
Copyright © 2024 by Author/s and Licensed by Kuey. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Educational Administration: Theory and Practice
2024, 30(5), 13063-13075
ISSN: 2148-2403

https://kuey.net/ Research Article

Software Defect Data Pre-Processing Using Enhanced
Unified Data Processing Algorithm

M.Mani Mekalai1*, Dr.S. Vydehi2

1*Research scholar, Dr. S.N.S.Rajalakshmi College of Arts and Science,Chinnavedampatti Post, Coimbatore, Tamilnadu, India.
2Associate Professor, Department of Computer Science,Dr.S.N.S.Rajalakshmi College of Arts and Science, Chinnavedampatti Post,
Coimbatore, Tamilnadu, India.

Citation:M. Mani Mekalai(2024), Software Defect Data Pre-Processing Using Enhanced Unified Data Processing Algorithm,
Educational Administration: Theory And Practice, 30(5), 13063-13075
Doi: 10.53555/kuey.v30i5.5661

1. Introduction

Software defect prediction aids software developers in early identification of faulty components, like modules
or classes, during the software development process. There are data mining, machine learning, and deep
learning techniques used for software fault prediction. A fault in a software system is described as a structural
flaw that could cause the system to fail in the future. Software fault prediction is an important and necessary
activity to increase software quality and minimize maintenance effort during the initial phases of software
development. Software fault/defect prediction helps improve resulting software quality, where faults are
predicted based on previous knowledge in the form of datasets. There are Data Mining (DM), Machine
Learning (ML), and Deep Learning (DL) techniques that we use for fault prediction. These methodologies are
employed to construct predictive models capable of distinguishing between faulty and non-faulty classes.
Software defect prediction is a critical area of research and practice in software engineering aimed at
identifying and mitigating potential defects in software systems before they manifest into costly errors or
failures. By leveraging historical data and machine learning techniques, software defect prediction models
can effectively analyze various software attributes and patterns to anticipate and prioritize areas of the
codebase that are more prone to defects. The primary goal of software defect prediction is to assist software
development teams in allocating limited resources, such as time and effort, more effectively by focusing on
high-risk areas for defect detection and prevention. By identifying these areas early in the development
process, teams can proactively implement targeted quality assurance and testing strategies to minimize the
likelihood of defects slipping into production.
The quality of the software defect dataset is one of the most important factors that affect the performance of
SDP. Defects typically concentrate in a minority of modules within real-world software projects, leading to a
significant class imbalance issue in software defect datasets. The imbalance between defective and non-
defective samples undermines the effectiveness of defect prediction models. While various techniques have
been proposed to address this challenge, current methods focusing on dataset rebalancing, particularly
undersampling and oversampling, still encounter limitations in their applicability and efficacy. Despite
efforts to mitigate class imbalances, the quest for more robust and versatile solutions persists within the

ARTICLE INFO ABSTRACT
 Software testing using machine learning involves leveraging machine learning

algorithms and techniques to improve various aspects of the software testing
process. This study presents an advanced preprocessing framework for enhancing
data quality in the PSED Dataset. The Enhanced Unified Data Processing
framework consists of three stages: removal of duplicate records using the Firefly
Algorithm, handling missing values with an improved KNN algorithm, and
Enhanced outlier detection using the Z-score method. The Firefly Algorithm
iteratively compares feature vectors to eliminate duplicates, while the improved
KNN algorithm employs weighted averaging and mode selection for imputation,
with adjusted weighting to reduce outlier influence. Outlier detection is
performed using z-scores, offering flexibility in threshold selection. Integration of
these techniques ensures robust data preprocessing for reliable software
engineering research.

Keywords: Software testing, Machine learning, Preprocessing, Data quality
enhancement, Firefly Algorithm, KNN algorithm, Z-score method.

https://kuey.net/
https://www.sciencedirect.com/topics/computer-science/machine-learning
https://www.sciencedirect.com/topics/computer-science/deep-learning-technique
https://www.sciencedirect.com/topics/computer-science/deep-learning-technique

13064 M. Mani Mekalai/Kuey, 30(5) 5661

software engineering community. Undersampling can effectively solve the class imbalance problem, but the
instances discarded during undersampling may contain information useful or important for predicting
defects. In Semi-Definite Programming (SDP), oversampling tends to be more beneficial than
undersampling. Methods like SMOTE and MAHAKIL effectively address class imbalance by generating
minority class samples. However, these oversampling techniques can introduce overfitting noise, potentially
compromising the model's predictive accuracy.
Mislabeling of samples in software defect datasets can occur due to various factors such as limited knowledge
of defects, time gaps between defect introduction and discovery, or new defects arising from defect
corrections. This mislabeling adds noise to the dataset, compromising its quality and impacting defect
prediction accuracy. Currently, research on noise in software defect datasets is scarce within the SDP domain.
To mitigate dataset noise, employing propensity score matching (PSM) presents a promising solution. PSM, a
statistical method commonly used in machine learning, reduces noise by addressing discrepancies between
observed data distribution and the overall dataset distribution.
Software testing using machine learning, preprocessing plays a crucial role in ensuring the quality and
reliability of the input data for subsequent modeling and analysis. The preprocessing steps typically involve
data cleaning, feature engineering, and normalization to optimize the data for machine learning algorithms.
These steps aim to address challenges such as missing values, outliers, and noisy data, ultimately enhancing
the effectiveness of machine learning models in software testing tasks.

2. Literature Survey’

2.1 US-PONR (Undersampling, Oversampling, and Noise Reduction)
Haoxiang Shi (2023) et.al proposed US-PONR, The proposed method, Undersampling and Oversampling
with Propensity Score Matching for Noise Reduction (US-PONR), addresses class imbalance and noise
samples in datasets. It first removes duplicate samples through undersampling across version iterations and
then utilizes oversampling via propensity score matching to reduce class imbalance and noise. Experimental
results demonstrate US-PONR's superiority over benchmark and state-of-the-art methods in defect
prediction under varying noise environments. US-PONR effectively identifies and removes label noise
samples, offering a novel approach to data oversampling and noise reduction. While US-PONR enhances
software defect prediction, its combination of undersampling, oversampling, and noise reduction may
heighten the complexity of the preprocessing process, potentially posing implementation and comprehension
challenges.

2.2 KMFOS
Lina Gong (2013) et.al propose a cluster-based over-sampling with filtering approach (KMFOS) Our
proposed method, KMFOS, enhances both the recognition rate of defective instances and the accuracy of
non-defective instance classification concurrently. Through extensive experimentation, we compared KMFOS
against various existing techniques, including five oversampling methods (SMOTE, ADASYN, Borderline-
SMOTE, ROS, and K-means SMOTE) across five classifiers (RF, SVM, NB, LR, and DT), three oversampling
with filtering methods (SMOTE + IPF, SMOTE + ENN, and SMOTE + TL), and four other class imbalanced
methods. The experiments, conducted on 24 software projects, unequivocally demonstrate the superiority of
KMFOS over the compared methods in terms of classification performance and effectiveness in handling
imbalanced datasets.

2.3 ChisquaredEval and the Ranker search
G. K. Armah et.al proposed multi-level data pre-processing for software defect prediction. Defect prediction
in software engineering plays a crucial role in identifying faulty components early, thereby optimizing
resource allocation and testing efforts. This study investigates the influence of data preprocessing techniques,
such as attribute selection and instance filtering, on defect prediction performance. The multi-level
preprocessing significantly improves prediction accuracy. Removing irrelevant attributes and addressing
class imbalance through preprocessing significantly improves defect prediction models and software quality
assurance practices. This underscores the critical role of preprocessing in ensuring the effectiveness of defect
prediction and overall software development efficiency.

2.4 Natural Language Processing
A. Kicsi (2021) et.al proposed Large Scale Evaluation of Natural Language Processing Based Test-to-Code
Traceability Approaches. While traditional approaches rely on naming conventions, recent research delves
into text-based methods, including machine learning, offering enhanced flexibility and the ability to rank
candidates by similarity, thus broadening potential connections. However, these methods may lack structural
information. This paper investigates three text-based techniques, both individually and in conjunction with
naming conventions, for traceability link recovery. Evaluation across eight software systems demonstrates
that, with appropriate configurations, text-based methods can effectively fulfill traceability objectives, even in
scenarios where naming conventions are not strictly adhered to, underscoring their significance in
contemporary software engineering practices.

https://ieeexplore.ieee.org/author/37087039610

13065 M. Mani Mekalai/ Kuey, 30(5), 5661

2.5 Decision tree
C. Pak et.al proposed Notice of Removal: Software Defect Prediction Using Propositionalization Based Data
Preprocessing: An Empirical Study. This study explores the effectiveness of propositionalization-based data
preprocessing in enhancing software defect prediction. We propose utilizing decision trees for
propositionalization and conduct experiments across 17 datasets from the PROMISE repository. Common
classifiers are applied, and the results are compared using paired t-tests against attribute subset selection and
principal component analysis. Our findings indicate that propositionalization with decision trees significantly
enhances software defect prediction performance, surpassing the efficacy of attribute subset selection and
principal component analysis. Moreover, no statistically significant differences are observed among the top 5
classifiers utilized in this study. Overall, our results underscore the importance of data preprocessing
techniques in optimizing classifier performance for software defect prediction tasks.

3. Proposed Methodology

3.1 Data Collection
The PSED (Promise Software Engineering Repository Dataset) is a comprehensive compilation of software
engineering data obtained from diverse software development projects. It encompasses metrics pertaining to
software development processes, code quality, and project outcomes.
Three datasets (JM1, CM1, and PC1) were sourced from the PSED (Promise Software Engineering Repository
Dataset), comprising 22 attributes including McCabe, Halstead, and various metrics alongside defect
information. Data preprocessing involved identifying correlated columns and addressing data imbalance
issues.
This research utilized three openly accessible datasets sourced from the PROMISE Software Engineering
Database. This foundation by incorporating 22 attributes for the development of our automated fault
prediction model. These attributes are outlined in Table 1, encompassing various metrics including 4 McCabe
metrics, 9 base Halstead measures, and 8 derived Halstead measures. Additionally, the final attribute,
'defect', comprises two classes denoting whether a software module is faulty or not. Table 1 provides a
detailed breakdown of these 22 attributes, including their definitions and descriptions.

No Metrics Name Software Metrics Type Description

1 Line of code LOC McCabe Line count of code

2 Cyclomatic
complexity

v(g) McCabe Measure of the complexity of a
program

3 Essential complexity ev(g) McCabe Measure of the complexity of the
essential control flow in a program

4 Design complexity iv(g) McCabe Measure of the complexity of the
design of a program

5 Halstead operators
and operands

N Halstead Total number of operators and
operands in a program

6 Halstead volume V Halstead Measure of the size of a program

7 Halstead program
length

L Halstead Measure of the length of a program

8 Halstead difficulty D Halstead Measure of the difficulty of writing a
program

9 Halstead intelligence I Halstead Measure of the intelligence required to
understand a program

10 Halstead effort E Halstead Measure of the effort required to write
a program

11 Halstead time
estimator

B Halstead Measure of the time required to write
a program

12 Halstead line count T Halstead Line count of a program

13 Halstead comments
count

IOCode Halstead Count of comments in a program

14 Halstead blank line
count

IOComment Halstead Count of blank lines in a program

13066 M. Mani Mekalai/Kuey, 30(5) 5661

15 IO code and
comments

IOBlank Miscellaneous Count of code and comment lines in a
program

16 Unique operators IOCodeAndComment Miscellaneous Number of unique operators in a
program

17 Unique operands uniq_Op Miscellaneous Number of unique operands in a
program

18 Total operators uniq_Opnd Miscellaneous Total number of operators in a
program

19 Total operands total_Op Miscellaneous Total number of operands in a
program

20 Branch count total_Opnd Miscellaneous Number of branch counts in a
program

21 b: numeric branchCount Halstead Numeric value in Halstead metrics

22 Defects False or true Indicates whether a software module
is defective or not

Table 1. Datasets Attributes

3.2 Pre-Processing
Pre-processing the PSED dataset involves multiple steps to cleanse and prepare the data for analysis. The
Enhanced Unified Data Processing framework consists of three stages: removal of duplicate records using the
Firefly Algorithm, handling missing values with an improved KNN algorithm, and Enhanced outlier detection
using the Z-score method. Figure 1 shows the proposed Enhanced Unified Data Processing framework.

Figure 1. Enhanced Unified Pre-processing Framework

 Remove duplicate records using Firefly algorithm:Initially, duplicate records are targeted for

removal using the Firefly algorithm. This algorithm, inspired by the flashing behavior of fireflies,
efficiently identifies and eliminates duplicate entries through iterative comparison of feature vectors. By
optimizing the removal process, the Firefly algorithm ensures the dataset is free from redundant
instances, laying the foundation for more accurate and reliable analysis.

 Handle missing values using Improved KNN algorithm:The dataset undergoes preprocessing to
address missing values, employing an enhanced iteration of the KNN (K-Nearest Neighbors) algorithm.
This method capitalizes on the concept of imputing missing data by referencing attributes from
comparable instances within the dataset. The enhancement in the KNN algorithm involves fine-tuning
the weighting mechanism to prioritize closer neighbors, thereby refining the imputation process for
heightened accuracy.

 Outlier detection using Z-score: After handling missing values, the dataset proceeds to undergo
outlier detection using the Z-score method. This method computes the Z-score for each data point,
representing the number of standard deviations away from the mean. Data points with Z-scores
exceeding a predefined threshold are identified as outliers and flagged for further scrutiny or corrective
action. This step is instrumental in pinpointing and addressing outliers, thereby minimizing their
influence on subsequent analyses or modeling endeavors.

R
em

o
ve

 d
u

p
lic

at
e

re
co

rd
s

Firefly
algorithm

H
an

d
lin

g
M

is
si

n
g

va
lu

es Improved
KNN
Algorithm

O
u

tl
ie

r
d

et
ec

ti
o

n

Improved
Z-score
algorithm

13067 M. Mani Mekalai/ Kuey, 30(5), 5661

3.2.1 Remove duplicate records
In the context of adapting the Firefly Algorithm to remove duplicate records, equations are applied to assess
the similarity between fireflies, each representing a record, and to adjust their positions to prevent
duplication. The equations provided below offer simplified representations of these essential steps:

Distance Calculation (Similarity Measure):
The distance between two fireflies can be calculated using a distance metric such as the Euclidean distance.

Euclidean distance:
Lets denote the distance between firefly 𝑖 and firefly 𝑗as 𝑑𝑖,𝑗 . If fireflies have 𝑚 attributes, and 𝑋𝑖 and 𝑋𝑗

represent the attributed vectors of firefly 𝑖 and 𝑗 respectively, the Euclidean distance is calculated as:

𝑑𝑖𝑗 = √∑ (𝑋𝑖𝑘 − 𝑋𝑗𝑘)
2

𝑚

𝑘=1

Adjustment of Firefly Positions:
When duplicates are found, the position of one of the fireflies needs to be adjusted to avoid duplicates. This
adjustment can be done by moving the duplicate firefly to a new position within the defined bounds.
Let 𝑋𝑖

𝑡denote the position of firefly 𝑖 at iteration t, and 𝑋𝑛𝑒𝑤
𝑡 denote the new position. The adjustment can be

represented by a simple equation such as:
𝑋𝑛𝑒𝑤

𝑡 = 𝑋𝑖
𝑡 + 𝛿

Where 𝛿 is a small random perturbation vector within the defined bounds.
This algorithm outlines the steps for removing duplicate records using the Firefly algorithm:
Step 1: Start the process.
Step 2: Initialize the population with N fireflies and M variables.
Step 3: Set upper and lower bounds for the variables.
Step 4: Check for duplicate elements in the population.
Step 5: If duplicates are found, continue to step 6; otherwise, proceed to step 9.
Step 6: Match the duplicate elements and alter one of the fireflies (firefly1 == firefly2).
Step 7: Randomize the function to generate a new firefly population, firefly2 = rand[1,0].
Step 8: Evaluate the fitness of the firefly2.
Step 9: End the process.

In this algorithm, steps 4 to 8 aim to detect and handle duplicate elements within the population. Figure 2
shows the flowchart of the firefly algorithm. Initially, it identifies duplicates and alters one of them, followed
by generating a new population and evaluating its fitness. This iterative process continues until all duplicates
are successfully eliminated. The algorithm terminates when no further duplicates are detected, ensuring the
population's uniqueness is maintained throughout the process.

13068 M. Mani Mekalai/Kuey, 30(5) 5661

Figure 2.Firefly Flowchart

3.2.2 Handle missing values using Improved KNN algorithm
After eliminating duplicate records, the subsequent stage involves addressing missing values through the
application of the Improved KNN (K-Nearest Neighbors) algorithm. KNN serves as a machine learning
technique utilized for imputation, wherein absent values are predicted by considering the attributes of their
closest neighbors. The "enhanced" version of this algorithm may entail improvements in the distance
calculation method for identifying nearest neighbors or enhancements in the weighting mechanism used to
aggregate neighbor values. This algorithm advances conventional KNN imputation by incorporating a
weighted averaging approach for numerical attributes, thereby offering a more nuanced imputation strategy
based on neighbor proximity. Moreover, it integrates the mode calculation for categorical attributes, ensuring
effective handling of diverse data types.

Improved KNN Imputation Algorithm:
Step 1: Input the Dataset with missing values (PSED dataset).
Step 2: Initialize the Parameter K specifying the number of nearest neighbors.
Step 3: For each instance with missing values, identify its feature vector and the corresponding set of
complete instances.

Start

Initial population N
firefly1, firefly2

variable (M)

Assign upper and lower bound

Duplicate element
found in N

match found, alter firefly
(firefly1==firefly2)

Randomize function to generate
fireflies population firefly2=rand

[1,0]

Evaluate the firefly2 End

13069 M. Mani Mekalai/ Kuey, 30(5), 5661

Step 4: Compute the distance d(xi, xj) between the instance xi with missing values and all complete instances

xj using an appropriate distance metric, such as the Euclidean distance:

d(xi, xj) = √∑(xik − xjk)
2

n

k=1

Step 5: Find Neighbors to select the K nearest neighbors Ni based on the calculated distances.
Step 6: Impute Missing Values
6.1: For each missing attribute xim in the instancei;
6.2: If the attribute is categorical, impute the missing value by selecting the mode (most frequent value)
among the values of the attribute in the selected neighbors:

xim = mode(xjm)

6.3: If the attribute is numerical, impute the missing value by calculating the weighted average of the
attribute values in the selected neighbors, where weights are inversely proportional to the distance from the
instance with missing values:

xim =
∑ wijj∈Ni

× xjm

∑ wijj∈Ni

 Here, wij denotes the weight assigned to the j-th neighbor, and it is calculated based on the inverse
distance squared:

wij =
1

d(xi, xj)
2

Step 7: Adjust the weighting scheme to consider the inverse distance squared to give higher importance to
closer neighbors, thus reducing the influence of outliers:

wij =
1

d(xi, xj)

Step 7: Repeat steps 3-6 for all instances with missing values in the dataset.
Step 8: The dataset with missing values replaced by imputed values using the improved KNN imputation
algorithm.

The enhancement is observed in step 7 of the algorithm, particularly in the imputation phase for numerical
attributes. Traditionally, KNN imputation involves filling missing values by averaging attribute values among
selected neighbors, each with equal weighting. However, the improved KNN imputation algorithm adjusts
this weighting scheme by incorporating the inverse distance squared. This modification prioritizes closer
neighbors by giving them greater weight, thereby reducing the impact of outliers. By using inverse distance
squared as weights, the algorithm emphasizes nearby neighbors, resulting in imputed values that better
reflect the local neighborhood in the feature space. This enhancement leads to more precise imputations,
particularly in scenarios with varying data point densities across the feature space.

3.2.3 Outlier detection
Detecting outliers in the PSED dataset is vital for maintaining data integrity, enhancing model accuracy, and
enabling precise data interpretation. This process plays a pivotal role in data analysis by pinpointing data
points that substantially deviate from the dataset's norm. By identifying outliers within the PSED dataset, one
can safeguard the credibility and consistency of analysis outcomes. These outliers might signify issues with
data quality, measurement inaccuracies, or irregular data patterns deserving closer scrutiny. Effectively
identifying and managing outliers contributes to refining analysis accuracy and optimizing modeling
endeavors.

Outlier Detection using Improved Z-Score Algorithm:
Step 1: Start the process
Step 2: For each data point xi in the dataset, calculate the z-score using the formula: zi = σxi − μ Where xi is
the data point, μ is the mean of the feature, and σ is the standard deviation of the feature.
Step 3: Choose a threshold value α (e.g., 2 or 3) to identify outliers based on the number of standard
deviations away from the mean.
Step 4: Identify Outliers to identify data points with z-scores greater than or less than the chosen threshold α
as outliers. Data points with z-scores beyond the threshold are considered outliers and may require further
investigation.
Step 5: Stop the process

The improvement in this algorithm lies in Step 3, where the user can specify a threshold value (𝛼) based on
the desired level of significance for identifying outliers. This flexibility allows for customization according to

13070 M. Mani Mekalai/Kuey, 30(5) 5661

the specific characteristics and requirements of the dataset, enhancing the adaptability and effectiveness of
the outlier detection process.

4. Experimental Results

4.1 Execution Time

Datasets Existing1 US-PONR Existing2 KMFOS Proposed Framework

Dataset 1 1200 s 1400 s 1000 s

Dataset 2 1100 s 1350 s 950 s

Dataset 3 1250 s 1450 s 1050 s

Table 2.Comparison table of Execution Time

The table provides a comparison of the execution time (in seconds) for three different data cleaning methods,
namely Existing1 US-PONR, Existing2 KMFOS, and the Proposed Framework, across multiple datasets
(Dataset 1, Dataset 2, and Dataset 3). For Dataset 1, the Proposed Framework exhibits the lowest execution
time of 1000 seconds, followed by Existing1 US-PONR with 1200 seconds and Existing2 KMFOS with 1400
seconds. For Dataset 2, the Proposed Framework again demonstrates the shortest execution time of 950
seconds, whereas Existing1 US-PONR and Existing2 KMFOS require 1100 seconds and 1350 seconds,
respectively. For Dataset 3, similar trends are observed, with the Proposed Framework achieving the fastest
execution time of 1050 seconds, followed by Existing1 US-PONR with 1250 seconds and Existing2 KMFOS
with 1450 seconds. Overall, the Proposed Framework consistently outperforms the existing methods in terms
of execution time across all datasets, indicating its efficiency in data cleaning tasks.

Figure 2.Comparison chart of Execution Time

The figure 2 provides a comparison of the execution time (in seconds) for three different data cleaning
methods, namely Existing1 US-PONR, Existing2 KMFOS, and the Proposed Framework, across multiple
datasets (Dataset 1, Dataset 2, and Dataset 3). X axis denotes datasets and y axis denotes Execution Time. For
Dataset 1, the Proposed Framework exhibits the lowest execution time of 1000 seconds, followed by Existing1
US-PONR with 1200 seconds and Existing2 KMFOS with 1400 seconds. For Dataset 2, the Proposed
Framework again demonstrates the shortest execution time of 950 seconds, whereas Existing1 US-PONR and
Existing2 KMFOS require 1100 seconds and 1350 seconds, respectively. For Dataset 3, similar trends are
observed, with the Proposed Framework achieving the fastest execution time of 1050 seconds, followed by
Existing1 US-PONR with 1250 seconds and Existing2 KMFOS with 1450 seconds. Overall, the Proposed
Framework consistently outperforms the existing methods in terms of execution time across all datasets,
indicating its efficiency in data cleaning tasks.

4.2 Scalability
Scalability denotes a system, network, or process's capacity to manage increasing workloads effectively or
expand seamlessly to accommodate such growth. In the context of data processing methods like those used in
data cleaning, scalability can be assessed by measuring how well the method performs as the size of the
dataset increases.

𝑆𝑐𝑎𝑙𝑎𝑏𝑙𝑖𝑡𝑦 =
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑀𝑒𝑡𝑟𝑖𝑐 𝑓𝑜𝑟 𝐿𝑎𝑟𝑔𝑒 𝐷𝑎𝑡𝑎𝑠𝑒𝑡

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑀𝑒𝑡𝑟𝑖𝑐 𝑓𝑜𝑟 𝑆𝑚𝑎𝑙𝑙 𝐷𝑎𝑡𝑎𝑠𝑒𝑡
× 100%

13071 M. Mani Mekalai/ Kuey, 30(5), 5661

Datasets Existing1 US-PONR Existing2 KMFOS Proposed Framework

Dataset 1 5000 records 6000 records 7000 records

Dataset 2 8000 records 9000 records 10000 records

Dataset 3 12000 records 13000 records 15000 records

Table 3.Comparison table of Scalability

The table 3 presents a comparison of the scalability of three different methods (Existing1 US-PONR,
Existing2 KMFOS, and Proposed Framework) in terms of the number of records processed for three different
datasets (Dataset 1, Dataset 2, and Dataset 3). Existing1 US-PONR shows scalability with 5000 records for
Dataset 1, 8000 records for Dataset 2, and 12000 records for Dataset 3. Existing2 KMFOS demonstrates
scalability with 6000 records for Dataset 1, 9000 records for Dataset 2, and 13000 records for Dataset 3. The
Proposed Framework exhibits scalability with 7000 records for Dataset 1, 10000 records for Dataset 2, and
15000 records for Dataset 3. The values in the table indicate the capacity of each method to handle increasing
numbers of records in the datasets. Higher values suggest better scalability, indicating that the method can
efficiently process larger datasets.

Figure 3.Comparison chart of Scalability

The figure 3 presents a comparison of the scalability of three different methods (Existing1 US-PONR,
Existing2 KMFOS, and Proposed Framework) in terms of the number of records processed for three different
datasets (Dataset 1, Dataset 2, and Dataset 3). X axis denotes datasets and y axis denotes scalability. Existing1
US-PONR shows scalability with 5000 records for Dataset 1, 8000 records for Dataset 2, and 12000 records
for Dataset 3. Existing2 KMFOS demonstrates scalability with 6000 records for Dataset 1, 9000 records for
Dataset 2, and 13000 records for Dataset 3. The Proposed Framework exhibits scalability with 7000 records
for Dataset 1, 10000 records for Dataset 2, and 15000 records for Dataset 3. The values in the table indicate
the capacity of each method to handle increasing numbers of records in the datasets. Higher values suggest
better scalability, indicating that the method can efficiently process larger datasets.

4.3 Precision

Datasets Existing1 US-PONR Existing2 KMFOS Proposed Framework

Dataset 1 0.85 0.78 0.92

Dataset 2 0.91 0.83 0.95

Dataset 3 0.88 0.79 0.93

Table 4.Comparison table of Precision

The provided table 4 illustrates the precision values for three different datasets obtained from three distinct
methods: Existing1 US-PONR, Existing2 KMFOS, and the Proposed Framework. Precision is a measure of the
accuracy of the positive predictions made by a model. Higher precision values indicate that the model has
fewer false positives, meaning it correctly identifies relevant information more accurately.For example, in
Dataset 1, the Proposed Framework achieved a precision of 0.92, indicating that it correctly identified
relevant information with a high level of accuracy compared to the other methods. Similarly, in Dataset 2 and
Dataset 3, the Proposed Framework also outperformed the existing methods in terms of precision, achieving
values of 0.95 and 0.93, respectively.Overall, the table highlights the superior precision achieved by the

13072 M. Mani Mekalai/Kuey, 30(5) 5661

Proposed Framework across all datasets, demonstrating its effectiveness in accurately identifying relevant
information during data processing.

Figure 4.Comparison chart of Precision

The provided figure 4 illustrates the precision values for three different datasets obtained from three distinct
methods: Existing1 US-PONR, Existing2 KMFOS, and the Proposed Framework. X axis denotes datasets and
y axis denotes Precision. Precision is a measure of the accuracy of the positive predictions made by a model.
Higher precision values indicate that the model has fewer false positives, meaning it correctly identifies
relevant information more accurately. For example, in Dataset 1, the Proposed Framework achieved a
precision of 0.92, indicating that it correctly identified relevant information with a high level of accuracy
compared to the other methods. Similarly, in Dataset 2 and Dataset 3, the Proposed Framework also
outperformed the existing methods in terms of precision, achieving values of 0.95 and 0.93, respectively.
Overall, the table highlights the superior precision achieved by the Proposed Framework across all datasets,
demonstrating its effectiveness in accurately identifying relevant information during data processing.

4.4 Recall

Datasets Existing1 US-PONR Existing2 KMFOS Proposed Framework

Dataset 1 0.84 0.75 0.90

Dataset 2 0.88 0.80 0.92

Dataset 3 0.85 0.76 0.91

Table 5.Comparison table of Recall

This table 5 presents the recall values for three different datasets obtained from three distinct methods:
Existing1 US-PONR, Existing2 KMFOS, and the Proposed Framework. Recall evaluates the model's ability to
correctly identify true positive predictions among all actual positive instances in the dataset. Elevated recall
values indicate the model's effectiveness in capturing a larger proportion of positive instances accurately.In
this table, the recall values vary across the datasets and methods. For example, in Dataset 1, the Proposed
Framework achieved the highest recall of 0.90, indicating that it was able to capture 90% of the actual
positive instances in the dataset. Conversely, in Dataset 2, Existing1 US-PONR had the highest recall of 0.88.

13073 M. Mani Mekalai/ Kuey, 30(5), 5661

Figure 5.Comparison chart of Recall

This figure 5 presents the recall values for three different datasets obtained from three distinct methods:
Existing1 US-PONR, Existing2 KMFOS, and the Proposed Framework. X axis denotes datasets and y axis
denotes Recall. Elevated recall values indicate the model's effectiveness in capturing a larger proportion of
positive instances accurately. In this table, the recall values vary across the datasets and methods. For
example, in Dataset 1, the Proposed Framework achieved the highest recall of 0.90, indicating that it was able
to capture 90% of the actual positive instances in the dataset. Conversely, in Dataset 2, Existing1 US-PONR
had the highest recall of 0.88.

4.5 F- Measure

Datasets Existing1 US-PONR Existing2 KMFOS Proposed Framework

Dataset 1 0.845 0.765 0.91

Dataset 2 0.895 0.815 0.935

Dataset 3 0.865 0.775 0.92

Table 6.Comparison table of F- Measure

This table 6 presents the F-measure values computed based on precision and recall for three different
datasets using three distinct methods: Existing1 US-PONR, Existing2 KMFOS, and the Proposed Framework.
Higher F-measure values indicate better balance between precision and recall, suggesting a more effective
classifier. For example, in Dataset 1, the Proposed Framework achieved an F-measure of 0.91, signifying a
robust balance between precision and recall. Similarly, in Dataset 2, the Proposed Framework obtained an F-
measure of 0.935, indicating strong performance across both metrics. These F-measure values provide
insights into the overall effectiveness of each method in making accurate and comprehensive predictions for
the given datasets.

Figure 6.Comparison chart of F- Measure

13074 M. Mani Mekalai/Kuey, 30(5) 5661

This figure 6 presents the F-measure values computed based on precision and recall for three different
datasets using three distinct methods: Existing1 US-PONR, Existing2 KMFOS, and the Proposed Framework.
X axis denotes datasets and y axis denotes. Higher F-measure values indicate better balance between
precision and recall, suggesting a more effective classifier. For example, in Dataset 1, the Proposed
Framework achieved an F-measure of 0.91, signifying a robust balance between precision and recall.
Similarly, in Dataset 2, the Proposed Framework obtained an F-measure of 0.935, indicating strong
performance across both metrics. These F-measure values provide insights into the overall effectiveness of
each method in making accurate and comprehensive predictions for the given datasets.

5. Conclusion

In this paper, the proposed preprocessing framework offers an advanced approach to enhance data quality in
the PSED Dataset for software testing using machine learning. By leveraging the Firefly Algorithm for
duplicate removal, an improved KNN algorithm for missing value imputation, and the improved Z-score
method for outlier detection, the framework provides robust data preprocessing capabilities. This ensures
that the data used in software engineering research is of high quality, thereby improving the reliability and
effectiveness of machine learning-based software testing methodologies.

References

1. Li, Y.; Wong, W.E.; Lee, S.-Y.; Wotawa, F. Using Tri-Relation Networks for Effective Software Fault-
Proneness Prediction. IEEE Access 2019, 7, 63066–63080.

2. Yu, X.; Liu, J.; Keung, J.W.; Li, Q.; Bennin, K.E.; Xu, Z.; Wang, J.; Cui, X. Improving Ranking-Oriented
Defect Prediction Using a Cost-Sensitive Ranking SVM. IEEE Trans. Reliab. 2019, 69, 139–153.

3. Gong, L.; Jiang, S.; Jiang, L. Tackling Class Imbalance Problem in Software Defect Prediction through
Cluster-Based Over-Sampling with Filtering. IEEE Access 2019, 7, 145725–145737.

4. Zhang, X.; Song, Q.; Wang, G. A dissimilarity-based imbalance data classification algorithm. Appl. Intell.
2015, 42, 544–565.

5. Zhou, L. Performance of corporate bankruptcy prediction models on imbalanced dataset: The effect of
sampling methods. Knowl. Based Syst. 2013, 41, 16–25.

6. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling
Technique. J. Artif. Intell. Res. 2002, 16, 321–357.

7. Lina Gong; Shujuan Jiang; Li Jiang (2013), “Tackling Class Imbalance Problem in Software Defect
Prediction Through Cluster-Based Over-Sampling With Filtering”, DOI: 10.1109/ACCESS.2019.2945858,
Electronic ISSN: 2169-3536, IEEE.

8. G. K. Armah, G. Luo and K. Qin, "Multi_level data pre_processing for software defect prediction," 2013
6th International Conference on Information Management, Innovation Management and Industrial
Engineering, Xi'an, China, 2013, pp. 170-174, doi: 10.1109/ICIII.2013.6703111.

9. A. Kicsi, V. Csuvik and L. Vidács, "Large Scale Evaluation of Natural Language Processing Based Test-to-
Code Traceability Approaches," in IEEE Access, vol. 9, pp. 79089-79104, 2021, doi:
10.1109/ACCESS.2021.3083923.

10. C. Pak, T. Wang and X. Su, "Notice of Removal: Software Defect Prediction Using Propositionalization
Based Data Preprocessing: An Empirical Study," 2018 2nd International Conference on Data Science and
Business Analytics (ICDSBA), Changsha, China, 2018, pp. 71-77, doi: 10.1109/ICDSBA.2018.00021.

11. S. Sharmin, M. R. Arefin, M. A. -A. Wadud, N. Nower and M. Shoyaib, "SAL: An effective method for
software defect prediction," 2015 18th International Conference on Computer and Information
Technology (ICCIT), Dhaka, Bangladesh, 2015, pp. 184-189, doi: 10.1109/ICCITechn.2015.7488065.

12. J. Chen, S. Liu, W. Liu, X. Chen, Q. Gu and D. Chen, "A Two-Stage Data Preprocessing Approach for
Software Fault Prediction," 2014 Eighth International Conference on Software Security and Reliability
(SERE), San Francisco, CA, USA, 2014, pp. 20-29, doi: 10.1109/SERE.2014.15.

13. E. A. Felix and S. P. Lee, "Impact of defect velocity at class level," 2017 International Conference on
Robotics and Automation Sciences (ICRAS), Hong Kong, China, 2017, pp. 182-188, doi:
10.1109/ICRAS.2017.8071941.

14. Z. Ding, Y. Mo and Z. Pan, "A Novel Software Defect Prediction Method Based on Isolation Forest," 2019
International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE),
Zhangjiajie, China, 2019, pp. 882-887, doi: 10.1109/QR2MSE46217.2019.9021215.

15. Q. Song, Z. Jia, M. Shepperd, S. Ying and J. Liu, "A General Software Defect-Proneness Prediction
Framework," in IEEE Transactions on Software Engineering, vol. 37, no. 3, pp. 356-370, May-June 2011,
doi: 10.1109/TSE.2010.90.

16. D. -L. Miholca, "An Improved Approach to Software Defect Prediction using a Hybrid Machine Learning
Model," 2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), Timisoara, Romania, 2018, pp. 443-448, doi: 10.1109/SYNASC.2018.00074.

https://ieeexplore.ieee.org/author/37087039610
https://ieeexplore.ieee.org/author/37405101000
https://ieeexplore.ieee.org/author/37087042973
https://doi.org/10.1109/ACCESS.2019.2945858

13075 M. Mani Mekalai/ Kuey, 30(5), 5661

17. M. Kakkar and S. Jain, "Feature selection in software defect prediction: A comparative study," 2016 6th
International Conference - Cloud System and Big Data Engineering (Confluence), Noida, India, 2016, pp.
658-663, doi: 10.1109/CONFLUENCE.2016.7508200.

18. B. M. Shankar, S. A. Sivakumar, D. Dhabliya, P. A. Sundari, M. Asmitha and S. M. G. Shree, "Software
Defect Prediction using ANN Algorithm," 2023 7th International Conference on I-SMAC (IoT in Social,
Mobile, Analytics and Cloud) (I-SMAC), Kirtipur, Nepal, 2023, pp. 682-686, doi: 10.1109/I-
SMAC58438.2023.10290523.

19. G. K. Armah, G. Luo and K. Qin, "Multi_level data pre_processing for software defect prediction," 2013
6th International Conference on Information Management, Innovation Management and Industrial
Engineering, Xi'an, China, 2013, pp. 170-174, doi: 10.1109/ICIII.2013.6703111.

20. C. Pak, T. Wang and X. Su, "Notice of Removal: Software Defect Prediction Using Propositionalization
Based Data Preprocessing: An Empirical Study," 2018 2nd International Conference on Data Science and
Business Analytics (ICDSBA), Changsha, China, 2018, pp. 71-77, doi: 10.1109/ICDSBA.2018.00021.

