

Analysis Of Vedic Shaped Microstrip Patch Antenna (MPA) Design For Wireless Applications

Mr. Nirav J. Chauhan^{1*}, Dr. C. H. Vithalani², Dr. R. N. Patel³

^{1*}Research Scholar, GTU, Ahmedabad, Gujarat, India. Lecturer, EC Department, Government Polytechnic, Palanpur, Gujarat, India. Email: niravjchauhan.ec@gmail.com

²Professor & Head, EC Department, L.D. College of Engineering, Ahmedabad, Gujarat, India. Email: chvithalani@ldce.ac.in ³Lecturer, EC Department, Government Polytechnic, Palanpur, Gujarat, India. Email: ratansing.patel@gmail.com

Citation: Mr. Nirav J. Chauhan et al, (2024 Analysis Of Vedic Shaped Microstrip Patch Antenna (MPA) Design For Wireless Applications , *Educational Administration: Theory and Practice*, *30*(6)(s) 195-201 Doi: 10.53555/kuey.v30i6(S).5354

ARTICLEINO ABSTRACT

With the rapid progress in the field of wireless communication, the demand for antenna with miniature size and light weight becomes a necessary requirement in today's world. Most suitable antenna in this category is "Microstrip Patch Antenna (MPA)". In this paper parametric analysis of MPA design structure as per footprint equations, Substrate material, Feeding Techniques and Design parameters are analyzed keeping in view of various Vedic shapes. SSMPA has been recently developed by the researchers which has exhibited improved radiation properties with improved polarization. The design of the SSMPA has been taken from a holy sign in Hindu mythology and has exhibited enhancement in the bandwidth of an MPA. The slots of the SSMPA help in modifying the surface current distribution of the patch. The shape basically helps the charge particles in accelerating and decelerating, which improves the bandwidth and radiation characteristics. Antenna parameters like "Gain, S11 (Return Loss), Bandwidth, Directivity, VSWR" are to be compared for various designs respect to wireless applications. This paper looks at the Swastika and other Vedic shaped MPA and the various advantages of its usage for wireless applications.

Keywords—Microstrip patch antenna (MPA), Wideband antennas, Gain, Bandwidth, Directivity, S_{11} (Return Loss), "Swastika Shaped Microstrip Patch Antenna" (SSMPA), VSWR

I. INTRODUCTION

An antenna serves as a specialized transducer, converting radio frequency (RF) fields into alternating current (AC) or vice versa. As wireless communication technology advances, the imperative for lightweight and compact antennas has grown in today's world. Leading the way in this category is the Microstrip Patch Antenna (MPA), a popular choice known for its low profile and adaptability for mounting on flat surfaces. These antennas comprise a flat rectangular metal sheet or "patch" positioned over a larger metal sheet known as a ground plane. Typically housed within a protective plastic radome, this assembly safeguards the antenna structure from

potential harm. [5]

Figure 1: Few Vedic shaped MPA [2] [3] [4] [10]

Radiation in MPA predominantly emanates from the edges where the patch meets the ground plane due to the influence of fringe fields. This radiation intensifies with higher frequencies, elevated substrate thickness, lower permittivity

values, and is notably initiated at points of discontinuity. [41]

The design of a MPA necessitates consideration of the following prerequisites:

o Shape of patch o Substrate type o Substrate thickness o Patch Dimensions o Feeding technique o Resonant frequency

[6]	2019	10 GHz, 28 GHz, 2.5 GHz	Square MPA by varying the substrate height	RT Rogers duroid substra te is used CST softwar e is employ ed to conduc t simulat ions.	With increasing substrate thickness (h), the resonance frequency decreases but the bandwidth increases.
[7]	2017	746787 MHz, 18501990 MHz, 19202170 MHz, and 36003700 MHz	Rectangular MPA with DGS of Swastik Shape	HFSS softwar e is employ ed to conduc t simulat ions.	With this structure gain of the antenna is slightly improved. It is used in wireless multi band applications as this antenna obtained multiband.
[8]	2015	2.4 GHz	Analysis of MPA with Different Shapes of Patch	FR4 substra te is used CST softwar e is employ ed to conduc t simulat ions.	Rectangular patch shows better results than triangular and circular patch with FR-4 dielectric at 2.4 GHz frequency.
[9]	2014	4.1 to 14.6 GHz	Rectangular MPA (Swastik slot loaded) fed by a Microstrip line	FR4 substra te is used HFSS softwar e is employ ed to conduc t simulat ions.	This antenna design gives I.B. of 10.5 GHz operating over a range of frequencies 4.1 to 14.6 GHz with VSWR < 2 suitable for various UWB applications
[10]	2015	2.4 GHz	Swastika Shaped Microstrip Patch Antenna	CST softwar e is employ ed to conduc t simulat ions.	This design has efficient output parameters than conventional and regular slotted MPA resonates at 2.416 GHz, i.e. ISM band frequency

[11]	2013	2.5 GHz	A novel shape MPA	IE3D softwar e is employ ed to	The innovative geometry of the patch antenna shape yields a substantial
Paper	Year	Freque ncy	Antenna Proposed	Techn ology used	Advantages
[1]	2022	UWB (3.1 GHz - 14 GHz)	A Flower Shaped Miniaturize d 4 x4 MIMO Antenna	CST softwar e is employ ed to conduc t simulat ions.	Provides miniaturization and offers a good wide band. Inserting a Swastik-shaped stub on the ground gives Return losses.
[2]	2022	Penta band- 2.9/5.2/ 6.9/8.2 and 12.9G Hz), suitabl e for 5G sub- GHz applica tions	SWASTIK shaped slotted MSPA antenna	FR4 substra te !:(r = 4.4) is used HFSS softwar e is employ ed to conduc t simulat ions.	The current flow is altered by the Swastika shaped slot which resonates at the 5 bands. Power efficiency in SSMPA is better than rectangular.
[3]	2009	4-7 GHz	A novel ψshape Microstrip patch antenna	HFSS softwar e is employ ed to conduc t simulat ions.	The antenna exhibits an impedance bandwidth of 55%, maintaining acceptable radiation patterns across most frequencies, with the exception of 7 GHz, where higher cross- polarizations were observed.
[4]	2017	2.25 GHz	Novel MPA Array	HFSS softwar e is employ ed to conduc t simulat ions.	As the quantity of patch elements rises, so does the Gain and Directivity.
[5]	2018	2.4 GHz	Comparativ e Analysis of Microstrip Patch Antenna Performanc e: Swastika vs. Rectangular Shapes	HFSS softwar e is employ ed to conduc t simulat ions.	The rectangular MPA displays an omni-directional radiation pattern, while the SS MPA exhibits a directional radiation pattern.

II. CURRENT STATE OF WORK IN SSMPA AND VARIOUS VEDIC SHAPES

				conduct simulat ions.	bandwidth ensuring commendable performance in terms of VSWR.					ntary SplitRing Resonator	simulat ions.	with metamaterial works in X, Ku, and K bands.
[12]	2020	1500M Hz, 1076M Hz	Circularly Polarized Swastik Shape Microstrip Antenna	IE3D softwar e is employ ed to conduct simulat ions.	This antenna yields broadside gain of above 6 dBi over most of the impedanc bandwidth with peak gain close to 7 dBi which finds applications in mobile base station communication antennas as well as in personal communication systems.		[18]	2015	2.15G Hz and 3.98G Hz.	Swastik Slot MPA	IE3D softwar e is employ ed to conduct simulat ions.	By cutting the Swastik slot, bandwidth and gain are improved.
[13]	2016	2.63 GHz, 4.79 GHz	MPA for Space Application S	FR4 epoxy substra te of dielectr	The final variant has a maximum gain at 2.63 GHz with a bandwidth of 10 MHz to be used for fixed satellite, mobile except		[19]	2015	2.4GH z	Rectangular MPA with DGS	HFSS softwar e is employ ed to conduc t simulat ions	By introducing a defect in the ground plane and altering its shape, we observed corresponding variations in the characteristics, specifically in relation to the specified resonant frequency
				permitt ivity 4.4 and loss tangent 0.0002 is used	mobile and broadcast satellite applications.	and tellite ns.	[20]	2021	3-5 GHz	Patch Array Antenna for Health Care and Monitoring System	Not specifi ed Simula tion Softwa re.	The results show a considerable increase in the gain of the overall antenna

				HFSS softwar e is employ ed to conduct simulat ions.		[23]	2018	15 GHz	Perturbed Array of Circular Patch antenna	HFSS softwar e is employ ed to conduc t simulat ions.	The main purpose is to enhance the gain and directivity of antenna by implementing more number of patches.
[15]	2018	2.16 GHz to 4.24 GHz	Modified star MPA	HFSS softwar e is employ ed to conduct simulat ions.	This antenna has wideband characteristics from 2.16 GHz to 4.24 GHz with good impedance bandwidth.	[24]	2016	1.4 GHz	Triangle shape MSP Antenna for GPS Application S	IE3D softwar e is employ ed to conduc t simulat ions.	Triangle shape Microstrip patch is very useful for wideband application.
[16]	2016	0.6 GHz- 2 GHz	Slotted H- shape MPA	HFSS softwar e is employ ed to conduct simulat ions.	H-shape antenna has better performance in the specified frequency range	[28]	2018	5.4/5.8 GHz	Slot Circular MPA for WLAN and WiMAX Application S	softwar e is employ ed to conduc t simulat ions.	kaddation Pattern is better in this MPA.
[17]	2020	12GHz - 20GHz	Swastik Slotted Hexagonal MPA With Metamateri al-Based Compleme	HFSS softwar e is employ ed to conduct	The proposed Swastik slotted hexagonal patch antenna works in Ku and K bands whereas the same antenna integrated	[35]	2015	3.935 GHz to 4.955 GHz	Broadband MPA with diff. slots Loaded At the Centre and Fixed Double Cross Slot at the edges	IE3D software is employ ed to conduc t simulat ions.	Expanding the number of slots in the swastika configuration can enhance the broadband characteristics while maintaining the same dimensions.

III. CONCLUSION

The analysis demonstrates that the Swastika and other Vedic shaped Microstrip patch antenna have garnered significant research interest among researchers and the following are some observations from the various works: Varying the shape of the patch enhances bandwidth, The utilization of unequal arm lengths contributes to enhancing the antenna's performance, The current flow is altered by the Swastika shaped slot which resonates at the multiple bands, Truncated and DGS assist in radiation pattern.

Hence MPA with Different Shapes of Patch, various DGS shapes, sizes, locations, Feeding Methods and different substrate gives better enhancement in bandwidth, gain as well as reduction in return loss.

[36]	2023 2017	5.9 GHz and 27 GHz 3.38 GHz	Dual Band MPA with DGS Rectangular micro-strip patch	HFSS softwar e is employ ed to conduct simulat ions. HFSS softwar e is employ ed to conduct	MPA with various DGS shapes, sizes, locations, and different substrate gives better enhancement in bandwidth. This antenna operates in the 3.38 GHz frequency with good return loss, it is useful for the WiMax
			antenna employing Flipped Swastika design	simulat ions.	application.
[47]	2021	9 GHz	Metamateri al Loaded Microstrip Antenna for Defense Application S	HFSS softwar e is employ ed to conduct simulat ions.	The metamaterial unit cell is specifically crafted to achieve near-total absorption at precisely 9 GHz. This design holds relevance in stealth technology, particularly in defense applications such as military aircraft, space vehicles, missiles, ships, and other critical transportation means. Its utilization aids in minimizing radar cross-section (RCS) for effective longdistance wireless communication.
[49]	2018	0.99G Hz, 1.16G Hz, 1.54G Hz, 1.98G Hz	A Novel MPA for Navigation al Application	HFSS softwar e is employ ed to conduct simulat ions.	Proposed slot MPA has good amount of gain also having VSWR in good range.
[55]	2016	Blueto oth (2.42.48 GHz), Ultra Wide Band (UWB) (3.1- 0.6GH z), Xband (8-12 GHz) and	Multiband MPA for UWB, Bluetooth, X-band and Ku band Application s	CST software is employ ed to conduct simulat ions.	The suggested grounding scheme presents a highly effective method that significantly enhances the impedance bandwidth of the antenna, making it well-suited for ultra- wideband and various other applications.

1	1.	2.	3.	Ku	6.	7.	8.
				band			
			4.	(12-18			
			5.	GHz)			

REFERENCES

- 9. A. C. Suresh and T. S. Reddy, -A FLOWER SHAPED MINIATURIZED 4×4 MIMO ANTENNA FOR UWB
- 10. APPLICATIONS USING CHARACTERISTIC MODE ANALYSIS, Prog. Electromagn. Res. C, vol. 119, pp. 219–233, 2022, doi: 10.2528/PIERC22020202.
- 11. N. P, I. Khan, H. V. Kumaraswamy, S. D h, and K. R. Sudhindra,
- 12. –Analysis of SWASTIK-shaped slotted MSPA antenna for 5G sub band applications, *Glob. Transit. Proc.*, vol. 3, no. 1, pp. 80–85, Jun. 2022, doi: 10.1016/j.gltp.2022.04.018.
- 13. S. K. Sharma and L. Shafai, Performance of a Novel \$\Psi\$-Shape Microstrip Patch Antenna With Wide Bandwidth, *IEEE Antennas Wirel. Propag. Lett.*, vol. 8, pp. 468–471, 2009, doi: 10.1109/LAWP.2009.2020184.
- 14. B. S. Girish and G. Sadashivappa, –Design, analysis and comparison of the performance of 24 element swastik Novell shaped microstrip patch antenna array, in *2017 International Conference on Intelligent Computing and Control (I2C2)*, Jun. 2017, pp. 1–6. doi: 10.1109/I2C2.2017.8321917.
- 15. S. Burlakoti and P. Rai, Performance Comparison of Swastika and Rectangular Shaped Microstrip Patch Antenna, *Kathford J. Eng. Manag.*, vol. 1, pp. 11–14, Dec. 2018, doi: 10.3126/kjem.v1i1.22015.
- 16. Electronics and Communication Engineering, KhulnaUniversity, Khulna-9208, Bangladesh, R. Nishat Toma, I. Ahmmed Shohagh, and
- 17. M. Nazmul Hasan, –Analysis the effect of Changing Height of the Substrate of Square Shaped Microstrip Patch Antenna on the Performance for 5G Application, *Int. J. Wirel. Microw. Technol.*, volume 9, no. 3, pp. 33–45, May 2019, doi: 10.5815/ijwmt.2019.03.04.
- 18. M. L. Naidu, Compact Rectangular MPA with Defected Ground Structure (DGS) of Swastik Shape for LTE Applications, 1 vol. 12, no. 20, 2017.
- 19. R. Fotedar, P. Garia, R. Saini, A. Vidhyarthi, and R. Gowri, –Performance Analysis of MPA Using Different Shapes of Patch at 2.4 GHz, I in 2015 Second International Conference on Advances in Computing and Comm. Engineering, Dehradun, India: IEEE, May 2015, pp. 374–377. doi: 10.1109/ICACCE.2015.132.
- 20. A. Sharma and R. K. Vishwakarma, –Microstrip antenna with swastik slot for Ultra Wideband applications, I in *2014 IEEE Students' Conference on Electrical, Electronics and Computer Science*, Mar. 2014, pp. 1–5. doi: 10.1109/SCEECS.2014.6804525.
- 21. S. Kashyap, U. Raithatha, and D.Shivakrishna, –Swastika shaped MPA for ISM band Applications, *Int. Res. J. Eng. Technol.*, vol. 2, May 2015.
- 22. B. Beena, P. Kumar, A. K. Gupta, and R. K. Prasad, -Performance of a
- 23. SSMPA With Wide Bandwidth, | presented at the Conference on Advances in Comm. and Control Systems (CAC2S 2013), Atlantis Press, Apr. 2013, pp. 545–547. Accessed: May 16, 2023. [Online]. Available: https://www.atlantis-press.com/proceedings/cac2s-13/6374
- 24. A. A. Deshmukh, C. Kudoo, M. Shah, A. Doshi, and A. Mhatre, –Circularly Polarized Swastik Shape Microstrip Antenna, I in *Optical and Wireless Technologies*, V. Janyani, G. Singh, M. Tiwari, and T. Ismail, Eds., in Lecture Notes of Electrical Engg, vol. 648. Singapore: Springer Singapore, 2020, pp. 215–221. doi: 10.1007/978-981-15-29269_24.
- 25. D. Kaushal and T. Shanmuganatham, –Design and optimization of SSMPA for space applications, I in 2016 International Conference on Emerging Technological Trends (ICETT), Oct. 2016, pp. 1–7. doi: 10.1109/ICETT.2016.7873715.
- 26. V. S. Rathor and J. P. Saini, –A Design of Swastika Shaped Wideband MPA for GSM/WLAN Application, *J. Electromagn. Anal. Appl.*, vol. 6, no. 3, Art. no. 3, Feb. 2014, doi: 10.4236/jemaa.2014.63005.
- 27. S. P. Gangwar, K. Gangwar, and A. Kumar, –A compact modified star shape microstrip patch antenna for wideband application, I in *2018 3rd ICMAP*, Feb. 2018, pp. 1–2. doi: 10.1109/ICMAP.2018.8354509.
- 28. H. Srivastava and B. Maity, -A compact slotted H-shape MPA for wireless communication with microstrip antenna feed, | in 2016
- 29. *International Conference on Communication and Signal Processing (ICCSP)*, Melmaruvathur, Tamilnadu, India: IEEE, Apr. 2016, pp. 2241–2243. doi: 10.1109/ICCSP.2016.7754092.
- 30. K. L. Kishore, R. R. Reddy, and N. K. Darimireddy, -SWASTIK
- 31. SLOTTED HEXAGONAL PATCH ANTENNA WITH
- 32. METAMATERIAL- BASED COMPLEMENTARY SPLIT-RING
- 33. RESONATOR, ICTACT J. Microelectron., vol. 06, no. 03, 2020.
- 34. P. K. Mishra, V. Sachdeva, and D. Sharma, –A Swastik Slot Micro-strip
- 35. Antenna for 3G Mobile Application, I in 2015 Fifth International Conference on Communication Systems and Network Technologies,
- 36. Gwalior, India: IEEE, Apr. 2015, pp. 20-23. doi:
- 37. 10.1109/CSNT.2015.248.

- 38. Amar B. Kachare and Mahesh.S.Mathpati, –EFFECT OF DGS ON CHARACTERISTICS OF RECTANGULAR MICROSTRIP PATCH ANTENNA, *Int. J. Res. Eng. Technol.*, vol. 04, no. 17, pp. 74–78, May 2015, doi: 10.15623/ijret.2015.0417017.
- 39. A. K. Singh, P. K. Tiwari, V. Gupta, S. N. Sur, and J. S. Tamang, -Patch
- 40. Array Antenna for Health Care and Monitoring System, SSRN
- 41. Electron. J., 2021, doi: 10.2139/ssrn.3769822.
- 42. Aditya Kumar Maurya and Abhishek Singh, –DESIGN AND ANALYSIS OF SWASTIK SLOT LOADED MICROSTRIP ANTENNA AT FR4 LOSSY SUBSTRATE ON L-BAND, *Int. J. Eng.*
- 43. Sci. Res. Technol..
- 44. A. Ghosh and M. Gangopadhyay, -Bandwidth Optimization of Microstrip Patch Antenna- A Basic Overview, *Int. J. Recent Innov. Trends Comput. Commun.*, vol. 6, no. 2.
- 45. R. A. Panda, R. Sahana, E. P. Panda, and N. Patnaik, −Perturbed Array of Circular Patch antenna for 5G application, in 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore: IEEE, Mar. 2018, pp. 1093–1096. doi: 10.1109/ICECA.2018.8474559.
- 46. B. C. Pandey and D. K. Srivastava, Design and Bandwidth Enhancement of triangle shape MSP Antenna for Global Positioning System Applications, vol. 3, no. 1.
- 47. M. Gupta and V. Mathur, -SierpinskiArray with Swastik Electromagnetic Bandgap for Ku-Band Applications, *Indian J. Sci.*
- 48. Technol., vol. 9, no. 32, Aug. 2016, doi:
- 49. 10.17485/ijst/2016/v9i32/93833.
- 50. A. K. Singh, R. Bera, and B. Maji, −Microstrip Patch Antenna: A Review, I in Advances in Electronics, Communication and Computing,
- A. Kalam, S. Das, and K. Sharma, Eds., in Lecture Notes in Electrical Engineering. Singapore: Springer, 2018, pp. 317–324. doi: 10.1007/978981-10-4765-7_33.
- 51. Mandar P. Joshi, Vitthal J. Gond, and Jayant J. Chopade, –CPW Fed Dual Band Dual Sense Circularly Polarized Asymmetrical Y- Shaped
- 52. Microstrip Patch Antenna for Wireless Applications, *Int. J. Microw. Opt. Technol.*.
- 53. A. B. Sahoo, B. B. Mangaraj, K. Saurav, and L. S. Mohan Dev Sahoo,
- 54. Design and Analysis of Swastika-Slot Circular Patch Antenna for
- 55. WLAN and WiMAX Applications, I in 2018 2nd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), Kolkata: IEEE, May 2018, pp. 1−4. doi: 10.1109/IEMENTECH.2018.8465211.
- 56. N. Sharma, K. Vyas, and R. Shrivastav, –A Comparative Study of Two Different Type of Metamaterial Unit Cells for Miniaturization and
- 57. Multiband of Microstrip Patch Antenna at 2.4 GHz Frequency, *IOP Conf. Ser. Earth Environ. Sci.*, vol. 795, no. 1, p. 012020, Jun. 2021, doi: 10.1088/1755-1315/795/1/012020.
- 58. K. Garg and S. Kaur, A Compact Microstrip Fed T Shape Patch Antenna with Swastika Ground, *Int. J. Recent Innov. Trends Comput. Commun.*, vol. 3, no. 6.
- 59. K. A. Patial, S. Dogra, and A. Kapoor, An Insight on the Swastika Shaped Antenna Design. 2023.
- 60. K. Prasad and D. K. Srivastava, Design, Development and Analysis of Eight Shaped Coaxial Probe Fed Microstrip Patch Antenna for UltraWideband Applications, Vol. 3, no. 1.
- 61. S. Kashyap, V. Luki, and S. Khakariya, Design of Planar Microstrip Patch Antenna for GPS Applications, *CIIT Int. J. Wirel. Commun.*, vol. 7, Apr. 2015.
- 62. S. Kalundrekar and S. Agarwal, −A Survey paper on Rectangular Patch Antenna with Symmetric shape of wireless Application, vol. 5, no. 2347.
- 63. S. C. Puri, D. M. G. Tiary, and S. Chakraborty, −Design and Comparison of Broadband Micro Strip Patch Antenna with Different Slots Loaded At the Centre and Fixed Double Cross Slot at the Edges, *Int. J. Eng. Res.*, vol. 2, no. 2, 2015.
- 64. S. Dharmpatre, M. Sutaone, M. Jadhav, and P. Bansode, –Dual Band Microstrip Patch Antenna with Defected Ground Structure for WiMAX and 5G Applications, In Review, preprint, Jan. 2023. doi: 10.21203/rs.3.rs-1957052/v1.
- 65. S. Chakraborty and S. Chattopadhyay, –Substrate fields modulation with defected ground structure: A key to realize high gain, wideband microstrip antenna with improved polarization purity in principal and diagonal planes: Substrate Fields Modulation with DGS, *Int. J. RF Microw. Comput.-Aided Eng.*, vol. 26, no. 2, pp. 174–181, Feb. 2016, doi: 10.1002/mmce.20950.
- 66. A. K. Dwivedi, A. Sharma, and P. Ranjan, –Dual-band modified rectangular shaped dielectric resonator antenna with diversified polarization feature, *Int. J. Circuit Theory Appl.*, vol. 49, no. 10, pp. 3434–3442, Oct. 2021, doi: 10.1002/cta.3095.
- 67. A. Sharma, D. K. Tripathi, G. Das, and R. K. Gangwar, –Novel asymmetrical Swastik-shaped aperture coupled cylindrical dielectric resonator antenna with dual-band and dual-sense circular polarization characteristics, *Microw. Opt. Technol. Lett.*, vol. 61, no. 2, pp. 405–411, Feb. 2019, doi: 10.1002/mop.31554.

- 68. Deepanshu Kaushal and T. Shanmuganantham, –Comparison Of Cpw Fed Microstrip Patch Antennas With Varied Ground Structures For
- 69. Fixed Satellite Applications, Jan. 2018, doi:
- 70. 10.5281/ZENODO.1315937.
- 71. A. Adebayo, A. S. Oluwole, O. J. Femi-Jemilohun, O. Akinsanmi, and
- 72. O. Ikotun, Review of Rectangular Microstrip Patch Antenna, *J. Eng.*, 2022.
- 73. S. Kashyap, piyush paneliya, and sandip khakariya, Design of Slotted Microstrip Antenna for Wi-MAX Applications, *Int. J. Adv. Eng. Res. Dev.*, vol. 2, Apr. 2015.
- 74. V. Lingasamy, K. T. Selvan, and R. Jyoti, −Wideband, stub-loaded cross-dipole reflectarray elements for Ku band, I in *2017 Progress in Electromagnetics Research Symposium Fall (PIERS FALL)*, Singapore: IEEE, Nov. 2017, pp. 800–807. doi: 10.1109/PIERSFALL.2017.8293244.
- 75. V. R. Gudivada, Design of rectangular micro-strip patch antenna employing Flipped Swastika design for Wi-Max Application, *IOSE JECE*, vol. 12, pp. 09–12, Sep. 2017, doi: 10.9790/2834-1205010912.
- 76. S. Jam and H. Malekpoor, –Analysis on Wideband Patch Arrays Using Unequal Arms With Equivalent Circuit Model in X-Band, *IEEE Antennas Wirel. Propag. Lett.*, vol. 15, pp. 1861–1864, 2016, doi: 10.1109/LAWP.2016.2541179.
- 77. J. M. Rathod, -Comparative Study of Microstrip Patch Antenna for Wireless Communication Application, *Int. J. Innov.*, vol. 1, no. 2, 2010.
- 78. K. Modi, P. Kachhadiya, J. M. Rathod, P. H. Panchal, and K. Parikh, −Low-Cost Metamaterial Loaded Microstrip Antenna for Defense Applications, *Open J. Antennas Propag.*, vol. 09, no. 01, pp. 1–10, 2021, doi: 10.4236/ojapr.2021.91001.
- 79. J. Rathod, Y. Kosta, and V. Dabhi, DESIGN AND DEVELOPMENT OF MICROSTRIP PATCH ARRAY ANTENNA, Mar. 2007.
- 80. J. Rathod and S. Modasiya, –A Novel Multiband Microstrip Antenna for Navigational Application, | Dec. 2018.
- S. Chouhan, D. K. Panda, V. S. Kushwah, and S. Singhal, -Spidershaped fractal MIMO antenna for WLAN/WiMAX/Wi-Fi/Bluetooth/Cband applications, *AEU - Int. J. Electron. Commun.*, vol. 110, p. 152871, Oct. 2019, doi: 10.1016/j.aeue.2019.152871.
- 82. R. Simkhada, K. N. Poudyal, and S. Shrestha, Performance Analysis of Microstrip Antennas for different materials.
- 83. B. Deepa, B. Roopa, and A. K. Patnaik, –Multiband Characteristics of the Slot-Loaded Aperture Fed Antenna, I in *Proceedings of 2nd International Conference on Micro-Electronics, Electromagnetics and Telecommunications*, S. C. Satapathy, V. Bhateja, P. S. R. Chowdary, V. V. S. S. S. Chakravarthy, and J. Anguera, Eds., in Lecture Notes in Electrical Engineering. Singapore: Springer, 2018, pp. 401–407. doi: 10.1007/978-981-10-4280-5_42.
- 84. S. Kashyap and parthrajsinhjhala, –Design and optimization of planar antennas with horizontal slit for ISM Band 2.4 GHz applications, *Int. J. Eng. Comput. Sci.*, vol. 4, May 2015.
- 85. J. Yang, H. Wang, Z. Lv, and H. Wang, –Design of Miniaturized DualBand Microstrip Antenna for WLAN Application, *Sensors*, vol. 16, no. 7, Art. no. 7, Jul. 2016, doi: 10.3390/s16070983.
- 86. J. Kapil and E. Ruchi, -Multiband Microstrip Antenna for Bluetooth, UWB, X-band and Ku band Applications, 1 vol. 03, no. 04.
- 87. S. Faleh and J. B. Tahar, –Optimization of a new structure patch antenna for MIMO and 5G applications, in 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM),
- 88. Split: IEEE, Sep. 2017, pp. 1–5. doi:
- 89. 10.23919/SOFTCOM.2017.8115571.
- 90. K. Jain and K. Gupta, –Different Substrates Use in Microstrip Patch Antenna-A Survey, Vol. 3, no. 5, 2012.
- 91. Balanis C.A. Antenna Theory Analysis and Design. John Wiley & Sons, Inc, 2016.