. The uttermost value of fuzzy set A_k transpire in the interval t_k .

The anticipated value of the $(i+1)^{th}$ data is the midpoint md_k of the period t_k .

Step 5:

Forecasting guidelines

Length of the interval t_j is denoted as l_j .

Upper value of the interval t_i is denoted as UP_i .

Lower value of the interval t_i is denoted as LW_i .

 C_n denotes the nth state value.

 C_{n-1} denotes the (n-1)th state value.

 C_{n-2} denotes the (n-2)th state value.

 FC_{i} denotes the forecasted value of the contemporary state j.

Computational Algorithm

We compute algorithm for the given data and obtain fuzzy logical relation

a. $T_n = |(C_n - 2C_{n-1} + C_{n-2})|$ b. i) if $md_j + T_n / 4 \ge LW_k \otimes md_j + T_n / 4 \le UP_k$ then $N = N + md_j + T_n / 4$, y = y + 1ii) if $md_j - T_n / 4 \ge LW_k \otimes md_j - T_n / 4 \le UP_k$ then $N = N + md_j - T_n / 4$, y = y + 1iii) if $md_j + T_n / 2 \ge LW_k \otimes md_j + T_n / 2 \le UP_k$ then $N = N + md_j + T_n / 2$, y = y + 1iv) if $md_j - T_n / 2 \ge LW_k \otimes md_j - T_n / 2 \le UP_k$ then $N = N + md_j - T_n / 2$, y = y + 1v) if $md_j + T_n \ge LW_k \otimes md_j + T_n \le UP_k$ then $N = N + md_j + T_n$, y = y + 1vi) if $md_j - T_n \ge LW_k \otimes md_j - T_n \le UP_k$ then $N = N + md_j - T_n$, y = y + 1vii) if $md_j + 2T_n \ge LW_k \otimes md_j + 2T_n \le UP_k$ then $N = N + md_j + 2T_n$, y = y + 1viii) if $md_j - 2T_n \ge LW_k \otimes md_j - 2T_n \le UP_k$ then $N = N + md_j - 2T_n$, y = y + 1viii) if $md_j - 2T_n \ge LW_k \otimes md_j - 2T_n \le UP_k$ then $N = N + md_j - 2T_n$, y = y + 1viii) if $md_j - 2T_n \ge LW_k \otimes md_j - 2T_n \le UP_k$ then $N = N + md_j - 2T_n$, y = y + 1viii) if $md_j - 2T_n \ge LW_k \otimes md_j - 2T_n \le UP_k$ then $N = N + md_j - 2T_n$, y = y + 1viii) if $md_j - 2T_n \ge LW_k \otimes md_j - 2T_n \le UP_k$ then $N = N + md_j - 2T_n$, y = y + 1viii) if $md_j - 2T_n \ge LW_k \otimes md_j - 2T_n \le UP_k$ then $N = N + md_j - 2T_n$, y = y + 1viii) if $md_j - 2T_n \ge LW_k \otimes md_j - 2T_n \le UP_k$ then $N = N + md_j - 2T_n$, y = y + 1viii) if $md_j - 2T_n \ge LW_k \otimes md_j - 2T_n \le UP_k$ then $N = N + md_j - 2T_n$, y = y + 1viii) if $md_j - 2T_n \ge LW_k \otimes md_j - 2T_n \le UP_k$ then $N = N + md_j - 2T_n$, y = y + 1

4. SIMULATION STUDY

We analyze the inflow of water in mettur dam [9] during the month of January 2007 and formulated the fuzzy set, fuzzy logic relationship. Then the we calculate the forecasted value and forecasted error from the observed inflow data.

S.NO	Inflow of water
1	1162
2	1062
3	1108
4	1059
5	1046
6	937
7	973
8	1035
9	869
10	539
11	579
12	632
13	530
14	591
15	495
16	556
17	500
18	496
19	457
20	450
21	352
22	362
23	360
24	252
25	270
26	355

27	320
28	384
29	389
30	260
31	312

Table1:Inflow of water in Mettur dam in January 2007

S.NO	Observed Value	Fuzzy set	Fuzzy logical relation ship
1	1162	A_6	-
2	1062	A_6	$A_6 \rightarrow A_6$
3	1108	A_6	$A_6 \rightarrow A_6$
4	1059	A_6	$A_6 \rightarrow A_6$
5	1046	A_6	$A_6 \rightarrow A_6$
6	937	A_5	$A_6 \rightarrow A_5$
7	973	A_5	$A_5 \rightarrow A_5$
8	1035	A_6	$A_5 \rightarrow A_6$
9	869	A_4	$A_6 \rightarrow A_4$
10	539	A_2	$A_4 \rightarrow A_2$
11	579	A_3	$A_2 \rightarrow A_3$
12	632	A_3	$A_3 \rightarrow A_3$
13	530	A_2	$A_3 \rightarrow A_2$
14	591	A_3	$A_2 \rightarrow A_3$
15	495	A_2	$A_3 \rightarrow A_2$
16	556	A_2	$A_2 \rightarrow A_2$
17	500	A_2	$A_2 \rightarrow A_2$
18	496	A_2	$A_2 \rightarrow A_2$
19	457	A_2	$A_2 \rightarrow A_2$
20	450	A_2	$A_2 \rightarrow A_2$
21	352	A_1	$A_2 \rightarrow A_1$
22	362	A_1	$A_1 \rightarrow A_1$
23	360	A_1	$A_1 \rightarrow A_1$
24	252	A_1	$A_1 \rightarrow A_1$
25	270	A_1	$A_1 \rightarrow A_1$
26	355	A_1	$A_1 \rightarrow A_1$
27	320	A_1	$A_1 \rightarrow A_1$
28	384	A_1	$A_1 \rightarrow A_1$
29	389	A_1	$A_1 \rightarrow A_1$
30	260	A_1	$A_1 \rightarrow A_1$
31	312	A_1	$A_1 \rightarrow \overline{A_1}$

 31
 312
 11
 11
 11

 Table2:Fuzzy set value and fuzzy logic relationship for inflow of water in Mettur dam in January 2007

$\frac{\sum_{i=1}^{n} \text{forecasted value}_{i} - \text{observed value}_{i} ^{2}}{n}$ Mean Square Error = $\frac{ \text{Forecasted value} - \text{observed value} }{n}$ Forecasting Error in percentage = $\frac{ \text{Forecasted value} - \text{observed value} }{\text{observed value}} *100$ Average Forecasting Error = $\frac{\text{Sum of forecasting error}}{\text{number of errors}}$						
S.NO	Observed Value	Forecasted Value	Forecasted Error			
1	1162	1100	0.044256			
2	1062	1109	0.000003			
2	1108	1100	0.047214			
<u> </u>	1059	1109	0.060229			
5	1046	1031	0.10032			
6	037	953	0.020555			
7	973	1031	0.003865			
8	1035	953	0.096663			
9	869	641	0.189239			
10	539	563	0.027634			
11	579	641	0.014241			
12	632	563	0.062264			
13	530	563	0.047377			
14	591	563	0.137374			
15	495	484	0.129496			
16	556	484	0.032			
17	500	484	0.024194			
18	496	484	0.059081			
19	457	484	0.075556			
20	450	406	0.153409			
21	352	328	0.093923			
22	362	328	0.088889			
23	360	328	0.301587			
24	252	328	0.214815			
25	270	328	0.076056			
26	355	328	0.025			
27	320	328	0.145833			
28	384	328	0.156812			
29	389	328	0.261538			
30	260	328	0.051282			
31	312	1109	0.044256			

Table2:Fuzzy set value and fuzzy logic relationship for inflow of water in Mettur dam in January 2007

Thus from the table 3 we get the average forecasting value , Mean square error and Average forecasted error Thus Mean square error =2466.452

Average forecasted error = 9%

Figure1. Comparison of Actual data and Forecasted Data

5. CONCLUSION

we have collected the water inflow in mettur dam during January 2007 but it is observed the inflow of water is not sufficient for agriculture but the forecasted data will enable to predict the sufficient quantity of water required for agriculture, in the similar way we can predict the required quantity of outflow of water. Thus if the inflow and outflow of water are in the appropriate quantity every year there will be no deficiency of water for agriculture sector. The Forecasting error is also being calculated for the inflow of data. The graphical representation of the actual data and forecasted data are also represented in the paper.

References:

- [1] Zadeh, L.A. Fuzzy sets. Information and control, 8, 338 353, 1965.
- [2] S. M. Chen and N. Y. Chung, Forecasting enrollments using high-order fuzzy timeseries and genetic algorithms, Inter. J. Intelligent Systems 21(5) (2006), 485-501.
- [3] K. Huarng and H. K. Yu, Ratio-based lengths of intervals to improve fuzzy time series forecasting, IEEE Transactions on Systems, Man and Cybernetics Part B, Cybernetics 36(2) (2006), 328-340.
- [4] C.D. Chen and Chen, S.M., handling forecasting problems based on high-order fuzzy logical relationships, Experts Systems with application 38, 3857-3864, 2011.
- [5] S. M. Chen, Forecasting enrollments based on fuzzy time series, Fuzzy Sets and Systems 81(3) (1996), 311-319.
- [6] Q. Song and B. S. Chissom, Fuzzy time series and its models, Fuzzy Sets and Systems 54 (1993), 269-277.
- [7] Q. Song and B. S. Chissom, Forecasting enrollments with fuzzy time series, Part I, Fuzzy Sets and Systems 54 (1993), 1-9.
- [8] Q. Song and B. S. Chissom, Forecasting enrollments with fuzzy time series, Part II, Fuzzy Sets and Systems 62 (1994), 1-8.
- [9] T. Aparna , Senthil & Saeed, Rostam. (2020). Analyzing Inflow and Outflow of Water in Mettur Dam during the Year 2013-2014 Using Symmetric and Skew Processes. 29. 458-477.