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ARTICLE INFO ABSTRACT 

 Pre-processing is essential in order to improve the quality of the data and make it 
more suitable for specific tasks like data mining. It describes the steps taken to 
prepare data for analysis, such as cleaning, converting, and integrating it. This 
chapter focuses on the comprehensive analysis of the data collection process 
through web scraping techniques, preprocessed using some Python methods, and 
finally analyzed with the help of exploratory data analysis (EDA). Initially, 
different data collection methods are outlined, followed by preprocessing steps 
including statistical information, which determines the overall structure of the 
dataset considered. To build a machine learning (ML) model, some data pre-
processing schemes are considered, such as handling missing or null values (N-V), 
outlier detection, and removing duplicates. Exploratory Data Analysis (EDA) is 
conducted at various levels, including univariate, bivariate, and multivariate 
analysis, to understand the relationships within the dataset. A dataset may contain 
a large number of feature variables, which can be merged into a smaller number of 
variables using principal component analysis (PCA). PCA reduces the complexity 
of the model that will be built using ML algorithms such as logistic regression, 
linear regression, etc. This chapter provides insights into the entire process of data 
analysis, from data collection to model evaluation, demonstrating the effectiveness 
of web scraping in extracting valuable information for predictive modeling. 
Subsequently, both logistic regression and linear regression models are 
constructed to predict target variables. Feature selection techniques are employed 
to identify the most influential variables, and principal component analysis (PCA) 
is utilized for dimensionality reduction. Finally, model performance is evaluated 
using confusion matrices for the logistic regression model and root-mean-
squarederror for the linear regression model. In this work,the Python language is 
considered, which is an object-oriented, interpreted, and interactive programming 
language. It is open source with rich sets of libraries like Pandas, Numpy, 
Matplotlib, Seaborn, etc. For executing the Python code, JUPYTER NOTEBOOK is 
used, which provides a web-based application process and a rich media 
representation of the object. 
 
Keywords: pre-processing, exploratory data analysis (EDA), machine learning 
(ML),principal component analysis (PCA), Matplotlib, Seaborn, Numpy, Pandas, 
Jupyter Notebook. 

 
INTRODUCTION 

 
Machine learning (ML) is a revolutionary domain of artificial intelligence that delegates computers to grasp 
knowledge from data and enhance their capacity without explicit programming[1]. This centers on utilizing 
information and calculations to empower AI to parody the way that people learn, moderately progressing its 
accuracy. Enhancing computers with “machine knowledge” that can power intelligent applications is a long-
standing goal for AI [2]. Data science is a fast-growing area in which machine learning plays a critical role. In 
data mining projects, algorithms are trained to classify data, provide predictions, and uncover new 
information using statistical techniques. Key growth indicators should be impacted by the actions taken by 
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apps and businesses based on this data. With the creation and expansion of big data, there will likely be a 
greater need for scientists. They must assist in identifying the most important business questions and the 
associated data requirements. Data preprocessing [3,4] is one of the major phases within the knowledge 
discovery process. The global objective of data preprocessing is to remove unwanted variability or effects 
from the signal so that the useful information related to the property(ies) of interest can be used for efficient 
modeling [5]. Preprocessing of data involves various steps, including data cleaning, where missing values 
need to be filled, outliers should be identified, and smoothing out inconsistent and noisy data. In data 
integration, redundancy should be handled, and aggregation, generalization, normalization and attribute 
construction are performed in data transformation.Presently, the amount of generated data is growing 
exponentially following the emergence of thebig data phenomenon [6,17]. Data reduction techniques perform 
this simplification by selecting and deleting redundant and noisy features and/or instances, or by discretizing 
complex continuous feature spaces. This allows the input to maintain its original structure and meaning 
while at the same time obtaining a much more manageable size [8]. In [9], proper data preprocessing can 
eliminate changes in process or system conditions, as well as in data collection or transmission effects 
beforehand, which result in more parsimonious models evaluated by Famili et al. Growing amounts of data 
produced by modern process monitoring and data acquisition systems have resulted in correspondingly large 
data processing requirements, and therefore, efficient techniques for automatic data preprocessing are 
important [10]. Preprocessing the data for proper interpretation is a form of feature extraction that 
conditions the input data to allow easier subsequent feature extraction and increased resolution [11]. The use 
of principal components has been extensively studied[12]. The main goal of identifying principal components 
is to select proper attributes for data analysis. Identifying principal components involves checking the linear 
dependency among independent variables in a set of data attributes. According to Makiewicz et al. an 
important issue in principal component analysis is the interpretation of the component to help determine, 
after the reduction of the observation space, which initial variables have the greatest share in the variance of 
particular principal components [13]. Chatfield et al, showed that the EDA includes checks on data quality, 
the calculation of summary statistics and the plotting of appropriate graphs. The main objectives of EDA are 
data description and model formulation. As regards data description, it begins by summarizing the data and 
picking out the more important features. There are many situations where EDA is vital in generating 
hypotheses, building a suitable model and suggesting an appropriate statistical procedure to analyze a given 
data set[14]. In this chapter, a comprehensive analysis is being performed on the collected data set. Firstly, 
preprocessing techniques are used to increase the efficiency of the data set. EDA helps to understand the 
relationship between variables in data,while PCA reduces complexity through feature selection and 
dimensionality reduction. By constructing an evolutionary matrix for the logistic regression modeland 
rootmeansquarederror for the linear regression model, the performance of the model would be evaluated. 

 
SYSTEM PROCESS MODEL 

 
The framework or workflow of this analytics process model or system focuses on the following steps, each of 
which has its own prescribed task or significance in evaluating or understanding the functionality of the 
system. The commencement of the model starts with inserting unstructured data as input. Data 
preprocessing is crucial in preparing data for analysis. Most commonly, it involves null value treatment, 
outlier detection and duplication handling. Handling null values is essential to ensuring that the model can 
use all variables, detecting and treating outliers is important as they can negatively affect the accuracy of the 
model; and duplication handling improves data quality. The next EDA is performed to understand the 
relationship between variables within the data set. PCA helps to decrease complexity by using dimensionality 
reduction. The final step is to interpret the result of the analysis, and thus, the output data is ready to be used 
for model building. The complete flow of the data process is depicted in Fig. 2.1. 
 

 
Figure 2.1: Block diagram of the system process model 
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PRE-PROCESSING 

 
The data preprocessing can often have a significant impacton the generalization performance of the 
MLalgorithm [15].The elimination of noise instances is one of themost difficult problems in inductive ML 
[16]. Typically, the deleted instances have an excessive number of null feature values and are highly 
deviant.Theseoutliers are another name for deviant traits. Additionally, choosing a single sample from a large 
data set is a frequent strategy to deal with the impossibility of learning from very large data sets. Another 
problem that is frequently addressed in the data preparation stages is missing data handling.Feature 
selection is theprocess of identifyingand removing as much irrelevant and redundant informationas possible. 
This reducesthe dimensionality of the data andmay allow learning algorithms to operate faster and 
moreeffectively. Insome cases, accuracy in future classificationcan be improved. 
 
NULL VALUE TREATMENT 
 
In a dataset, the presence of empty cells, rows, and columns, referred to as null or missing values, leads to 
inconsistency in the dataset. Missing values may generate bias and affect the quality ofthe outcome [17,18]. 
The reason behind N-V could be that data does not exist, or data has been deleted accidentally, or the value is 
notrelevant to a particular case, could not be recorded whenthe data was collected, or is ignoredby users 
because ofprivacy concerns[19,20]. So, the detection of N-V is important in order to make the data set 
efficient for processing or ready for applying modeling stuff. Here, Python code is being used to detect N-V in 
data sets. Reading and detecting missing values in data sets are shown in Fig. 3.1.1. 
 
train=pd.read_csv('train.csv') 
test=pd.read_csv('test.csv') 
print('Training data shape: ', train.shape) 
print('Testing data shape: ', test.shape) 
train.head() 

 

 
Figure 3.1.1: Head of the dataset 

 
Figs. 3.1.2(a) and 3.1.2(b) show the count or percentage of missing values in every column of the train and 
test datasets,respectively which gives an idea about the distribution of N-V. 
 
train_missing= missing_values_table(train) 
train_missing 
test_missing= missing_values_table(test) 
test_missing 

 
Figure 3.1.2: Missing value summary of test dataset 
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From the above outcome,it can be seen that both the train and test sets have the same proportion of missing 
values.After detecting N-V in data sets, it is important to treat them too. There are some techniques,such as 
dropping methods, backward and forward filling techniques and statistical imputation,using which N-V can 
be treated. In the dropping method, either drop the rows or columns that contain N-V. Here, thedropna() 
function is being used to remove all the rows with N-V in the data frame,as depicted in figs.3.1.3(a) and 
3.1.3(b), respectivelyfor the train and test datasets, respectively.   
 
import pandas as pd 
df = pd.read_csv('train.csv') 
newdf = df.dropna() 
print(newdf) 
df = pd.read_csv('test.csv') 
newdf1 = df.dropna() 
print(newdf1) 
 

 
Figure 3.1.3: (a) Dropping method for handling N-V in train dataset (b) Dropping method for handling N-V 

in test dataset. 
 
Nevertheless, this approach has certain disadvantages, including the potential to lose important data, reduce 
the sample size, or introduce bias into the data distribution.In backward and forward filling,the missing 
values are replaced with the next available observation and the most recent available observation, 
respectively, the figs. 3.1.4(a) and 3.1.4(b) illustrate the forward and backward filling processes, respectively. 
 
df = pd.read_csv('train.csv') 
df.ffill(axis = 1) 
df = pd.read_csv('test.csv') 
df.bfill(axis = 1) 
 

 
Figure 3.1.4: (a)Forward-filling for handling N-V in train dataset (b) Backward-filling for handling N-V in 

test dataset 
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i.Inthe statistical (mode) imputation method, the most frequently occurring value of the dataset replaces the 

N-Vs. It is preferred if the data is a string(object) or numeric. The corresponding Python code is shown 
below. Figure3.1.5 depicts the result after mode imputation to null values. 
 

ii.df = pd.read_csv('test.csv') 
mode_values = df.mode().iloc[0] 
df_filled = df.fillna(mode_values) 
print(df_filled) 
df = pd.read_csv('train.csv') 
mode_values = df.mode().iloc[0] 
df_filled = df.fillna(mode_values) 
print(df_filled) 
 

 
Figure 3.1.5:Mode imputation for handling N-V in (a) train dataset, (b) testdataset 

 
The drawback of mode imputation isthat it skews the histograms and also underestimates the variance in the 
data. It changes the statistical nature of the data. However, it is the most common method of data 
imputation.After treating N-Vwith any of these methods, the count or percentage of N-Vof the feature 
variables becomes zero.  
 

OUTLIERS DETECTION 
 
An outlier is an observation that is numerically distant from the rest of the data. The intuitive definition ofan 
outlier would be an observation that deviates so much fromother observations as to arouse suspicionsthat it 
was generated by different mechanisms[21].Therefore, outliersmay generate errors in the EDA process 
[22].Multiple reasons cause outliers to appear in a dataset, such as equipment malfunction, data 
misunderstood or formulated incorrectly, or an unclear response misread by the user. A typing error is an 
inaccuracy that happens whenerrors in interpretation occur when data is copied or transcribed, either 
manually or by a computer. Sampling frame errors also occur when a unit that is not part of the target 
population is unintentionally included in the sample.Outlierscan have deleterious effects on statistical 
analyses. First, they generally serve to increase error variance andreduce the power ofstatistical tests. Second, 
if non-randomly distributed, they can decrease normality (and inmultivariate analyses, violate assumptions 
ofsphericity and multivariate normality),altering the odds of making bothType I and Type II errors. Third, 
they can seriously bias or influence estimatesthat may be ofsubstantive interest [23]. So, detecting and 
handling outlier values in the dataset is crucial in order to make data pre-processing effective.Here,the 
Pandas preloaded data frame (the diabetes dataset) is used to detect the outliers that arose during the data 
analysis step.Some python code associated with importing libraries, dataset as well as the reading of the data 
is mentioned below:  
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import sklearn 
from sklearn.datasets import load_diabetes 
import pandas as pd 
diabetics = load_diabetes() 
column_name = diabetics.feature_names 
df_diabetics = pd.DataFrame(diabetics.data) 
df_diabetics.columns = column_name 
print(df_diabetics.head()) 
 

 
Fig 3.2.1: Dataset head view 

 
The detection and removal of outliers can be done using visualization or statistical approach. Box plot, scatter 
plot, z-score and IQR (Inter Quartile Range) methods are used for detecting and removing outliers in the 
data set. 

i.Box plot 
With just a basic box and whiskers, it efficiently and effectively captures the data summary. Boxplot uses the 
25th, 50th, and 75th percentiles to summarize sample datawith knowledge about quartiles, medians, and 
outliers of the data set. The following codes are used in this regard: 
 
import seaborn as sns 
sns.boxplot(df_diabetics['bmi']) 
Infigure 3.2.2(a), the dotted points represent the outliers of the data set, which are removed in figure 
3.2.2(b)using the Box plot. 
 
def removal_box_plot(df, column, threshold): 
removed_outliers = df[df[column] <=threshold] 
sns.boxplot(removed_outliers[column]) 
plt.show() 
return removed_outliers 
threshold_value = 0.12 
no_outliers = removal_box_plot(df_diabetics, 'bmi', threshold_value) 
 

 
Figure 3.2.2: (a) Boxplot before outlier handle (b) Boxplot after outlier handle 

 
ii. Scatterplot 
The scatter plot is the collection of points that shows values for two variables. In figure 3.2.3,it can be seen 
thatmost of the data points are in the bottom left corner, but a few points arepresent near the top rightcorner 
of the graph. Those points in the top right corner can be regarded as outliers. Outlier detection using 
scatterplot is depicted in figure 3.2.3(a) using the following Python code: 
fig, ax = plt.subplots(figsize=(6, 4)) 
ax.scatter(df_diabetics['bmi'], df_diabetics['bp']) 
plt.show() 
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Now the removal of outliers using scatterplot needs some conditions, and the conditions are considered 
𝑏𝑚𝑖 > 0.12 𝑜𝑟 𝑏𝑚𝑖 < 0.8 after close observation in scatterplot. The following Python codes are used to 
remove the outliers using  the scatterplot method, which is illustrated in figure 3.2.3(b).  
outlier_indices = np.where((df_diabetics['bmi'] > 0.12) & (df_diabetics['bp'] < 0.8)) 
no_outliers = df_diabetics.drop(outlier_indices[0]) 
fig, ax_no_outliers = plt.subplots(figsize=(6, 4)) 
ax_no_outliers.scatter(no_outliers['bmi'], no_outliers['bp']) 
plt.show() 
 

 
Figure 3.2.3: (a) Scatter-plot before outlier handle (b) Scatter-plot after outlier handle 

 
iii.Z-score 

Z-score describes any data point by finding their relationship with the standard deviation and mean of the 
group of data points. Z-score is finding the distribution of data where the mean is 0 and the standard 
deviation is 1. The following Python code is used to find the Z-score function defined in the Scipy library to 
detect the outliers. Figure3.2.4(a) illustrates the z-score corresponding to the ‘age’ variable in the dataset.  
from scipy import stats 
import numpy as np 
z = np.abs(stats.zscore(df_diabetics['age'])) 
print(z) 
To remove the outliers using z-score, a threshold value (here it is 2) needs to be set. “np.where()” is used to 
identify the position where the absolute Z score is greater than the specified threshold. It shows the position 
of outliers in any particular feature variable based on the Z-score criteria. The following Python code checks 
the data frame shape before and after removal using the Z-score method, and the output is depicted in 
3.2.4(b).  
threshold_z = 2 
outlier_indices = np.where(z >threshold_z)[0] 
no_outliers = df_diabetics.drop(outlier_indices) 
print("Original DataFrame Shape:", df_diabetics.shape) 
print("DataFrame Shape after Removing Outliers:", no_outliers.shape) 
 

 
Figure 3.2.4: (a) Z-score value of the ‘age’, (b) Outliers before and after handling 

 
 
iv.IQR 

IQR is also known as the midspread or middle 50%, it is the measure of statistical dispersion, being equal to 
the difference between 75th and 25th percentiles, or between upper and lower quartiles, IQR = Q3 − Q1.Here 
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we are calculating the interquartile range (IQR) for the ‘bmi’ column in the DataFrame. It first computes the 
Q1 and Q3 using the midpoint method, then calculates the IQR. 
Q1 = np.percentile(df_diabetics['bmi'], 25, method='midpoint') 
Q3 = np.percentile(df_diabetics['bmi'], 75, method='midpoint') 
IQR = Q3 - Q1 
print(IQR) 
The above python code generates an IQR value equal to 0.06520763. The next stepis to define the base value 
in order to define the outlier, where 𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 =  𝑄3 +  1.5 ∗ 𝐼𝑄𝑅 and 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 =  𝑄1 –  1.5 ∗ 𝐼𝑄𝑅. 
upper_array = np.array(df_diabetics['bmi'] >= upper) 
print("Upper Bound:", upper) 
print(upper_array.sum()) 
lower_array = np.array(df_diabetics['bmi'] <= lower) 
print("Lower Bound:", lower) 
print(lower_array.sum()) 
The above code in Python returns the upper bound and lower bound equal to 0.128790 and -0.132040, 
respectively. This IQR value is used to remove outliers in any particular column. The corresponding Python 
code illustrated below:  
 
df_diabetes.drop(index=upper_array, inplace=True) 
df_diabetes.drop(index=lower_array, inplace=True) 
print("New Shape: ", df_diabetes.shape) 
Python returns after executing the above codes as: Old Shape: (442,10) and New Shape: (439,10). 
 

DUPLICATE VALUE TREATMENT 
 
Duplicated records that refer to the same entity with variations in their values represent a commonerror in 
datasets and are dealt with duplicate detection methods [24,25]. It can affect the quality, performance, and 
reliability of models. Depending on the application task, duplicate detection is referred to in the bibliography 
under different terms [26]. While integrating data from multiplesources, the amount of data increases,and 
data isalso duplicated [27] for various reasons, such as human errors, data entry mistakes, data merging or 
appending, web scraping, or data collection methods.Here, a dataset named ‘calls for service’ from thenew 
Orleans platform is used. Some Python code associated with importing libraries, datasets and reading the 
data is mentioned below: 
 
import pandas as pd 
twenty15_df = pd.read_csv("Calls_for_Service_2015.csv") 
twenty15_df.head() 
 

 
Figure 3.2.5: Head of the dataset 

 
In handling duplicate data, the first step is to identify and quantify it. Depending on the type and structure of 
the data, different tools and techniques are available to detect duplicate data. Here we are using Pandas in 
Python to check duplicate rows or columns in a dataframe using the following method:  
twenty15_df.duplicated() 
Eliminating duplicate data is the easiest and most direct method of handling it. In addition to increasing the 
effectiveness and precision of models, this can lower noise and redundancy in the dataset. In 
Pandas,df.drop_duplicates() method is there to remove duplicate rows or columns, specifying the subset, 
keep, and inplace arguments. Figure 3.2.6 illustrates the dataset after the treatment. 
twenty15_df.drop_duplicates() 
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Figure 3.2.6: Dataset after duplicate value treatment from the whole dataset 

 
Column wise duplicate value treatment can also be implemented using the following Python code as 
illustrated in Figure 3.2.7.  
twenty15_df.drop_duplicates(['TypeText']) 
 

 
Figure 3.2.7: Dataset after duplicate value treatment from ‘TypeText’ feature 

 
EDA 
Exploratory Data Analysis (EDA) is a well-established statistical tradition that provides conceptual and 
computational tools for discovering patterns to foster hypothesis development and refinement [28]. 
It is an important initial stepfor any knowledge discovery process[29] in which data scientists interactively 
explore unfamiliar datasets by issuing asequence of analysis operations (e.g., filter, aggregation, 
andvisualization). The goal of EDA is to discover patterns in data. But in broad outline, it includes checks on 
data quality, the calculation of summary statistics, the plotting of appropriate graphs, and perhaps the use 
ofmore complicated data-analytic techniques such asprincipal component analysis. 
This chapter analyzesEDA on the "bank marketing campaign" dataset. First,it is needed to refine the raw data 
through various stages like preprocessing, feature engineering, which includes data integration, analysis, 
cleaning, transformation and dimension reductionetc. The preprocessing methods were already discussed in 
previous sections of this chapter.The python code associated with importing libraries and datasets, as well as 
the reading and analysis of the data, is mentioned below: 
import pandas as pd, numpy as np 
import matplotlib.pyplot as plt, seaborn as sns 
bdf= pd.read_csv("bank_marketing_updated_v1.csv") 
bdf.head() 
 

 
Figure 4.1: Dataset (bdf) Head view 

 
In the dataset, there are multiple types of data types (numerical, categorical, ordinal etc.).We need to have 
ideas about those. Before proceeding to analysis, the preprocessing of the dataset is required for the missing 
value (in the 3.1 section) and handling of outliers (in the 3.2 section).  If there are anyunnecessary features, 
drop them. In order to make the analytical process smooth, standardization of values needs to be performed, 
where we standardize units, scale values if required, remove extra characters etc.  
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UNIVARIATE ANALYSIS 

 
Univariate analysis is thetype of quantitative data analysis. It's used to describe, summarize, and find 
patterns in the data from a single variable. Here,a univariate analysis of categorical unordered and 
categorical ordered datais observed. Unordered values like‘marital status’, ‘job’ whose analysis is given 
below:  
 
bdf.marital.value_counts(normalize=True).plot.barh() 
plt.show() 
bdf.job.value_counts(normalize=True).plot.barh() 
plt.plot() 
 
The first two lines of the code are used to observe the horizontal bar plot of the “marital” feature. The last 
three lines generate the horizontal bar plot for the“job” feature. Figure 4.1.1(a) illustrates the bar plots where 
it is found that the married category has the largest response and the divorced category is the least class of 
the marital feature. Figure 4.1.1(b) also declares that the blue-collar and management classes have very high 
counts, while students and housemaidshave the least class in the “job” feature.  
 

 
Figure 4.1.1: (a) horizontal bar chart for “marital” (b) horizontal bar chart for “job” 

 
In the data set,some categorical ordered features are also present, such as “education”, “poutcome” etc. 
which can be analyzed using univariate analysis. Here, pie-charts and bar chartshave been considered to 
analyze the categorical ordered features as depicted in figure 4.1.2(a-c).The following first two Python codes 
are used to get the piechart for the “education” feature and the last four codes generate the bar plots for the 
“poutcome” feature with and without the “unknown” class, respectively.  
 
bdf.education.value_counts(normalize= True).plot.pie() 
plt.show() 
bdf.poutcome.value_counts(normalize= True).plot.bar() 
plt.show() 
bdf[-(bdf.poutcome=="unknown")].poutcome.value_counts(normalize= True).plot.bar() 
plt.show() 
 

 
Figure 4.1.2: (a) Education pie-chart (b) poutcome with unknown bar chart (c) poutcome without unknown 

bar chart 
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BIVARIATE ANALYSIS 

 
Bivariate analysis is one of the statistical analyses where the relation between two variables is observed (often 
denoted as x and y). It is used to find empirical relationships among bivariate data. Bivariate analysis is 
carried out by scatter plot, regression analysis, correlation coefficients etc. In this chapter, three types of 
bivariate analysis have been done. those are given below:  
Numeric-Numeric Variable Analysis: Using a scatter plot the pattern of dependencies of two numeric values 
(balance and salary) is shown in Figure 4.2.1(a) and the corresponding Python codes are given below: 
plt.scatter(bdf.salary, bdf.balance) 
plt.show() 
 
Numeric-CategoricVariableAnalysis: The dependencies of numeric (salary) and categorical (response) values 
aredepicted in figure 4.2.1(b) using a box plot and the Python code for the box plot is illustrated below. 
sns.boxplot(data=bdf,x="response", y="salary") 
plt.show() 
Categorical-Categorical Variable Analysis: The bivariate analysis of two categorical variable‘marital status’ 
and‘response rate’ is shown in figure 4.2.1(c). First, it is needed to create a temporary variable of numeric 
data type where the response rate “yes” =1 and “no” =0, then the calculation of the mean of that temporary 
variable with different marital status categories is done. Here, a bar graph is used to show the dependencies 
of marital status with the average value of that temporary variable. Thefollowing three Python codes are used 
to do the bivariate analysis between marital status and response flag mean.  
bdf["response_flag"]=np.where(bdf.response=="yes", 1, 0) 
bdf.groupby(["marital"])["response_flag"].mean().plot.barh() 
plt.show() 
 

 
Figure 4.2.1:Bivariate analysis on (a) both numeric variables(b) numeric-categoric variable (c) both 

categoricvariables 
 

MULTIVARIATE ANALYSIS 
 
A statistical method for comprehending the connections between several variables at once is multivariate 
analysis [30]. Deeper insights beyond those obtained from univariate or bivariate analysis alone can be 
obtained by enabling researchers to examine intricate connections and patterns within their data sets. 
Multivariate analysis allows for the simultaneous examination of numerous variables, allowing for the 
detection of underlying patterns and trends. This facilitates more informed decision-making in a variety of 
domains, including economics, psychology, and biology.Here authors code for heatmaps using correlation 
matrix and pivot table which are shown below:  
 
sns.heatmap( bdf[["salary","balance", "age"]].corr(), annot= True, cmap= "Reds") 
plt.show() 
res=pd.pivot_table(data=bdf, index="education", columns="marital", 
values="response_flag") 
sns.heatmap(res, annot= True, cmap="RdYlGn") 
plt.show() 
res=pd.pivot_table(data=bdf, index="job", columns="marital", values="response_flag") 
sns.heatmap(res, annot= True, cmap="RdYlGn") 
plt.show() 
The first two lines of code generate a heatmap using the correlation matrix among “salary”, “balance” and 
“age” features. It has been observed that negligible correlations exist among the features considered. 
Negligible correlation insights are a good choice of feature for model building using machine learning 
algorithms. The heatmap is depicted in figure 4.3.1(a). 
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Figure 4.3.1: (a) heatmap for “salary”, “balance”, “age” features (b) heatmap for “education”, “marital”, 

“responseflag” (c) heatmap for “job”, “marital”, “responseflag” 
 
Figure 4.3.1(b) illustrates the response flag values for all existing combinations between “education” and 
“marital”features, which can be found by coding the third, fourth and fifth lines of code mentioned above. 
There are some observations in terms of response flag found ranging from 10% to 18% for different 
combinations of marital and educational status. The last three lines of the code represent figure 4.3.1(c) 
where the heatmap generates between the combinations of marital and job status based on the response flag 
value. The response values lie between 0% to 30%.  
 
PCA 
Principal Component Analysis [32] is the general name for a technique that uses sophisticated underlying 
mathematical principles to transform a number of possibly correlatedvariables into a smaller number of 
variables called principal components.PCA is a multivariate technique that analyzes a data table in 
whichobservations are described by several inter-correlated quantitative dependent variables. Its goal is 
toextract important information from the statistical data, represent it as a set of new orthogonalvariables 
called principal components, and display the pattern of similarity between the observationsand the variables 
as points in spot maps.The central idea of principal componentanalysis is to reduce the dimensionality of a 
data set in which there are a large number of interrelatedvariables, while retaining as much as possible of the 
variation present in the data set.The process involves converting the original variables into a new set known 
as the principal components (PCs), which are uncorrelated and arranged so that the first few maintain the 
majority of the variation seen in all of the original variables.In this chapter, analysis of the principle 
component is done on the“iris” dataset, and the following code is related to reading and analyzing data, 
importing libraries, and datasets. The head of the dataset is depicted in figure 5.1. 
 
from sklearn.datasets import load_iris 
from sklearn.decomposition import PCA 
import matplotlib.pyplot as plt 
import seaborn as sns 
import pandas as pd 
import numpy as np 
X = iris.data 
y = iris.target 
df = pd.DataFrame(X,columns=iris.feature_names) 
df['Label']=y 
df['Species']=df['Label'].map({0: 'setosa', 1: 'versicolor', 2: 'virginica'}) 
df.head() 
 

 
Figure 5.1: Head view of the iris detaset 
Identifying the directions (principal components) that the data most frequently fluctuates along is how 
Principal Component Analysis (PCA) operates.PCA requires that the data be centered at 0. Centering the data 
at 0 (mean-centering) is important in PCA for some reasons, such as the removal of the mean, covariance 
calculation etc. But using sklearn, this could be done automatically.  
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pca = PCA() 
X_pca = pca.fit_transform(X) 
pca_df = pd.DataFrame(X_pca,columns=['PC1','PC2','PC3','PC4']) 
df = pd.merge(df, pca_df, right_index=True, left_index=True) 
To determine how much information each principal component retains from the original data, it is essential 
to look at the variance explained by each component. The significance of each component in capturing the 
variability of the dataset is ascertained by looking at the amount of variation that each primary component 
explains.In this case, nearly all of the variance (92.5%) is explained by PC1 alone. 
 
print('Explained Variance Ratio') 
for i in range(4): 
print('PC{}: {}'.format(i+1,pca.explained_variance_ratio_[i])) 
Visualizing data in one dimension in PCA helps to understand how much variance is captured by a single 
component and how the data points are distributed along this component. Now we are using PC1 to visualize 
the data in one dimension. From the strip plot depicted in figure 5.2, it is shown that the setosa category can 
be entirely distinguished from the other two by this component. Although the other two species are mostly 
separable, they experience some significant overlap, which could make classification difficult with PC1 
alone.The corresponding Python code is written below: 
 
sns.stripplot(x="PC1", y="Species", data=df,jitter=True) 
plt.title('Iris Data Visualized in One Dimension'); 
 

 
Figure 5.2: One dimension iris data with PCA1 only 

 
In order to explain more variance,the required number of principal components should be known. 
precent_of_variance_explained = .95 
pca = PCA(n_components=precent_of_variance_explained) 
pca_data = pca.fit_transform(X) 
print("{} Principal Components are required to explain {} of the variation in this 
data.".format(pca.n_components_,precent_of_variance_explained)) 
Above python code returns that the 2 PCA are required to explain 0.95 % variation in the iris dataset. By 
plotting the correlation between the number of primary components and the variance explained, we are able 
to verify that two is a natural number of dimensions for our data.Below the lines, finally visualize the dataset 
with only 2 dimensions.Anlmplot can be seen in figure 5.3. 
sns.lmplot(x='PC1',y='PC2',data=df,hue='Species',fit_reg=False) 
plt.title('Iris Data Visualized in Two Dimensions'); 
plt.show() 
 

 
Figure 5.3: Two-dimension iris data with PCA1 and PCA2 only 
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Conclusion 

 
This study leads us through an insightful excursion acrossthe essential stages of data analysis, from initial 
preprocessing to exploratory data analysis (EDA) and culminating in the powerful dimensionality reduction 
technique known as principal component analysis (PCA). Real-world data tend to be incomplete, 
inconsistent, noisy and missing. Thus data preprocessing is one of the important phases for data analysis. At 
the initial stage of the excursion, authors get into the preprocessing phase, which is important yet often 
overlooked.To prepare the dataset for analysis, authors clean up the data, deal with missing values and 
outlier treatments, and standardize or normalize our features. After preprocessing, authors commence the 
exploratory phase, where the chapter uncover hidden insights, patterns, and anomalies.Authors are able to 
make more informed decisions and generate assumptions by developing a more thorough comprehension of 
the structure of the data through statistical summaries, correlation analysis, and visualizations. Thenext step 
is principal component analysis, where authorsidentify its fundamental structure and minimize its 
dimensionality while keeping as much information as possible. PCA enables to extract the key features of the 
dataset.To sum up, "Data Odyssey" provides clarity and purpose as it navigates the complex terrain of PCA, 
EDA, and preprocessing, illuminating the way to successful data analysis. By embracing these fundamental 
methods, authors start on an expedition of exploration, discovering the unrealized potential of the data and 
redirecting the direction toward deeper insight and useful intelligence. 
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