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ARTICLE INFO ABSTRACT 
 Wireless Sensor Networks (WSNs) are significant for monitoring physical and 

environmental variables, requiring efficient routing algorithms. This paper presents a 
novel approach called Energy Efficient Mathematically Modified Monarch Butterfly 
Optimization (EEMMBO) for routing in Wireless Sensor Networks (WSNs). The hybrid 
technique combines the accuracy of Mathematical Model Integer Linear Programming 
(ILP) in decision-making with the exploratory nature of Monarch Butterfly Optimization 
(MBO). ILP effectively handles specific choices and complex limitations, while MBO 
introduces variety into solutions, avoiding being stuck in suboptimal outcomes. The 
inspiration for this research is the fundamental importance of Wireless Sensor Networks 
(WSNs) in many applications, where efficient routing is vital for successful data gathering 
and monitoring. The sensor nodes come with limited energy and processing capacities, 
whereas conventional routing algorithms frequently face challenges in balancing 
decision-making accuracy and adaptability to changing settings. This research seeks to 
tackle these obstacles by introducing a prominent technique, the Energy Efficient 
Mathematically Modified Monarch Butterfly Optimization (EEMMBO), for routing in 
Wireless Sensor Networks (WSNs). The primary research goal is two-fold: firstly, to 
create a strong Mathematical Model using Integer Linear Programming (ILP) that 
guarantees accurate decision-making, and secondly, to incorporate the exploratory 
characteristics of Monarch Butterfly Optimization (MBO) to improve solution diversity 
and adaptability. This research aims to improve the efficiency, resilience, and 
adaptability of WSN routing by using a hybrid approach. The proposed EEMMBO 
combines different methods effectively and demonstrates its ability to enhance energy 
efficiency, resilience, and adaptability in WSN routing scenarios. 
 
Keywords: Energy consumption, sensor node, network, optimization, sleep scheduling, 
and mathematical model. 

 
Introduction 

 
Recent years have seen an expanded interest in Wireless Sensor Networks (WSNs) in different applications, 
for example, natural monitoring, manufacturing plant robotizing, environment following, security observation, 
smart transportation, and savvy urban areas. This innovation has brought some advantages to clients from 
various areas. It is imagined that tens to thousands of sensor nodes working on little batteries will be conveyed 
to function autonomously to develop WSNs in numerous situations. Wireless sensor networks may comprise 
divergent sorts of sensors such as seismic, warm, optic, infrared, acoustic, and radar, which can screen a wide 
run of surrounding conditions, including temperature, humidity, light condition, the nearness or 
nonattendance of objects, mechanical stretch levels on connected objects, and the portability characteristics 
such as speed and course [1]. The detected information is assembled and sent to a base station straightforwardly 
or utilizing multiple hops depending on the network topology and routing conventions. In expansion to the 
capacity to test its environment, each sensor node has one or more inbuilt radios to communicate with other 
nodes through wireless communication protocols, for example, ZigBee out of many. Subsequently, micro-
sensing and remote communication combinations offer many conceivable outcomes of WSN applications [2]. 
A Wireless Sensor Network (WSN) is a wireless network that consists of spatially distributed autonomous 
devices called sensors [3]. These sensors are specifically designed to monitor physical or environmental factors. 
This system incorporates a wireless communication gateway to the wired world and many distributed nodes. A 
wireless sensor network consists of specialized transducers and a communication infrastructure [4]. Its 

https://kuey.net/
mailto:shreekarthy@gmail.com


803 N. Karthik et al / Kuey, 30(6), 5352 

 

purpose is to observe and record conditions at several places. Parameters frequently monitored include 
temperature, humidity, density, wind direction and speed, light intensity, vibration levels, sound 
concentration, power-line voltage, chemical concentrations, pollutant levels, and vital body functions. A sensor 
network consists of multiple detecting stations known as sensor nodes, each of which is small, lightweight, and 
easy to carry. Every sensor node has a transducer, a compact computer for processing and storing sensor 
output, a transmitter for communication, and a power source like a battery [5]. 
The network's topology designs the actual arrangement of the sensors inside the observed region. We can 
recognize a wide range of possible architectures. The nodes can be laid out in star topology, where the sink or 
the base station is connected to each node [6]. The sensor nodes may be physically laid as a single hop network, 
where any node can communicate directly with any other node. In a multi-hop network, sensor nodes can be 
arranged in a tree or graph topology. The topology is determined by the application which will be executed. 
Which also has an impact on network parameters, including delay, connectivity, information handling, network 
lifespan, and durability. In multi-hop WSNs, routing is essential for transmitting data from one node to another 
or the base station. Nevertheless, the sleep scheduling of sensor nodes may meddle with routing because an 
intermediate node chosen by the routing protocol may go to sleep mode during the communication of a packet 
via it. Thus, a routing protocol for a WSN has to be adequately integrated with the sleep scheduling method of 
the WSN [7]. 
Sensor nodes frequently have inadequate battery power. Power utilization is always an important issue to be 
determined for sensor nodes because the node may be installed in a nonhuman environment, and replacing 
the battery regularly may be costly, and, for some implementations, incomprehensible Speedy usage of the 
sensors' remaining energy diminishes the lifetime of the network and, after that, influences the sensing 
accessibility [8]. Numerous studies have been conducted to address the issue of prolonging the network's 
lifespan following the scheduling and management of the sensor's battery sparing. Battery energy can be spared 
by changing the power levels for sensing events. That is, depending on the type of workload, the sensing can be 
maximized or minimized so that energy consumption can be reduced and, as a result, the network's lifetime 
can be extended. In another way, battery power can be saved by shutting down sensor nodes that are not 
currently participating in any activity. Nodes are either inactive or in sleep mode to reduce power consumption. 
A scheduling algorithm changes the node status from active to sleep or vice versa for balanced power 
consumption [9]. 
In the Wireless Sensor Networks (WSN) field, the first crucial step is defining the routing problem. This 
involves carefully considering important factors and limitations. The routing problem is framed by describing 
the Wireless Sensor Network (WSN) environment, including information about the quantity and arrangement 
of sensor nodes and the characteristics of the data being monitored. Prominent goals, such as improving energy 
efficiency, reducing latency, and enhancing reliability, have been defined to guide the routing formulation 
process [10]. Decision variables are subsequently established to reflect crucial elements like node routing and 
path selection. At the same time, the objective function encapsulates the core of optimization by balancing 
energy consumption, reducing latency, and maximizing reliability. Constraints in wireless sensor networks 
(WSNs) are influenced by specific characteristics such as limited energy resources, communication range, and 
reliability thresholds [11]. 
Further refining entails conducting a particular analysis to balance competing factors, adapting to changing 
environmental conditions and verifying the accuracy of the mathematical model through practical simulations. 
Furthermore, sensitivity analysis examines the model's ability to react to variations in parameters and 
constraints [12]. The thorough description of assumptions, the ultimate mathematical model, and additional 
considerations provide a solid basis for creating routing algorithms specifically designed for the complex 
requirements of Wireless Sensor Networks (WSNs), guaranteeing practical and efficient solutions. 
 

Related Works 
 

Wireless Sensor Networks (WSNs) are vital for gathering and analyzing large quantities of data, making them 
indispensable for various applications. Nevertheless, obstacles such as network congestion, energy efficiency, 
and data transfer optimization continue to exist. This literature review examines recent progress in tackling 
these difficulties using novel methods. A prevalent problem in Wireless Sensor Networks (WSNs) is the 
congestion near the root nodes. This congestion results in inefficiencies, particularly in scenarios involving 
traffic convergence. Despite its widespread usage, the OSCAR approach continues to encounter performance 
challenges due to network intricacy. The proximity of nodes amplifies issues such as collisions during 
transmission and energy consumption resulting from duplicate data. In order to address these issues, a new 
and innovative method is suggested: a Fuzzy-Based Sleep Scheduling Mechanism (FBESSM). FBESSM 
dynamically activates or deactivates sensors to minimize power consumption. The evaluation parameters, 
including throughput, packet loss, lifespan, energy consumption, and latency, demonstrate the higher 
performance of FBESSM compared to OSCAR. This highlights the usefulness of FBESSM across many network 
measures [13].  
Compressive Data Gathering (CDG) is recognized as a very efficient technique for minimizing data 
transmission and, consequently, lowering energy consumption in Wireless Sensor Networks (WSNs). 
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Integrating sleep scheduling with CDG improves energy efficiency even more. Nevertheless, current sleep 
scheduling techniques frequently entail centralized optimization issues or stochastic decision-making, 
resulting in energy imbalances and early energy exhaustion. In this regard, we provide an RLSSA-CDG 
algorithm, which utilizes reinforcement learning to schedule sleep in CDG. RLSSA-CDG achieves load 
balancing and accurate data reconstruction using finite Markov decision processes and mode-free Q learning. 
It is a distributed system that avoids superfluous control message exchanges. The simulation findings confirm 
its superiority in energy usage, network longevity, and data recovery accuracy [14].  
For WSN applications, the duration of network operation and the ability to determine the location of nodes are 
crucial factors, particularly in situations where nodes are installed randomly and remain unattended for long 
periods. The Energy-Aware Connected k-Neighborhood (ECKN) suggested in this study combines position 
estimation, packet routing, and sleep scheduling to tackle these issues effectively. ECKN utilizes trilateration 
for localization, a routing protocol that relies on Greedy Geographic Forwarding (GGF), and a sleep scheduler 
based on connected k-neighborhood (CKN). Evaluation experiments have shown that ECKN prolongs the 
network's lifespan, localizes nodes, and maintains satisfactory packet delivery rates, all while lowering network 
overhead [15].  
Ensuring continuous coverage of the target region is of utmost importance in Energy Harvesting-Based 
Wireless Sensor Networks (EH-WSNs). A proposed routing protocol called HCEH-UC (An Adaptive 
Hierarchical-Clustering-Based Routing Protocol for EH-WSNs) is utilized to achieve this objective. The HCEH-
UC algorithm utilizes hierarchical clustering to regulate energy usage and dynamically manages the number of 
nodes operating in energy-harvesting mode. The simulation findings validate that HCEH-UC extends the 
maximum duration of coverage for Wireless Sensor Networks (WSNs), guaranteeing continuous target 
coverage through energy harvesting technology [16].  
Another area of concentration is enhancing the efficiency of gathering and transmitting data in Wireless Sensor 
Networks (WSNs) to extend the duration of network operation. The Particle Swarm Optimisation (PSO) 
technique is utilized for cluster formation, and a Fuzzy-Based Energy-Efficient Routing Protocol (E-FEERP) is 
introduced. E-FEERP optimizes data transmission by considering aspects such as battery energy, average 
Distance to the base station, node density, and communication quality. The simulation findings indicate 
enhancements in throughput, residual energy, load balancing ratio, packet delivery ratio, energy consumption, 
and network longevity compared to existing methods [17].  
The Butterfly Optimisation Algorithm (BOA) is employed to optimize the selection of cluster heads to improve 
the network lifetime of Wireless Sensor Networks (WSNs). The suggested methodology integrates Ant Colony 
Optimisation (ACO) to identify routes based on Distance, residual energy, and node degree. The suggested 
methodology's usefulness is demonstrated through a comparative comparison with traditional and existing 
methodologies, focusing on metrics such as living nodes, dead nodes, energy usage, and data packets the base 
station receives [18].  
These studies provide several methods for tackling important issues in Wireless Sensor Networks (WSNs), such 
as congestion, energy efficiency, network lifespan, and data transfer optimization. Various methods, such as 
fuzzy-based sleep scheduling, reinforcement learning for CDG, and adaptive hierarchical clustering, enhance 
the capabilities and dependability of Wireless Sensor Networks in different application domains. The suggested 
solutions offer enhanced performance metrics and show promising outcomes for the future advancement of 
WSN technologies. 
Conventional methods used in Wireless Sensor Networks (WSNs) sometimes encounter difficulties concerning 
energy efficiency, specifically concerning sleep scheduling. Several current sleep scheduling algorithms may 
inadequately handle wireless sensor networks' dynamic and intricate characteristics (WSNs), resulting in 
unsatisfactory energy usage, network lifespan, and overall effectiveness. The research gap exists in the necessity 
for a sleep scheduling method that is both adaptable and efficient, taking into account the varied and changing 
conditions within wireless sensor networks (WSNs). 
The Energy Efficient Mathematically Modified Monarch Butterfly Optimisation (EEMMBO) for Routing-Based 
Sleep Scheduling fills a research gap by integrating the accuracy of Integer Linear Programming (ILP) with the 
investigative characteristics of Monarch Butterfly Optimisation (MBO). EEMMBO guarantees precise sleep 
scheduling beyond the constraints of energy usage and adaptability seen in conventional approaches. By 
combining the decision-making accuracy of ILP with the exploratory capabilities of MBO, it effectively manages 
discrete decisions and intricate restrictions. EEMMBO is particularly noteworthy for its ability to optimize 
energy efficiency, latency, and dependability, offering a full solution. The system's adaptability to changing 
conditions in the Wireless Sensor Network enables real-time modifications according to fluctuations in 
network traffic, environmental factors, and energy availability. 
The EEMMBO technique effectively addresses the research gap in sleep scheduling mechanisms within WSNs. 
EEMMBO enhances sleep scheduling strategy by integrating the accuracy of ILP with the investigative 
approach of MBO, resulting in improved adaptability and efficiency. This hybrid technique addresses the 
shortcomings of conventional methods by offering a holistic solution that enhances energy efficiency, reduces 
latency, and improves reliability in dynamic wireless sensor network (WSN) situations. 
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Energy Efficient Mathematically Modified Monarch Butterfly Optimization for Routing 
The Energy Efficient Mathematically Modified Monarch Butterfly Optimisation (EEMMBO) is a novel method 
that integrates mathematical modelling and the exploratory characteristics of the Monarch Butterfly 
Optimisation (MBO) algorithm. It is specifically designed to tackle routing issues in Wireless Sensor Networks 
(WSN). In the context of Wireless Sensor Networks (WSNs), where conserving energy is crucial for maximizing 
the lifespan of the network, reducing latency is important for timely data transmission, and ensuring reliability 
is essential for strong communication, the goal of EEMMBO is to discover optimized routes that achieve a 
balance between these competing objectives.  
The methodology incorporates Integer Linear Programming (ILP) as the mathematical modelling element, 
utilizing its capacity to manage discrete decisions and intricate restrictions inherent in WSN routing. ILP offers 
a predictable and accurate framework for making decisions. The inclusion of MBO brings in a speculative 
aspect, drawing inspiration from the foraging actions of monarch butterflies. The stochastic character of MBO 
enables the algorithm to systematically examine a wide range of solutions systematically, hence avoiding 
becoming stuck in local optimal solutions and improving the overall resilience of the route optimization 
process. The procedure of EEMMBO is outlined in this section. 
In the context of Wireless Sensor Networks (WSN), Integer Linear Programming (ILP) can be applied to 
address various optimization problems, including routing. The ILP formulation for a generic WSN routing 
problem typically involves decision variables, an objective function, and a set of constraints. Here is a basic ILP 
formulation for a WSN routing problem:  
Let xij be a binary decision variable representing whether node i is selected as a relay node on the path to node 
(xij=1 if selected, xij=0 otherwise). Minimization is given in Equation 1. 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ ∑ 𝐶𝑖𝑗 ∙ 𝑥𝑖𝑗𝑗𝑖 ---------(1) 

Cij represents the cost of selecting node i as a relay on the path to node j. This cost can be a combination of 
energy consumption, latency, or other relevant metrics. 
The flow conservation constraint ensures that the data flow within the network is balanced at each node, except 
for the source and destination nodes. It is given in Equation 2. 

∑ 𝑥𝑖𝑗𝑗 − ∑ 𝑥𝑗𝑖𝑗 = {
1 𝑖𝑓 𝑖 = 𝑠(𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒)

−1𝑖𝑓 𝑖 = 𝑑(𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑛𝑜𝑑𝑒)
1𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

---------(2) 

This equation states that for each node i, the difference between the sum of outgoing flows (x ij) and incoming 
flows (xji) should be 1 if i is the source node, -1 if i is the destination node, and 0 for all other nodes. This ensures 
that the flow is conserved within the network, guaranteeing that every unit of data sent from the source node 
reaches the destination node. The energy constraint regulates the network's total energy consumption, 
ensuring that it does not exceed a predefined maximum threshold. It is expressed in Equation 3. 
∑ ∑ 𝐸𝑖𝑗 ∙ 𝑥𝑖𝑗𝑗𝑖 ≤ 𝐸𝑚𝑎𝑥---------(3) 

In this equation, Eij represents the energy consumption on the link between nodes i and j, and Emax is the 
maximum allowable energy consumption for the entire network. This constraint guides the ILP model to find 
a routing configuration that minimizes energy usage, contributing to the overall energy efficiency of the WSN. 
The reliability constraint ensures that the cumulative reliability of the selected links in the network meets or 
exceeds a minimum required threshold. It is formulated in Equation 4. 
∑ ∑ 𝑅𝑖𝑗 ∙ 𝑥𝑖𝑗𝑗𝑖 ≤ 𝑅𝑚𝑖𝑛---------(4) 

Here, Rij represents the reliability of the link between nodes i and j, and Rmin is the minimum required 
reliability. This constraint emphasizes the importance of establishing reliable communication links within the 
network, which is crucial for maintaining robust and dependable data transmission. The communication range 
constraint ensures the selected links are within the permissible communication range. It is represented in 
Equation 5. 
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗) ≤ 𝑅𝑐𝑜𝑚𝑚 ∙ 𝑥𝑖𝑗---------(5) 

In this equation, Distance(i,j) is the physical Distance between nodes i and j, and Rcomm is the maximum 
communication range. This constraint enforces the spatial limitations on selecting relay nodes, considering the 
practical range of communication for the sensor nodes. The binary constraint specifies that the decision 
variables xij are binary, taking values of either 0 or 1 in Equation 6. 
𝑥𝑖𝑗 ∈ {0,1}---------(6) 

This constraint reflects the discrete nature of relay node selection. A value of 1 indicates that node i is selected 
as a relay on the path to node j, while 0 signifies that it is not selected. The binary nature of these variables is 
fundamental for formulating an ILP problem, allowing for clear and distinct choices in the routing 
configuration. These constraints collectively shape the ILP model for WSN routing, guiding the optimization 
process to find relay node configurations that balance flow, conserve energy, ensure reliability, adhere to 
communication range constraints, and maintain the binary nature of decision variables. 
The sleep scheduling technique of Monarch Butterfly Optimisation (MBO) entails replicating the feeding 
patterns of monarch butterflies to ascertain the most advantageous sleep schedule for the nodes inside a 
Wireless Sensor Network (WSN). The MBO algorithm draws inspiration from the migratory behaviour of 
monarch butterflies, which involves a blend of deterministic and random motions. Within the domain of sleep 
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schedule, the MBO algorithm is employed repetitively to ascertain the optimal timing for individual sensor 
nodes to switch between active and sleep states.  
The MBO algorithm efficiently manages the sleep scheduling of WSNs by appropriately balancing deterministic 
and exploratory movements. It adjusts to changing circumstances, guaranteeing that the sleep cycle remains 
flexible to network demands and ambient factor variations. The algorithm's capacity to investigate a wide range 
of options renders it appropriate for optimizing sleep schedules in WSNs, enhancing energy economy and 
overall network performance. 
Initialization: In the initiation phase, a binary decision matrix X represents individual sensor nodes' sleep or 
active states over discrete time intervals. Each row corresponds to a sensor node, and each column denotes a 
time interval. Population P encompasses diverse X configurations, encapsulating various potential sleep 
schedules. The binary decision matrix X is formulated with dimensions N×T, where N represents the number 
of sensor nodes and T denotes the discrete time intervals. Each element Xij of the matrix signifies the sleep (0) 
or active (1) state of node i at time j. 
𝑋𝑖𝑗 ∈ {0,1}∀𝑖 ∈ {1,2, … … , 𝑁}, 𝑗 ∈ {1,2, … . , 𝑇}---------(7) 

Fitness Evaluation: The fitness function f(X) plays a pivotal role in assessing the performance metrics of the 
network, such as energy consumption or network coverage. The objective is to identify a sleep schedule that 
optimally aligns with the chosen performance criteria. 
𝑓(𝑋) = 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎---------(8) 
Movement and Exploration: Within sleep scheduling, random perturbations are applied to a subset of potential 
sleep schedules to emulate exploratory behaviour observed in natural phenomena. This randomness mitigates 
the risk of entrapment in local optima, fostering adaptability to dynamic network conditions. 
𝑋′ = 𝑅𝑎𝑛𝑑𝑜𝑚𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛(𝑋) ---------(9) 
Deterministic Movement: Deterministic movement entails adjusting a subset of potential sleep schedules based 
on the prevailing best-performing solutions. This process introduces a stabilizing influence, steering the 
algorithm towards more optimal solutions. In sleep scheduling, deterministic adjustments may involve aligning 
sleep patterns with historically successful configurations. 
𝑋′′ = 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡(𝑋′) ---------(10) 
Update Solution Set: The refreshed population P amalgamates outcomes from random perturbations and 
deterministic adjustments. Solutions exhibiting improvements in the fitness function are retained, 
contributing to an iterative enhancement of sleep schedules. This systematic progression ensures the algorithm 
converges towards effective sleep scheduling configurations. 
𝑃 = 𝑃 ∪ {𝑋′′}---------(11) 
Termination Criteria: Termination criteria dictate the cessation of the sleep scheduling optimization process. 
This could be contingent on a predetermined number of iterations or the fulfilment of a convergence criterion. 
The convergence criterion gauges whether the algorithm has achieved a stable and productive sleep schedule 
for the sensor nodes. 
𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝐶ℎ𝑒𝑐𝑘𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(𝑃) ---------(12) 
In the specialized domain of sleep scheduling for Wireless Sensor Networks (WSNs), this mathematical model 
provides a structured methodology for iteratively optimizing the sleep schedules of individual nodes, 
encompassing both stochastic exploration and deterministic adjustments. The resultant solution encapsulates 
an optimized sleep schedule that harmonizes energy efficiency and specified performance objectives within the 
WSN environment. 
 

Result and Discussion 
 

The process of establishing a network simulation using NS-2 (Network Simulator version 2) entails numerous 
crucial steps. Prior to anything else, it is important to install the NS-2 program by according to the official 
instructions or utilizing a package manager for a more efficient installation process. Afterwards, it is necessary 
to establish the network topology, which involves determining the nodes and their interconnections.  
An illustrative script, named `simple.tcl`, showcases the establishment of two nodes and a connection between 
them. Subsequently, traffic is organized by implementing a CBR (Constant Bit Rate) traffic source and linking 
it to a UDP (User Datagram Protocol) agent. The simulation incorporates routing and transport protocols, such 
as AODV (Ad hoc On-Demand Distance Vector), by connecting routing agents to the nodes. The simulation 
parameters, such as the duration and trace file details, are established prior to executing the simulation with 
the ̀ ns` command in the terminal. Ultimately, the outcomes can be examined, and tools such as Nam (Network 
Animator) can be utilized to visually represent the dynamics of the network. Adapting the scripts to particular 
protocols, network intricacies, and situations is essential for accurately simulating and examining the intended 
network performance. To obtain comprehensive information and tailor the settings to your needs, consult the 
NS-2 documentation and pertinent resources. 
Wireless Sensor Networks (WSNs) are essential in a wide range of applications, including environmental 
monitoring and industrial operations, where efficient routing is of utmost importance. This study conducts a 
comparative analysis of three routing algorithms: Energy Efficient Mathematically Modified Monarch Butterfly 
Optimization (MMMBO), Monarch Butterfly Optimization combined with Ant Colony Optimization (MBO-
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ACO), and Fuzzy-based Energy Efficient Routing Protocol (E-FEERP). The purpose is to evaluate their 
effectiveness in various scenarios of Wireless Sensor Networks (WSN) by measuring multiple performance 
metrics. 
Efficiently managing routing overhead is crucial for optimizing network resources. MMMBO regularly exhibits 
reduced levels of Routing Overhead in comparison to its peers. With 100 nodes, MMMBO demonstrates a 
Routing Overhead of 4.66, surpassing the performance of MBO-ACO (7.56) and E-FEERP (9.68). MMMBO's 
total network optimization is enhanced by the efficiency in routing decision-making. 

 
Figure 1. Comparison of Routing Overhead 

 
The analysis of Routing Overhead in Figure 5 showcases MMMBO's efficiency in managing routing tasks with 
lower overhead compared to MBO-ACO and E-FEERP. As the network scales, MMMBO maintains a favorable 
position, demonstrating scalability and effective routing resource utilization. 
Ensuring a high Packet Delivery Ratio is crucial for dependable data transfer. MMMBO regularly attains 
superior Packet Delivery Ratios across many node configurations. With 150 nodes, MMMBO achieves a Packet 
Delivery Ratio of 88, beating both MBO-ACO (83) and E-FEERP (80). This tendency enhances the 
dependability of MMMBO in effectively transmitting data packets. 

 
Figure 2. Comparison of PDR 

 
Figure 2 reveals that MMMBO consistently achieves higher Packet Delivery Ratios compared to MBO-ACO and 
E-FEERP. This emphasizes MMMBO's reliability in ensuring a successful and consistent delivery of packets 
within the network, critical for maintaining data integrity. 
Minimizing packet loss is essential for maintaining data integrity and ensuring reliability. MMMBO routinely 
demonstrates superior performance in terms of Packet Loss rates, which indicates a higher level of success in 
transmitting data packets. With 50 nodes, MMMBO achieves a Packet Loss rate of 3, outperforming both MBO-
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ACO (7) and E-FEERP (10). As the number of nodes increases, MMMBO continues to demonstrate its 
supremacy by consistently delivering packets, thereby highlighting its reliability. 

 
Figure 3. Comparison of Packet Loss 

 
Figure 3 illustrates the Packet Loss metrics, highlighting MMMBO's ability to maintain lower packet loss rates 
compared to MBO-ACO and E-FEERP. This emphasizes MMMBO's reliability in ensuring successful data 
packet delivery, particularly in scenarios with varying node densities. 
Ensuring a prolonged lifespan of the network is crucial for the long-term viability of Wireless Sensor Networks 
(WSNs). MMMBO demonstrates exceptional durability, maintaining extended network lifespans across diverse 
node setups. With 50 nodes, MMMBO guarantees a complete network lifetime of 100, although MBO-ACO and 
E-FEERP encounter minor reductions. The durability of MMMBO remains evident even with bigger networks, 
demonstrating its capacity to maintain network lifetime. 
 

 
Figure 4. Comparison of Network Lifetime 

 
Examining Network Lifetime (Figure 4), MMMBO demonstrates superior longevity compared to MBO-ACO 
and E-FEERP. MMMBO's network lifespan remains consistently high even as the number of nodes increases, 
indicating its robustness and efficiency in sustaining network operations over an extended period. 
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The importance of energy efficiency in Wireless Sensor Networks (WSNs) cannot be overstated, as it has a 
direct influence on the longevity of the network. MMMBO demonstrates superior energy optimization by 
achieving lower Average Energy Consumed values compared to MBO-ACO and E-FEERP. MMMBO has 
superior energy efficiency compared to MBO-ACO and E-FEERP, consuming only 0.35 units of energy at 100 
nodes, while MBO-ACO consumes 0.5 units and E-FEERP consumes 0.64 units. The tendency persists as the 
node density increases, highlighting MMMBO's expertise in energy-efficient routing. 

 
Figure 5. Comparison of Energy Consumption 

 
In Figure 5, the Average Energy Consumed analysis depicts MMMBO as a more energy-efficient option 
compared to MBO-ACO and E-FEERP. MMMBO consistently consumes less energy across various network 
sizes, emphasizing its ability to optimize resource consumption while maintaining network performance. 
The Average Delay statistic offers insights into the effectiveness of transmitting data packets, with lower values 
suggesting decreased communication latency. MMMBO consistently achieves superior performance compared 
to its rivals in all node configurations. MMMBO, with 50 nodes, achieves an Average Delay of 2.012, which is 
considerably better than the Average Delays of MBO-ACO (4.23) and E-FEERP (6.34). As the number of nodes 
increases, MMMBO continues to demonstrate its excellent performance in eliminating communication delays, 
thus maintaining this trend. 
 

 
Figure 6. Comparison of Delay 

 
The comparison of Average Delay (Figure 6) among MMMBO, MBO-ACO, and E-FEERP reveals noteworthy 
insights. MMMBO consistently outperforms MBO-ACO and E-FEERP across different node configurations. As 
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the number of nodes increases, MMMBO exhibits significantly lower delay times, showcasing its effectiveness 
in minimizing data transmission time. 
Average Throughput measures the network's effectiveness in transmitting data packets. MMMBO regularly 
exhibits superior Average Throughput values in comparison to MBO-ACO and E-FEERP. MMMBO reaches a 
throughput of 0.64 at 200 nodes, surpassing the throughput of MBO-ACO (0.52) and E-FEERP (0.5). This 
highlights MMMBO's capacity to enhance data transmission speeds in dynamic wireless sensor network (WSN) 
situations. 

 
Figure 7. Comparison of Average Throughput 

 
In Figure 7, the analysis of Average Throughput indicates that MMMBO consistently outperforms MBO-ACO 
and E-FEERP in terms of higher data transfer rates. MMMBO's superior throughput showcases its efficiency 
in maximizing data transmission capabilities, making it a preferred choice for scenarios demanding efficient 
and rapid data transfer. 
The thorough analysis demonstrates that MMMBO consistently outperforms competitors across a wide range 
of performance criteria. The proficiency of MMMBO lies in its ability to minimize communication delays, 
optimize energy consumption, preserve network lifetime, reduce packet loss, manage routing overhead, ensure 
high packet delivery ratios, and maintain efficient throughput. This makes MMMBO a robust and versatile 
routing algorithm for Wireless Sensor Networks, regardless of the density of nodes. 
 

Conclusion 
 

The Energy Efficient Mathematically Modified Monarch Butterfly Optimization (EEMMBO) has great potential 
in addressing the routing issues of Wireless Sensor Networks (WSNs). EEMMBO combines the accuracy of 
Integer Linear Programming (ILP) with the investigative characteristics of Monarch Butterfly Optimization 
(MBO) to provide a well-rounded approach for decision-making and adaptation. This study not only focuses 
on the fundamental significance of effective routing in Wireless Sensor Networks (WSNs) for data collection, 
but also introduces a hybrid sleep scheduling mechanism within the Energy Efficient Multi-hop Multi-path 
Broadcast (EEMMBO) framework. The sleep scheduling algorithm utilizes the accuracy of ILP to maximize 
energy usage, while the exploratory behavior of MBO guarantees adaptation to changing network conditions. 
EEMMBO demonstrates its effectiveness in strengthening WSN routing efficiency, robustness, and flexibility 
through the creation of a strong Mathematical Model, increased solution variety, and the inclusion of sleep 
scheduling. This research enhances the progress of routing approaches in Wireless Sensor Networks (WSNs), 
by tackling significant obstacles and promoting the creation of stronger and more flexible solutions in the ever-
changing environment of sensor network applications. 
Potential future improvements for MMMBO in WSNs may prioritize dynamic adaptability to evolving 
situations, integration of sophisticated security measures, enhancement of scalability for bigger networks, 
execution of real-world deployment tests, and investigation of hybridization with other optimization 
techniques. The purpose of these advancements is to improve MMMBO's ability to adjust, protect, expand, and 
be practically useful in WSN settings. 
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