Open Packing Number Of Some Cycle Related Graphs

P. D. Ajani ${ }^{1^{*}}$
1*Atmiya University, Rajkot-360005, Gujarat, India paragajani@gmail.com

Citation: P. D. Ajani, (2024) Open Packing Number Of Some Cycle Related Graphs Educational Administration: Theory and Practice, 30(6)(s) 247-249
Doi: 10.53555/kuey.v3oi6(S). 5366

ARTICLEINO	ABSTRACT
	A subset S of vertex set of graph G is called a 2-packing if for each pair of closed neighbourhoods of the vertices of S are pairwise disjoint. A 2-packing is called an
	open packing if open neighbourhoods of the vertices of S are pairwise disjoint. The open packing number, denoted by $\rho^{\circ}(G)$, is the maximum cardinality among all open packing sets of $S . H e r e ~ w e ~ i n v e s t i g a t e ~ o p e n ~ p a c k i n g ~ n u m b e r ~ o f ~ s o m e ~ c y c l e ~ r e l a t e d ~$
graphs.	

Definition 1 A subset S of $V(G)$ is an open packing of G if the open neighborhoods of the vertices of S are pairwise disjoint in G. The maximum cardinality of an open packing set is called the open packing number and is denoted by ρ^{o}.
Preposition 1 [3] The inequality $\rho(G) \leqslant \rho^{o}(G) \leqslant 2 \rho(G)$ hold for any graph G.
Definition 2 The switching of a vertex v of G means removing all the edges incident to v and adding edges joining v to every vertex which is not adjacent to v in G. We denote the resultant graph by

G_{e}.	if $n={ }^{\circ} \widetilde{C}$
2	

Theorem 1ρ

4,5
(n)
3 ;otherwise
Proof: Let C_{n} be a cycle with n-vertices and $C_{\mathrm{f} n}$ be a switching of arbitrary vertex v of C_{n} with vertex set, $V\left(C_{\mathrm{f} n}\right)$
$=\left\{v_{1}, v_{2}, v_{3} \ldots, v_{n}\right\} ; n \geqslant 4$.
Case-1: for $n=4$
Let $V\left(C_{\mathrm{f} 4}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$
Without loss of generality we switch the vertex v_{1} then,

$$
\begin{array}{lll}
d\left(v_{1}\right)=1 & \text { and } & N\left(v_{1}\right)=\left\{v_{3}\right\} \\
d\left(v_{2}\right)=1 & \text { and } & N\left(v_{2}\right)=\left\{v_{3}\right\} \\
d\left(v_{3}\right)=1 & \text { and } & N\left(v_{3}\right)=\left\{v_{1}, v_{2}, v_{4}\right\} \\
d\left(v_{4}\right)=1 & \text { and } & N\left(v_{4}\right)=\left\{v_{3}\right\}
\end{array}
$$

We claim that, $\rho^{o}\left(C_{\mathrm{f} 4}\right)>1$ as $C_{\mathrm{f} 4}$ is not same as K_{1} and C_{3}. Therefore if $S \subseteq V\left(C_{\mathrm{f}_{4}}\right)$ is an open packing set then $|S| \geqslant 2$.

$$
\text { Also } N\left(v_{1}\right) \cap N\left(v_{2}\right) \cap N\left(v_{4}\right)=\left\{v_{3}\right\}=1 \quad \phi
$$

Hence atmost one vertex out of these three vertices can belong to S. Thus, $S=\left\{v_{3}\right.$, a pendent vertex $\}$ is an open packing set with maximum cardinality.
Consequently, $\rho^{o}\left(C_{f} 4\right)=2$.
Case-2: for $n=5$

$$
\text { Let } V\left(\widetilde{C_{5}}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Without loss of generality we switch the vertex v_{1} then,

$$
\begin{array}{lll}
d\left(v_{1}\right)=2 & \text { and } & N\left(v_{1}\right)=\left\{v_{3}, v_{4}\right\} \\
d\left(v_{2}\right)=1 & \text { and } & N\left(v_{2}\right)=\left\{v_{3}\right\} \\
d\left(v_{3}\right)=3 & \text { and } & N\left(v_{3}\right)=\left\{v_{1}, v_{2}, v_{4}\right\} \\
d\left(v_{4}\right)=3 & \text { and } & N\left(v_{4}\right)=\left\{v_{1}, v_{3}, v_{5}\right\} \\
d\left(v_{5}\right)=1 & \text { and } & N\left(v_{5}\right)=\left\{v_{4}\right\}
\end{array}
$$

We claim that $\rho^{\circ}\left(\widetilde{C}_{5}\right)>_{1}, ~$ As \widetilde{C}_{5} is not same as K_{1} and C_{3}. Therefore if
$S \subseteq V\left(C_{3}\right)$ is an open packing set then $|S| \geqslant 2$.
Also $N\left(v_{3}\right) \cap N\left(v_{4}\right)=\left\{v_{1}\right\} \Rightarrow \quad \phi$

So these two vertices simultaneously can not be in S.
If $v_{2} \in S$, then $N\left(v_{2}\right) \cap N\left(v_{3}\right)=\phi$, so $v_{3} \in S$
Moreover, $N\left(v_{2}\right) \cap N\left(v_{4}\right)=\left\{v_{3}\right\}=/ \quad \phi$, so $v_{4} \in / S N\left(v_{2}\right) \cap N\left(v_{1}\right)=\left\{v_{3}\right\}=/ \quad \phi$, so $v_{1} \in / S$ and $N\left(v_{2}\right) \cap$
$N\left(v_{5}\right)=\phi$, so $v_{5} \in S$
But $N\left(v_{3}\right) \cap N\left(v_{5}\right)=\left\{v_{4}\right\}=/ \phi$, in this case either v_{3} or v_{5} is in S.
So either $\left\{v_{2}, v_{3}\right\}$ or $\left\{v_{2}, v_{5}\right\}$ is an open packing set S.
By similar course of arguement, if $v_{5} \in S$, then either $\left\{v_{2}, v_{5}\right\}$ or $\left\{v_{4}, v_{5}\right\}$ is an open packing set S.
Thus in either situation $|S|=2$ and it is maximum.
Hence $\rho^{o}\left(C_{5}\right)-2$.
Case-3: for $n \geqslant 6$
Let $V\left(\widetilde{C_{n}}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$
Without loss of generality we switch the vertex v_{1} then,

$$
\begin{array}{lll}
d\left(v_{1}\right)=n-3 & \text { and } & N\left(v_{1}\right)=\left\{v_{2}, v_{3}, v_{4}, \ldots, v_{n-2}, v_{n-1}\right\} \\
d\left(v_{2}\right)=1 & \text { and } & N\left(v_{2}\right)=\left\{v_{3}\right\} \\
d\left(v_{3}\right)=3 & \text { and } & N\left(v_{3}\right)=\left\{v_{1}, v_{2}, v_{4}\right\} \\
d\left(v_{4}\right)=3 & \text { and } & N\left(v_{4}\right)=\left\{v_{1}, v_{3}, v_{5}\right\} \\
d\left(v_{5}\right)=3 & \text { and } & N\left(v_{5}\right)=\left\{v_{1}, v_{4}, v_{6}\right\} \\
\ldots & & \ldots \\
d\left(v_{n-1}\right)=3 & \text { and } & N(v n-1)=\{v 1, v n-2, v n\} \\
d\left(v_{n}\right)=1 & \text { and } & N\left(v_{n}\right)=\left\{v_{n-1}\right\}
\end{array}
$$

We claim that $\rho^{o}\left(C_{\mathrm{f}} n\right)>2$, As $C_{\mathrm{f}} n$ is not same as K_{1} and C_{3} for $n \geqslant 6$.
Therefore if $S \subseteq V\left(C_{\mathrm{f} n}\right)$ is an open packing set then $|S| \geqslant 3$.
Since v_{2} and v_{n} are pendent vertices, moreover $N\left(v_{2}\right) \cap N\left(v_{n}\right)=\phi$
Also $\bigcap_{i=3}^{n-1} N\left(v_{i}\right)=\left\{v_{1}\right\}$
Therefore v_{i}, (for $i=3,4,5, \ldots, n-1$) simultaneously cannot be in S. Thus atmost one vertex from v_{i}, (for $i=$ $3,4,5, \ldots, n-1$) can belong to set S containing two pendent vertices v_{2} and v_{n}.
If $v_{3} \in S$, then $N\left(v_{2}\right) \cap N\left(v_{3}\right) \cap N\left(v_{n}\right)=\phi$, for $n \geqslant 6$. So $\left\{v_{2}, v_{3}, v_{n}\right\}$ is an open packing set.
By similar course of arguement,
If $v_{n-1} \in S$, then then $N\left(v_{2}\right) \cap N\left(v_{n-1}\right) \cap N\left(v_{n}\right)=\phi$, for $n \geqslant 6 . \quad$ So $\left\{v_{2}, v_{n-1}, v_{n}\right\}$ is an open packing set.(2) From (1) and (2) $|S|=3$, which is maximum for $C_{\text {fn }}$, for $n \geqslant 6$.
Hence $\rho^{o}\left(C_{\text {fn }}\right)=3$, for $n \geqslant 6$.
Definition 3 The square of a graph G denoted by G^{2} has the same vertex set as of G and two vertices are adjacent in G^{2} if they are at distance of 1 or 2 apart in G.
$\begin{aligned} & \text { Theorem } 2 \\ & ; n>9 \\ & \text { Proof: For }\end{aligned} \rho^{o}\left(C_{n}^{2}\right)=\left\{\begin{array}{c}1 \quad \text {; if } 3 \leqslant n \leqslant 9 \\ \left\lfloor\frac{n}{5}\right\rfloor C_{n}^{2}, \text { let } V\left(C_{n}\right)=V\left(C_{n}^{2}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\} ; n \geqslant 3\end{array}\right.$
To prove our result we consider following cases. Case-1:
Subcase-1: For $n=3,4,5$
In this case C_{3}^{2}, C_{4}^{2} and C_{5}^{2} are complete graphs K_{3}, K_{4} and K_{5} respectively and as proved by Slater[1], $\rho^{o}\left(K_{n}\right)=$ 1.

Hence $\quad \rho^{o}\left(C_{n}^{2}\right)=1$, for $n=3,4,5$.
Subcase-2: For $n=6,7,8,9$
In this case C_{m}^{2} is a 4-regular graph and $d\left(v_{i}, v_{j}\right)<3$, for all $i, j=$
$1,2,3, \ldots, 9$ and $i=j$.
Hence $N\left(v_{i}\right) \cap N\left(v_{j}\right) /=\phi$
Therefore $\rho^{o}\left(C_{n}{ }^{2}\right)=1$, for $n=6,7,8,9$.
Case-2: For $n>9$
As, $V\left(C_{n}^{2}\right)$ (for $\left.n>_{9}\right)$ is a 4-regular graph, all the vertices belong to an open packing set for which, $d\left(v_{i}, v_{j}\right)=$ 3 , for all $i, j=1,2,3, \ldots, n$ and $i=j$.
If $S \subseteq V\left(C_{\mathrm{r})}^{2}\right)$ and S is an open packing set.Let $v_{i}, v_{j} \in S$ then $N\left(v_{i}\right) \cap N\left(v_{j}\right)=\phi$ happens only if $d\left(v_{i}, v_{j}\right)=3$ with $|j-i|=5$, for all $i, j=$ $1,2,3, \ldots, n$ and $i=j$.
In other words $v_{i} \in V\left(C_{\mathrm{r}}^{2}\right)$ is any arbitrary vertex in set S then every fifth vertex of $V\left(C_{n}^{2}\right)$ is in S, in order to satiesfy the conditions,
$N\left(v_{i}\right) \cap N\left(v_{j}\right)=\phi$, for all $i, j=1,2,3, \ldots, n$ and $i=j$, therefore $|S| \leqslant \frac{n}{5}$.
Hence ${ }^{\rho^{o}\left(C_{n}^{2}\right)}=\left\lfloor\frac{n}{5}\right\rfloor$, for $n>9$.

Concluding Remarks

The open packing number of cycle is known, while we investigate the same for the graphs obtained from cycle by means of some graph operations like switching of a vertex, square of a cycle, splitting graph of cycle and shadow graph of cycle.

References

[1] M. A. Henning, P. J. Slater, Open Packing in Graphs, JCMCC, 29(1999), 3-16.
[2]I. Sahul Hamid, S. Saravanakumar, Packing Parameters in Graphs, Discussiones Mathematics Graph Theory, 35(2015), 5-16.
[3]T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, 1998.

