Educational Administration: Theory and Practice

2024, 30(6)(s), 247-249 ISSN: 2148-2403

https://kuey.net/

Research Article

Open Packing Number Of Some Cycle Related Graphs

P. D. Ajani1*

Citation: P. D. Ajani, (2024) Open Packing Number Of Some Cycle Related Graphs Educational Administration: Theory and Practice, 30(6)(s) 247-249

Doi: 10.53555/kuey.v30i6(S).5366

ARTICLEINO ABSTRACT A subset S of vertex s

A subset S of vertex set of graph G is called a 2-packing if for each pair of closed neighbourhoods of the vertices of S are pairwise disjoint. A 2-packing is called an open packing if open neighbourhoods of the vertices of S are pairwise disjoint. The open packing number, denoted by $\rho^{o}(G)$, is the maximum cardinality among all open packing sets of S. Here we investigate open packing number of some cycle related graphs.

Definition 1 A subset S of V (G) is an open packing of G if the open neighborhoods of the vertices of S are pairwise disjoint in G. The maximum cardinality of an open packing set is called the open packing number and is denoted by ρ° .

Preposition 1 [3] The inequality $\rho(G) \leq \rho^{o}(G) \leq 2\rho(G)$ hold for any graph G.

Definition 2 The switching of a vertex v of G means removing all the edges incident to v and adding edges joining v to every vertex which is not adjacent to v in G. We denote the resultant graph by

Ge. 2 ;if
$$n = {\stackrel{\circ}{C}}$$
 $\left\{ \begin{array}{l} 4.5 \\ (n) = {\stackrel{\circ}{C}} \end{array} \right.$

3 ;otherwise

Proof: Let C_n be a cycle with n-vertices and C_{fn} be a switching of arbitrary vertex v of C_n with vertex set, $V(C_{fn}) = \{v_1, v_2, v_3, ..., v_n\}; n \ge 4$.

Case-1: for n = 4

Let $V(C_{\rm f}4) = \{v_1, v_2, v_3, v_4\}$

Without loss of generality we switch the vertex v_1 then,

$$d(v_1) = 1$$
 and $N(v_1) = \{v_3\}$
 $d(v_2) = 1$ and $N(v_2) = \{v_3\}$
 $d(v_3) = 1$ and $N(v_3) = \{v_1, v_2, v_4\}$
 $d(v_4) = 1$ and $N(v_4) = \{v_3\}$

We claim that, $\rho^o(C_{f4}) > 1$ as C_{f4} is not same as K_1 and K_2 . Therefore if $S \subseteq V(C_{f4})$ is an open packing set then $|S| \ge 2$.

Also
$$N(v_1) \cap N(v_2) \cap N(v_4) = \{v_3\} \neq \emptyset$$

Hence atmost one vertex out of these three vertices can belong to S. Thus, $S = \{v_3, a \text{ pendent vertex}\}$ is an open packing set with maximum cardinality.

Consequently, $\rho^o(C_{\rm f4}) = 2$.

Case-2: for n = 5

Let
$$V(\widetilde{C_5}) = \{v_1, v_2, v_3, v_4, v_5\}$$

Without loss of generality we switch the vertex v_1 then,

$$d(v_1) = 2$$
 and $N(v_1) = \{v_3, v_4\}$
 $d(v_2) = 1$ and $N(v_2) = \{v_3\}$
 $d(v_3) = 3$ and $N(v_3) = \{v_1, v_2, v_4\}$
 $d(v_4) = 3$ and $N(v_4) = \{v_1, v_3, v_5\}$
 $d(v_5) = 1$ and $N(v_5) = \{v_4\}$

We claim that $\rho^{\sigma}(\widetilde{C_5}) \ge_1$, As $\widetilde{C_5}$ is not same as K_1 and C_3 . Therefore if

 $S \subseteq V(C_5)$ is an open packing set then $|S| \geqslant 2$.

Also
$$N(v_3) \cap N(v_4) = \{v_1\} \neq 0$$

^{1*}Atmiya University, Rajkot-360005, Gujarat, India paragajani@gmail.com

So these two vertices simultaneously can not be in *S*.

If $v_2 \in S$, then $N(v_2) \cap N(v_3) = \phi$, so $v_3 \in S$

Moreover, $N(v_2) \cap N(v_4) = \{v_3\} \neq$ ϕ , so $v_4 \in /SN(v_2) \cap N(v_1) = \{v_3\} \neq$ ϕ , so $v_1 \in /S$ and $N(v_2) \cap$ $N(v_5) = \phi$, so $v_5 \in S$

But $N(v_3) \cap N(v_5) = \{v_4\} \neq \phi$, in this case either v_3 or v_5 is in S.

So either $\{v_2,v_3\}$ or $\{v_2,v_5\}$ is an open packing set S.

By similar course of arguement, if $v_5 \in S$, then either $\{v_2, v_5\}$ or $\{v_4, v_5\}$ is an open packing set S.

Thus in either situation |S| = 2 and it is maximum.

Hence $\rho^o(\overline{C_5}) = 2$.

Case-3: for $n \ge 6$

Let
$$V(C_n) = \{v_1, v_2, v_3, ..., v_n\}$$

Without loss of generality we switch the vertex v_1 then,

$$d(v_1) = n - 3 \qquad \text{and} \qquad N(v_1) = \{v_2, v_3, v_4, ..., v_{n-2}, v_{n-1}\}$$

$$d(v_2) = 1 \qquad \text{and} \qquad N(v_2) = \{v_3\}$$

$$d(v_3) = 3 \qquad \text{and} \qquad N(v_3) = \{v_1, v_2, v_4\}$$

$$d(v_4) = 3 \qquad \text{and} \qquad N(v_4) = \{v_1, v_3, v_5\}$$

$$d(v_5) = 3 \qquad \text{and} \qquad N(v_5) = \{v_1, v_4, v_6\}$$

$$\dots \qquad \dots$$

$$d(v_{n-1}) = 3 \qquad \text{and} \qquad N(v_{n-1}) = \{v_1, v_{n-2}, v_n\}$$

$$d(v_n) = 1 \qquad \text{and} \qquad N(v_n) = \{v_{n-1}\}$$

We claim that $\rho^o(C_f n) > 2$, As $C_f n$ is not same as K_1 and C_3 for $n \ge 6$.

Therefore if $S \subseteq V(C_{\text{fn}})$ is an open packing set then $|S| \ge 3$.

Since v_2 and v_n are pendent vertices, moreover $N(v_2) \cap N(v_n) = \phi$

$$\bigcap_{s_0}^{n-1} N(v_i) = \{v_1\}$$

Therefore v_i , (for i = 3,4,5,...,n - 1) simultaneously cannot be in S. Thus at most one vertex from v_i , (for i = 3,4,5,...,n - 1) 3,4,5,...,n-1) can belong to set S containing two pendent vertices v_2 and v_n .

If $v_3 \in S$, then $N(v_2) \cap N(v_3) \cap N(v_n) = \phi$, for $n \ge 6$. So $\{v_2, v_3, v_n\}$ is an open packing set. By similar course of arguement,

If $v_{n-1} \in S$, then then $N(v_2) \cap N(v_{n-1}) \cap N(v_n) = \phi$, for $n \ge 6$. So $\{v_2, v_{n-1}, v_n\}$ is an open packing set.(2) From (1) and (2) |S| = 3, which is maximum for C_{fn} , for $n \ge 6$.

Hence $\rho^o(C_{fn}) = 3$, for $n \ge 6$. **Definition 3** The square of a graph G denoted by G^2 has the same vertex set as of G and two vertices are G^2 if they are at distance of 1 or 2 apart in G. adjacent in

Theorem 2
$$\rho^{o}(C_{n}^{2}) = \begin{cases} 1 & \text{; if } 3 \leqslant n \leqslant 9 \\ [3pt] r & \text{; } n > 9 \end{cases}$$
Proof: For
$$\left[\frac{n}{5} \right] C_{n, \text{ let }}^{2} V(C_{n}) = V(C_{n}^{2}) = \{v_{1}, v_{2}, v_{3}, ..., v_{n}\}; n \geqslant 3 \end{cases}$$

To prove our result we consider following cases. Case-1:

Subcase-1: For n = 3,4,5

In this case C_3^2 , C_4^2 and C_5^2 are complete graphs K_3 , K_4 and K_5 respectively and as proved by Slater[1], $\rho^o(K_n) =$

Hence $\rho^{o}(C_n^2) = 1$, for n = 3,4,5. **Subcase-2:** For n = 6,7,8,9

In this case C_n^2 is a 4-regular graph and $d(v_i, v_i) < 3$, for all i, j = 1

1,2,3,...,9 and $i \neq j$.

Hence $N(v_i) \cap N(v_i) \neq \phi$

Therefore $\rho^{o}(C_{n^2}) = 1$, for n = 6.7.8.9.

Case-2: For n > 9

As, $V(C_n^2)$ (for $n \ge 9$) is a 4-regular graph, all the vertices belong to an open packing set for which, $d(v_i, v_j) =$ 3, for all i,j = 1,2,3,...,n and $i \neq j$.

If $S \subseteq V(C_n^2)$ and S is an open packing set. Let $v_i, v_j \in S$ then $N(v_i) \cap N(v_j) = \phi$ happens only if $d(v_i, v_j) = 3$ with |j - i| = 5, for all i,j =

1,2,3,...,n and $i \neq j$.

In other words $v_i \in V(C_n^2)$ is any arbitrary vertex in set S then every fifth vertex of $V(C_n^2)$ is in S, in order to satisfy the conditions,

$$N(v_i) \cap N(v_j) = \phi$$
, for all $i,j = 1,2,3,...,n$ and $i \neq j$, therefore $|S| \leqslant \frac{n}{5}$. Hence $\rho^o(C_n^2) = \left\lfloor \frac{n}{5} \right\rfloor$, for $n > 9$.

Concluding Remarks

The open packing number of cycle is known, while we investigate the same for the graphs obtained from cycle by means of some graph operations like switching of a vertex, square of a cycle, splitting graph of cycle and shadow graph of cycle.

References

- [1] M. A. Henning, P. J. Slater, Open Packing in Graphs, JCMCC, 29(1999), 3-16.
- [2] I. Sahul Hamid, S. Saravanakumar, Packing Parameters in Graphs, Discussiones Mathematics Graph
- Theory, 35(2015), 5-16.
 [3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, 1998.