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1. Introduction 

 
Software defect prediction aids software developers in early identification of faulty components, like modules 
or classes, during the software development process. There are data mining, machine learning, and deep 
learning techniques used for software fault prediction. A fault in a software system is described as a structural 
flaw that could cause the system to fail in the future. Software fault prediction is an important and necessary 
activity to increase software quality and minimize maintenance effort during the initial phases of software 
development. Software fault/defect prediction helps improve resulting software quality, where faults are 
predicted based on previous knowledge in the form of datasets. There are Data Mining (DM), Machine 
Learning (ML), and Deep Learning (DL) techniques that we use for fault prediction. These methodologies are 
employed to construct predictive models capable of distinguishing between faulty and non-faulty classes. 
Software defect prediction is a critical area of research and practice in software engineering aimed at 
identifying and mitigating potential defects in software systems before they manifest into costly errors or 
failures. By leveraging historical data and machine learning techniques, software defect prediction models 
can effectively analyze various software attributes and patterns to anticipate and prioritize areas of the 
codebase that are more prone to defects. The primary goal of software defect prediction is to assist software 
development teams in allocating limited resources, such as time and effort, more effectively by focusing on 
high-risk areas for defect detection and prevention. By identifying these areas early in the development 
process, teams can proactively implement targeted quality assurance and testing strategies to minimize the 
likelihood of defects slipping into production. 
The quality of the software defect dataset is one of the most important factors that affect the performance of 
SDP. Defects typically concentrate in a minority of modules within real-world software projects, leading to a 
significant class imbalance issue in software defect datasets. The imbalance between defective and non-
defective samples undermines the effectiveness of defect prediction models. While various techniques have 
been proposed to address this challenge, current methods focusing on dataset rebalancing, particularly 
undersampling and oversampling, still encounter limitations in their applicability and efficacy. Despite 
efforts to mitigate class imbalances, the quest for more robust and versatile solutions persists within the 
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software engineering community. Undersampling can effectively solve the class imbalance problem, but the 
instances discarded during undersampling may contain information useful or important for predicting 
defects. In Semi-Definite Programming (SDP), oversampling tends to be more beneficial than 
undersampling. Methods like SMOTE and MAHAKIL effectively address class imbalance by generating 
minority class samples. However, these oversampling techniques can introduce overfitting noise, potentially 
compromising the model's predictive accuracy. 
Mislabeling of samples in software defect datasets can occur due to various factors such as limited knowledge 
of defects, time gaps between defect introduction and discovery, or new defects arising from defect 
corrections. This mislabeling adds noise to the dataset, compromising its quality and impacting defect 
prediction accuracy. Currently, research on noise in software defect datasets is scarce within the SDP domain. 
To mitigate dataset noise, employing propensity score matching (PSM) presents a promising solution. PSM, a 
statistical method commonly used in machine learning, reduces noise by addressing discrepancies between 
observed data distribution and the overall dataset distribution. 
Software testing using machine learning, preprocessing plays a crucial role in ensuring the quality and 
reliability of the input data for subsequent modeling and analysis. The preprocessing steps typically involve 
data cleaning, feature engineering, and normalization to optimize the data for machine learning algorithms. 
These steps aim to address challenges such as missing values, outliers, and noisy data, ultimately enhancing 
the effectiveness of machine learning models in software testing tasks. 
 

2. Literature Survey’ 
 

2.1 US-PONR (Undersampling, Oversampling, and Noise Reduction) 
Haoxiang Shi (2023) et.al proposed US-PONR, The proposed method, Undersampling and Oversampling 
with Propensity Score Matching for Noise Reduction (US-PONR), addresses class imbalance and noise 
samples in datasets. It first removes duplicate samples through undersampling across version iterations and 
then utilizes oversampling via propensity score matching to reduce class imbalance and noise. Experimental 
results demonstrate US-PONR's superiority over benchmark and state-of-the-art methods in defect 
prediction under varying noise environments. US-PONR effectively identifies and removes label noise 
samples, offering a novel approach to data oversampling and noise reduction. While US-PONR enhances 
software defect prediction, its combination of undersampling, oversampling, and noise reduction may 
heighten the complexity of the preprocessing process, potentially posing implementation and comprehension 
challenges. 
 
2.2 KMFOS  
Lina Gong (2013) et.al propose a cluster-based over-sampling with filtering approach (KMFOS) Our 
proposed method, KMFOS, enhances both the recognition rate of defective instances and the accuracy of 
non-defective instance classification concurrently. Through extensive experimentation, we compared KMFOS 
against various existing techniques, including five oversampling methods (SMOTE, ADASYN, Borderline-
SMOTE, ROS, and K-means SMOTE) across five classifiers (RF, SVM, NB, LR, and DT), three oversampling 
with filtering methods (SMOTE + IPF, SMOTE + ENN, and SMOTE + TL), and four other class imbalanced 
methods. The experiments, conducted on 24 software projects, unequivocally demonstrate the superiority of 
KMFOS over the compared methods in terms of classification performance and effectiveness in handling 
imbalanced datasets. 
 
2.3 ChisquaredEval and the Ranker search 
G. K. Armah et.al proposed multi-level data pre-processing for software defect prediction. Defect prediction 
in software engineering plays a crucial role in identifying faulty components early, thereby optimizing 
resource allocation and testing efforts. This study investigates the influence of data preprocessing techniques, 
such as attribute selection and instance filtering, on defect prediction performance. The multi-level 
preprocessing significantly improves prediction accuracy. Removing irrelevant attributes and addressing 
class imbalance through preprocessing significantly improves defect prediction models and software quality 
assurance practices. This underscores the critical role of preprocessing in ensuring the effectiveness of defect 
prediction and overall software development efficiency. 
 
2.4 Natural Language Processing 
A. Kicsi (2021) et.al proposed Large Scale Evaluation of Natural Language Processing Based Test-to-Code 
Traceability Approaches. While traditional approaches rely on naming conventions, recent research delves 
into text-based methods, including machine learning, offering enhanced flexibility and the ability to rank 
candidates by similarity, thus broadening potential connections. However, these methods may lack structural 
information. This paper investigates three text-based techniques, both individually and in conjunction with 
naming conventions, for traceability link recovery. Evaluation across eight software systems demonstrates 
that, with appropriate configurations, text-based methods can effectively fulfill traceability objectives, even in 
scenarios where naming conventions are not strictly adhered to, underscoring their significance in 
contemporary software engineering practices. 

https://ieeexplore.ieee.org/author/37087039610
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2.5 Decision tree 
C. Pak et.al proposed Notice of Removal: Software Defect Prediction Using Propositionalization Based Data 
Preprocessing: An Empirical Study. This study explores the effectiveness of propositionalization-based data 
preprocessing in enhancing software defect prediction. We propose utilizing decision trees for 
propositionalization and conduct experiments across 17 datasets from the PROMISE repository. Common 
classifiers are applied, and the results are compared using paired t-tests against attribute subset selection and 
principal component analysis. Our findings indicate that propositionalization with decision trees significantly 
enhances software defect prediction performance, surpassing the efficacy of attribute subset selection and 
principal component analysis. Moreover, no statistically significant differences are observed among the top 5 
classifiers utilized in this study. Overall, our results underscore the importance of data preprocessing 
techniques in optimizing classifier performance for software defect prediction tasks. 
 

3. Proposed Methodology 
 

3.1 Data Collection  
The PSED (Promise Software Engineering Repository Dataset) is a comprehensive compilation of software 
engineering data obtained from diverse software development projects. It encompasses metrics pertaining to 
software development processes, code quality, and project outcomes. 
Three datasets (JM1, CM1, and PC1) were sourced from the PSED (Promise Software Engineering Repository 
Dataset), comprising 22 attributes including McCabe, Halstead, and various metrics alongside defect 
information. Data preprocessing involved identifying correlated columns and addressing data imbalance 
issues. 
This research utilized three openly accessible datasets sourced from the PROMISE Software Engineering 
Database. This foundation by incorporating 22 attributes for the development of our automated fault 
prediction model. These attributes are outlined in Table 1, encompassing various metrics including 4 McCabe 
metrics, 9 base Halstead measures, and 8 derived Halstead measures. Additionally, the final attribute, 
'defect', comprises two classes denoting whether a software module is faulty or not. Table 1 provides a 
detailed breakdown of these 22 attributes, including their definitions and descriptions. 
 

No Metrics Name Software Metrics Type Description 

1 Line of code LOC McCabe Line count of code 

2 Cyclomatic 
complexity 

v(g) McCabe Measure of the complexity of a 
program 

3 Essential complexity ev(g) McCabe Measure of the complexity of the 
essential control flow in a program 

4 Design complexity iv(g) McCabe Measure of the complexity of the 
design of a program 

5 Halstead operators 
and operands 

N Halstead Total number of operators and 
operands in a program 

6 Halstead volume V Halstead Measure of the size of a program 

7 Halstead program 
length 

L Halstead Measure of the length of a program 

8 Halstead difficulty D Halstead Measure of the difficulty of writing a 
program 

9 Halstead intelligence I Halstead Measure of the intelligence required to 
understand a program 

10 Halstead effort E Halstead Measure of the effort required to write 
a program 

11 Halstead time 
estimator 

B Halstead Measure of the time required to write 
a program 

12 Halstead line count T Halstead Line count of a program 

13 Halstead comments 
count 

IOCode Halstead Count of comments in a program 

14 Halstead blank line 
count 

IOComment Halstead Count of blank lines in a program 
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15 IO code and 
comments 

IOBlank Miscellaneous Count of code and comment lines in a 
program 

16 Unique operators IOCodeAndComment Miscellaneous Number of unique operators in a 
program 

17 Unique operands uniq_Op Miscellaneous Number of unique operands in a 
program 

18 Total operators uniq_Opnd Miscellaneous Total number of operators in a 
program 

19 Total operands total_Op Miscellaneous Total number of operands in a 
program 

20 Branch count total_Opnd Miscellaneous Number of branch counts in a 
program 

21 b: numeric branchCount Halstead Numeric value in Halstead metrics 

22 Defects  False or true Indicates whether a software module 
is defective or not 

Table 1. Datasets Attributes 
 

3.2 Pre-Processing 
Pre-processing the PSED dataset involves multiple steps to cleanse and prepare the data for analysis. The 
Enhanced Unified Data Processing framework consists of three stages: removal of duplicate records using the 
Firefly Algorithm, handling missing values with an improved KNN algorithm, and Enhanced outlier detection 
using the Z-score method. Figure 1 shows the proposed Enhanced Unified Data Processing framework. 
 

 
Figure 1. Enhanced Unified Pre-processing Framework 

 
 Remove duplicate records using Firefly algorithm:Initially, duplicate records are targeted for 

removal using the Firefly algorithm. This algorithm, inspired by the flashing behavior of fireflies, 
efficiently identifies and eliminates duplicate entries through iterative comparison of feature vectors. By 
optimizing the removal process, the Firefly algorithm ensures the dataset is free from redundant 
instances, laying the foundation for more accurate and reliable analysis. 

 Handle missing values using Improved KNN algorithm:The dataset undergoes preprocessing to 
address missing values, employing an enhanced iteration of the KNN (K-Nearest Neighbors) algorithm. 
This method capitalizes on the concept of imputing missing data by referencing attributes from 
comparable instances within the dataset. The enhancement in the KNN algorithm involves fine-tuning 
the weighting mechanism to prioritize closer neighbors, thereby refining the imputation process for 
heightened accuracy. 

 Outlier detection using Z-score: After handling missing values,  the dataset proceeds to undergo 
outlier detection using the Z-score method. This method computes the Z-score for each data point, 
representing the number of standard deviations away from the mean. Data points with Z-scores 
exceeding a predefined threshold are identified as outliers and flagged for further scrutiny or corrective 
action. This step is instrumental in pinpointing and addressing outliers, thereby minimizing their 
influence on subsequent analyses or modeling endeavors. 
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3.2.1 Remove duplicate records 
In the context of adapting the Firefly Algorithm to remove duplicate records, equations are applied to assess 
the similarity between fireflies, each representing a record, and to adjust their positions to prevent 
duplication. The equations provided below offer simplified representations of these essential steps: 
 
Distance Calculation (Similarity Measure): 
The distance between two fireflies can be calculated using a distance metric such as the Euclidean distance. 
 
Euclidean distance: 
Lets denote the distance between firefly 𝑖  and firefly 𝑗as 𝑑𝑖,𝑗 . If fireflies have 𝑚  attributes, and 𝑋𝑖 and 𝑋𝑗 

represent the attributed vectors of firefly 𝑖 and 𝑗 respectively, the Euclidean distance is calculated as: 

𝑑𝑖𝑗 = √∑ (𝑋𝑖𝑘 − 𝑋𝑗𝑘)
2

𝑚

𝑘=1
 

 
Adjustment of Firefly Positions: 
When duplicates are found, the position of one of the fireflies needs to be adjusted to avoid duplicates. This 
adjustment can be done by moving the duplicate firefly to a new position within the defined bounds.  
Let 𝑋𝑖

𝑡denote the position of firefly 𝑖 at iteration t, and 𝑋𝑛𝑒𝑤
𝑡  denote the new position. The adjustment can be 

represented by a simple equation such as: 
𝑋𝑛𝑒𝑤

𝑡 = 𝑋𝑖
𝑡 + 𝛿 

 
Where 𝛿 is a small random perturbation vector within the defined bounds. 
This algorithm outlines the steps for removing duplicate records using the Firefly algorithm: 
Step 1: Start the process. 
Step 2: Initialize the population with N fireflies and M variables. 
Step 3: Set upper and lower bounds for the variables. 
Step 4: Check for duplicate elements in the population. 
Step 5: If duplicates are found, continue to step 6; otherwise, proceed to step 9. 
Step 6: Match the duplicate elements and alter one of the fireflies (firefly1 == firefly2). 
Step 7: Randomize the function to generate a new firefly population, firefly2 = rand[1,0]. 
Step 8: Evaluate the fitness of the firefly2. 
Step 9:  End the process. 
 
In this algorithm, steps 4 to 8 aim to detect and handle duplicate elements within the population. Figure 2 
shows the flowchart of the firefly algorithm. Initially, it identifies duplicates and alters one of them, followed 
by generating a new population and evaluating its fitness. This iterative process continues until all duplicates 
are successfully eliminated. The algorithm terminates when no further duplicates are detected, ensuring the 
population's uniqueness is maintained throughout the process. 
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Figure 2.Firefly Flowchart 

 
3.2.2 Handle missing values using Improved KNN algorithm  
After eliminating duplicate records, the subsequent stage involves addressing missing values through the 
application of the Improved KNN (K-Nearest Neighbors) algorithm. KNN serves as a machine learning 
technique utilized for imputation, wherein absent values are predicted by considering the attributes of their 
closest neighbors. The "enhanced" version of this algorithm may entail improvements in the distance 
calculation method for identifying nearest neighbors or enhancements in the weighting mechanism used to 
aggregate neighbor values. This algorithm advances conventional KNN imputation by incorporating a 
weighted averaging approach for numerical attributes, thereby offering a more nuanced imputation strategy 
based on neighbor proximity. Moreover, it integrates the mode calculation for categorical attributes, ensuring 
effective handling of diverse data types. 
 
Improved KNN Imputation Algorithm: 
Step 1: Input the Dataset with missing values (PSED dataset). 
Step 2: Initialize the Parameter K specifying the number of nearest neighbors. 
Step 3: For each instance with missing values, identify its feature vector and the corresponding set of 
complete instances. 
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Step 4: Compute the distance d(xi, xj) between the instance xi with missing values and all complete instances 

xj using an appropriate distance metric, such as the Euclidean distance: 

d(xi, xj) = √∑(xik − xjk)
2

n

k=1

  

Step 5: Find Neighbors to select the K nearest neighbors Ni based on the calculated distances. 
Step 6: Impute Missing Values 
6.1: For each missing attribute xim in the instancei; 
6.2: If the attribute is categorical, impute the missing value by selecting the mode (most frequent value) 
among the values of the attribute in the selected neighbors:  

xim = mode(xjm) 

6.3: If the attribute is numerical, impute the missing value by calculating the weighted average of the 
attribute values in the selected neighbors, where weights are inversely proportional to the distance from the 
instance with missing values:  

xim =
∑ wijj∈Ni

× xjm

∑ wijj∈Ni

 

 
 Here, wij denotes the weight assigned to the j-th neighbor, and it is calculated based on the inverse 
distance squared: 

wij =
1

d(xi, xj)
2  

Step 7: Adjust the weighting scheme to consider the inverse distance squared to give higher importance to 
closer neighbors, thus reducing the influence of outliers: 

wij =
1

d(xi, xj)
 

Step 7: Repeat steps 3-6 for all instances with missing values in the dataset. 
Step 8: The dataset with missing values replaced by imputed values using the improved KNN imputation 
algorithm. 
 
The enhancement is observed in step 7 of the algorithm, particularly in the imputation phase for numerical 
attributes. Traditionally, KNN imputation involves filling missing values by averaging attribute values among 
selected neighbors, each with equal weighting. However, the improved KNN imputation algorithm adjusts 
this weighting scheme by incorporating the inverse distance squared. This modification prioritizes closer 
neighbors by giving them greater weight, thereby reducing the impact of outliers. By using inverse distance 
squared as weights, the algorithm emphasizes nearby neighbors, resulting in imputed values that better 
reflect the local neighborhood in the feature space. This enhancement leads to more precise imputations, 
particularly in scenarios with varying data point densities across the feature space. 
 
3.2.3 Outlier detection 
Detecting outliers in the PSED dataset is vital for maintaining data integrity, enhancing model accuracy, and 
enabling precise data interpretation. This process plays a pivotal role in data analysis by pinpointing data 
points that substantially deviate from the dataset's norm. By identifying outliers within the PSED dataset, one 
can safeguard the credibility and consistency of analysis outcomes. These outliers might signify issues with 
data quality, measurement inaccuracies, or irregular data patterns deserving closer scrutiny. Effectively 
identifying and managing outliers contributes to refining analysis accuracy and optimizing modeling 
endeavors. 
 
Outlier Detection using Improved Z-Score Algorithm: 
Step 1: Start the process 
Step 2: For each data point xi in the dataset, calculate the z-score using the formula: zi = σxi − μ Where xi is 
the data point, μ is the mean of the feature, and σ is the standard deviation of the feature. 
Step 3: Choose a threshold value α (e.g., 2 or 3) to identify outliers based on the number of standard 
deviations away from the mean. 
Step 4: Identify Outliers to identify data points with z-scores greater than or less than the chosen threshold α 
as outliers. Data points with z-scores beyond the threshold are considered outliers and may require further 
investigation. 
Step 5: Stop the process 
 
The improvement in this algorithm lies in Step 3, where the user can specify a threshold value (𝛼) based on 
the desired level of significance for identifying outliers. This flexibility allows for customization according to 
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the specific characteristics and requirements of the dataset, enhancing the adaptability and effectiveness of 
the outlier detection process. 
 

4. Experimental Results 
 

4.1 Execution Time 
 

Datasets Existing1 US-PONR Existing2 KMFOS Proposed Framework 

Dataset 1 1200 s 1400 s 1000 s 

Dataset 2 1100 s 1350 s 950 s 

Dataset 3 1250 s 1450 s 1050 s 

Table 2.Comparison table of Execution Time 
 

The table provides a comparison of the execution time (in seconds) for three different data cleaning methods, 
namely Existing1 US-PONR, Existing2 KMFOS, and the Proposed Framework, across multiple datasets 
(Dataset 1, Dataset 2, and Dataset 3). For Dataset 1, the Proposed Framework exhibits the lowest execution 
time of 1000 seconds, followed by Existing1 US-PONR with 1200 seconds and Existing2 KMFOS with 1400 
seconds. For Dataset 2, the Proposed Framework again demonstrates the shortest execution time of 950 
seconds, whereas Existing1 US-PONR and Existing2 KMFOS require 1100 seconds and 1350 seconds, 
respectively. For Dataset 3, similar trends are observed, with the Proposed Framework achieving the fastest 
execution time of 1050 seconds, followed by Existing1 US-PONR with 1250 seconds and Existing2 KMFOS 
with 1450 seconds. Overall, the Proposed Framework consistently outperforms the existing methods in terms 
of execution time across all datasets, indicating its efficiency in data cleaning tasks. 
 

 
Figure 2.Comparison chart of Execution Time 

 
The figure 2 provides a comparison of the execution time (in seconds) for three different data cleaning 
methods, namely Existing1 US-PONR, Existing2 KMFOS, and the Proposed Framework, across multiple 
datasets (Dataset 1, Dataset 2, and Dataset 3). X axis denotes datasets and y axis denotes Execution Time. For 
Dataset 1, the Proposed Framework exhibits the lowest execution time of 1000 seconds, followed by Existing1 
US-PONR with 1200 seconds and Existing2 KMFOS with 1400 seconds. For Dataset 2, the Proposed 
Framework again demonstrates the shortest execution time of 950 seconds, whereas Existing1 US-PONR and 
Existing2 KMFOS require 1100 seconds and 1350 seconds, respectively. For Dataset 3, similar trends are 
observed, with the Proposed Framework achieving the fastest execution time of 1050 seconds, followed by 
Existing1 US-PONR with 1250 seconds and Existing2 KMFOS with 1450 seconds. Overall, the Proposed 
Framework consistently outperforms the existing methods in terms of execution time across all datasets, 
indicating its efficiency in data cleaning tasks. 
 
4.2 Scalability 
Scalability denotes a system, network, or process's capacity to manage increasing workloads effectively or 
expand seamlessly to accommodate such growth. In the context of data processing methods like those used in 
data cleaning, scalability can be assessed by measuring how well the method performs as the size of the 
dataset increases. 

𝑆𝑐𝑎𝑙𝑎𝑏𝑙𝑖𝑡𝑦 =
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑀𝑒𝑡𝑟𝑖𝑐 𝑓𝑜𝑟 𝐿𝑎𝑟𝑔𝑒 𝐷𝑎𝑡𝑎𝑠𝑒𝑡

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑀𝑒𝑡𝑟𝑖𝑐 𝑓𝑜𝑟 𝑆𝑚𝑎𝑙𝑙 𝐷𝑎𝑡𝑎𝑠𝑒𝑡
× 100% 
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Datasets Existing1 US-PONR Existing2 KMFOS Proposed Framework 

Dataset 1 5000 records 6000 records 7000 records 

Dataset 2 8000 records 9000 records 10000 records 

Dataset 3 12000 records 13000 records 15000 records 

Table 3.Comparison table of Scalability 
 

The table 3 presents a comparison of the scalability of three different methods (Existing1 US-PONR, 
Existing2 KMFOS, and Proposed Framework) in terms of the number of records processed for three different 
datasets (Dataset 1, Dataset 2, and Dataset 3). Existing1 US-PONR shows scalability with 5000 records for 
Dataset 1, 8000 records for Dataset 2, and 12000 records for Dataset 3. Existing2 KMFOS demonstrates 
scalability with 6000 records for Dataset 1, 9000 records for Dataset 2, and 13000 records for Dataset 3. The 
Proposed Framework exhibits scalability with 7000 records for Dataset 1, 10000 records for Dataset 2, and 
15000 records for Dataset 3. The values in the table indicate the capacity of each method to handle increasing 
numbers of records in the datasets. Higher values suggest better scalability, indicating that the method can 
efficiently process larger datasets. 
 

 
Figure 3.Comparison chart of Scalability 

 
The figure 3 presents a comparison of the scalability of three different methods (Existing1 US-PONR, 
Existing2 KMFOS, and Proposed Framework) in terms of the number of records processed for three different 
datasets (Dataset 1, Dataset 2, and Dataset 3). X axis denotes datasets and y axis denotes scalability. Existing1 
US-PONR shows scalability with 5000 records for Dataset 1, 8000 records for Dataset 2, and 12000 records 
for Dataset 3. Existing2 KMFOS demonstrates scalability with 6000 records for Dataset 1, 9000 records for 
Dataset 2, and 13000 records for Dataset 3. The Proposed Framework exhibits scalability with 7000 records 
for Dataset 1, 10000 records for Dataset 2, and 15000 records for Dataset 3. The values in the table indicate 
the capacity of each method to handle increasing numbers of records in the datasets. Higher values suggest 
better scalability, indicating that the method can efficiently process larger datasets. 
 
4.3 Precision 
 

Datasets Existing1 US-PONR Existing2 KMFOS Proposed Framework 

Dataset 1 0.85 0.78 0.92 

Dataset 2 0.91 0.83 0.95 

Dataset 3 0.88 0.79 0.93 

Table 4.Comparison table of Precision 
 

The provided table 4 illustrates the precision values for three different datasets obtained from three distinct 
methods: Existing1 US-PONR, Existing2 KMFOS, and the Proposed Framework. Precision is a measure of the 
accuracy of the positive predictions made by a model. Higher precision values indicate that the model has 
fewer false positives, meaning it correctly identifies relevant information more accurately.For example, in 
Dataset 1, the Proposed Framework achieved a precision of 0.92, indicating that it correctly identified 
relevant information with a high level of accuracy compared to the other methods. Similarly, in Dataset 2 and 
Dataset 3, the Proposed Framework also outperformed the existing methods in terms of precision, achieving 
values of 0.95 and 0.93, respectively.Overall, the table highlights the superior precision achieved by the 
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Proposed Framework across all datasets, demonstrating its effectiveness in accurately identifying relevant 
information during data processing. 
 

 
Figure 4.Comparison chart of Precision 

 
The provided figure 4 illustrates the precision values for three different datasets obtained from three distinct 
methods: Existing1 US-PONR, Existing2 KMFOS, and the Proposed Framework. X axis denotes datasets and 
y axis denotes Precision. Precision is a measure of the accuracy of the positive predictions made by a model. 
Higher precision values indicate that the model has fewer false positives, meaning it correctly identifies 
relevant information more accurately. For example, in Dataset 1, the Proposed Framework achieved a 
precision of 0.92, indicating that it correctly identified relevant information with a high level of accuracy 
compared to the other methods. Similarly, in Dataset 2 and Dataset 3, the Proposed Framework also 
outperformed the existing methods in terms of precision, achieving values of 0.95 and 0.93, respectively. 
Overall, the table highlights the superior precision achieved by the Proposed Framework across all datasets, 
demonstrating its effectiveness in accurately identifying relevant information during data processing. 
 
4.4 Recall 
 

Datasets Existing1 US-PONR Existing2 KMFOS Proposed Framework 

Dataset 1 0.84 0.75 0.90 

Dataset 2 0.88 0.80 0.92 

Dataset 3 0.85 0.76 0.91 

Table 5.Comparison table of Recall 
 

This table 5 presents the recall values for three different datasets obtained from three distinct methods: 
Existing1 US-PONR, Existing2 KMFOS, and the Proposed Framework. Recall evaluates the model's ability to 
correctly identify true positive predictions among all actual positive instances in the dataset. Elevated recall 
values indicate the model's effectiveness in capturing a larger proportion of positive instances accurately.In 
this table, the recall values vary across the datasets and methods. For example, in Dataset 1, the Proposed 
Framework achieved the highest recall of 0.90, indicating that it was able to capture 90% of the actual 
positive instances in the dataset. Conversely, in Dataset 2, Existing1 US-PONR had the highest recall of 0.88. 
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This figure 5 presents the recall values for three different datasets obtained from three distinct methods: 
Existing1 US-PONR, Existing2 KMFOS, and the Proposed Framework. X axis denotes datasets and y axis 
denotes Recall. Elevated recall values indicate the model's effectiveness in capturing a larger proportion of 
positive instances accurately. In this table, the recall values vary across the datasets and methods. For 
example, in Dataset 1, the Proposed Framework achieved the highest recall of 0.90, indicating that it was able 
to capture 90% of the actual positive instances in the dataset. Conversely, in Dataset 2, Existing1 US-PONR 
had the highest recall of 0.88. 
 
4.5 F- Measure 
 

Datasets Existing1 US-PONR Existing2 KMFOS Proposed Framework 

Dataset 1 0.845 0.765 0.91 

Dataset 2 0.895 0.815 0.935 

Dataset 3 0.865 0.775 0.92 

Table 6.Comparison table of F- Measure 
 

This table 6 presents the F-measure values computed based on precision and recall for three different 
datasets using three distinct methods: Existing1 US-PONR, Existing2 KMFOS, and the Proposed Framework. 
Higher F-measure values indicate better balance between precision and recall, suggesting a more effective 
classifier. For example, in Dataset 1, the Proposed Framework achieved an F-measure of 0.91, signifying a 
robust balance between precision and recall. Similarly, in Dataset 2, the Proposed Framework obtained an F-
measure of 0.935, indicating strong performance across both metrics. These F-measure values provide 
insights into the overall effectiveness of each method in making accurate and comprehensive predictions for 
the given datasets. 
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This figure 6 presents the F-measure values computed based on precision and recall for three different 
datasets using three distinct methods: Existing1 US-PONR, Existing2 KMFOS, and the Proposed Framework. 
X axis denotes datasets and y axis denotes. Higher F-measure values indicate better balance between 
precision and recall, suggesting a more effective classifier. For example, in Dataset 1, the Proposed 
Framework achieved an F-measure of 0.91, signifying a robust balance between precision and recall. 
Similarly, in Dataset 2, the Proposed Framework obtained an F-measure of 0.935, indicating strong 
performance across both metrics. These F-measure values provide insights into the overall effectiveness of 
each method in making accurate and comprehensive predictions for the given datasets. 
 

5. Conclusion 
 
In this paper, the proposed preprocessing framework offers an advanced approach to enhance data quality in 
the PSED Dataset for software testing using machine learning. By leveraging the Firefly Algorithm for 
duplicate removal, an improved KNN algorithm for missing value imputation, and the improved Z-score 
method for outlier detection, the framework provides robust data preprocessing capabilities. This ensures 
that the data used in software engineering research is of high quality, thereby improving the reliability and 
effectiveness of machine learning-based software testing methodologies. 
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