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ARTICLE INFO ABSTRACT 
This study investigates the price dynamics of Bitcoin and Ethereum using a 
descriptive research design to analyze historical price data from April 2019 to April 
2024. Daily price data for Bitcoin and Ethereum is sourced from reputable financial 
databases and cryptocurrency market websites. In this study advanced econometric 
techniques, are used to identify patterns and develop a model for future price 
prediction. Key methodologies include the Augmented Dickey-Fuller (ADF) test for 
stationarity, the Johansen cointegration test for long-term equilibrium 
relationships, and the Vector Error Correction Model (VECM) to examine short-term 
dynamics and long-term adjustments. The VECM highlights the interdependencies, 
showing that Bitcoin significantly influences Ethereum prices, with Ethereum 
exhibiting a self-corrective mechanism. 
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INTRODUCTION 
 

The relationship between Bitcoin and Ethereum prices has gathered significant attention from researchers and 
investors due to their prominent roles in the cryptocurrency market. Bitcoin, introduced in 2009, is the first 
and most widely recognized cryptocurrency, often viewed as a digital gold standard (Nakamoto, 2008). 
Ethereum, launched in 2015, brought innovative blockchain applications through smart contracts, 
distinguishing itself from Bitcoin’s singular focus on peer-to-peer transactions (Buterin, 2014). 
Understanding their price dynamics is crucial, as their movements can provide insights into market trends, 
investor behavior, and the broader economic implications of cryptocurrency adoption (Corbet et al., 2018). 
Bitcoin and Ethereum, as the leading cryptocurrencies, exhibit complex interrelationships influenced by 
various factors such as market demand, technological advancements, and regulatory developments. As the 
leading cryptocurrencies, Bitcoin and Ethereum exhibit complex interrelationships influenced by various 
factors such as market demand, technological advancements, and regulatory developments (Baur et al., 
2018; Fry & Cheah, 2016). Additionally, macroeconomic trends, market liquidity, and innovations within 
the blockchain ecosystem contribute to the dynamic interplay between their prices (Katsiampa, 2019). 
Studying these relationships can reveal insights into the cryptocurrency market’s structure and potential 
future trends. 

 
LITERATURE REVIEW 

 
The study of the relationship between Bitcoin and Ethereum prices has attracted significant academic and 
professional interest due to the prominent roles these cryptocurrencies play in the digital asset market. Bitcoin, 
the first cryptocurrency introduced by Nakamoto (2008), is often viewed as digital gold, serving primarily 
as a store of value. Ethereum, proposed by Buterin (2014), expanded the blockchain’s potential by 
introducing smart contracts and decentralized applications (DApps), making it a vital platform for blockchain 
innovation. Several studies have examined the correlation and causality between Bitcoin and Ethereum prices. 
Ji et al. (2019) found a significant positive correlation between the two, suggesting that price movements in 
Bitcoin often lead to similar movements in Ethereum. This correlation can be attributed to the overall market 
sentiment and the fact that Bitcoin often serves as a gateway for investors entering the cryptocurrency market. 
The dynamic relationship between Bitcoin and Ethereum has also been analyzed through the lens of market 
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dynamics and spillover effects. Corbet et al. (2018) explored volatility spill overs between Bitcoin and 
Ethereum, indicating that shocks in Bitcoin prices can significantly affect Ethereum prices. Their findings 
suggest that market shocks in Bitcoin, due to its dominance and large market capitalization, have a considerable 
impact on Ethereum and potentially other altcoins. 

Further research by Katsiampa (2019) studies the volatility dynamics within the cryptocurrency 
market. The study highlighted that Bitcoin’s volatility often translates into Ethereum’s price volatility, 
reinforcing the interconnected nature of their market behaviors. The high volatility in both cryptocurrencies 
can be attributed to speculative trading, regulatory news, and technological developments, which often affect 
the entire market. From an investment perspective, Bouri et al. (2017) analyzed the hedging and 
diversification properties of Bitcoin and Ethereum. They found that while both cryptocurrencies can serve as 
diversification tools, their high correlation during market downturns limits their effectiveness as hedges. This 
underscores the importance of understanding the relationship between their prices for portfolio management 
and risk assessment. 

Technological advancements and developmental updates also play a crucial role in the price 
relationship between Bitcoin and Ethereum. Innovations such as Bitcoin’s Lightning Network and Ethereum’s 
transition to Ethereum 2.0 impact their prices differently, yet the broader market often reacts collectively to 
significant technological milestones. This collective market behavior suggests a shared investor base that is 
sensitive to technological progress in the blockchain space (Cheng & Yen, 2020). Regulatory news and 
government actions significantly influence the price dynamics of both Bitcoin and Ethereum. Regulatory 
announcements can lead to synchronized price movements, reflecting the market's reaction to perceived legal 
risks and future prospects for cryptocurrency adoption (Foley et al., 2019). The regulatory environment 
remains a critical factor in the price relationship between these two leading cryptocurrencies. The relationship 
between Bitcoin and Ethereum prices is characterized by significant positive correlation, volatility spill overs, 
and collective market behavior influenced by technological advancements and regulatory news. 
Understanding these dynamics is crucial for investors, policymakers, and researchers aiming to navigate the 
complex cryptocurrency market. The dynamics of cryptocurrency prices, particularly the interplay between 
Bitcoin and Ethereum, have been a subject of extensive research in recent years. Scaillet et al. (2017) 
utilized data from the Mt. Gox exchange to analyze the price dynamics of Bitcoin, noting that jumps in price 
have a short-term positive impact on market activity and illiquidity. Saad et al. (2018) focused on Bitcoin, 
exploring network features that explain price hikes, emphasizing user and network activity as key drivers of 
price movements. Liang et al. (2018) conducted a dynamic network analysis of Bitcoin, Ethereum, and 
Namecoin, finding that the degree distribution of transaction networks differs among cryptocurrencies. 
Giudici et al. (2019) aimed to understand how price information is transmitted between different crypto 
market exchanges, proposing a Vector Autoregressive model to explain Bitcoin price evolution. Kumar et al. 
(2019) studied volatility spill over across major cryptocurrencies, including Bitcoin and Ethereum, using a 
multivariate GARCH model. Drozdz et al. (2019) studied multiscale cross-correlations involving Bitcoin 
and Ethereum, noting similarities in exchange rate fluctuations between the cryptocurrency market and the 
Forex market. Sifat et al. (2019) investigated the lead- lag relationship between Bitcoin and Ethereum, 
employing various statistical tests to identify price leadership. Brown (2019) presented a mathematical 
model of the BitShares protocol, analyzing incentive mechanisms for token holders. Bejaoui et al. (2019) 
examined the dynamics of daily returns and volatilities of Bitcoin, Litecoin, Ethereum, and Ripple, applying 
the MS-ARMA model. Qureshi et al. (2020) investigated multiscale interdependencies among leading 
cryptocurrencies, including Bitcoin and Ethereum, using wavelet-based analyses. Zheng et al. (2020) 
studied information flow between prices and transaction volumes in the cryptocurrency market, emphasizing 
the need for dynamic calculations. Telli et al. (2020) tested structural breaks in crypto markets, analyzing 
return and volatility series of Bitcoin, Ethereum, and other assets. Kumar (2021) explored market efficiency 
in cryptocurrencies, while Giudici et al. (2021) focused on price discovery through correlation networks. 
SEVİNÇ et al. (2021) analyzed the volatility dynamics of Bitcoin returns using the EGARCH method, 
highlighting asymmetric effects of shocks. Xie (2021) investigated the interplay between investor activity and 
market trading dynamics in the Bitcoin market, finding limited value-relevant information for future price 
prediction. Nascimento et al. (2022) extracted behavior rules for predicting returns in Bitcoin, Ethereum, 
Litecoin, and Ripple. Horta et al. (2022) analyzed co-movements between cryptocurrency shocks and stock 
returns in G7 countries. Assaf et al. (2023) examined the impact of the COVID-19 pandemic on 
information flow among cryptocurrencies and conventional financial assets, using transfer entropy to 
determine the dynamics of the series. Overall, these studies contribute to a better understanding of the price 
interplay between Bitcoin and Ethereum, shedding light on the complex dynamics of the cryptocurrency 
market. 

 
RESEARCH METHODOLOGY 

 
Research Design 
This study employs a descriptive research design to analyze and forecast the price dynamics of Bitcoin (BTC) 
and Ethereum (ETH). The descriptive approach is suitable for this research as it involves systematically 
analyzing historical price data to identify patterns and relationships, and subsequently developing a model for 
future price prediction (Babbie, 2020). 
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Sample Size and Data Collection 
The sample for this study comprises daily price data for Bitcoin and Ethereum over a five-year period, from 
April 2019 to April 2024. The data are collected from secondary sources, including reputable financial 
databases (https://coincodex.com), academic journals, and cryptocurrency market websites. (Kothari, 
2004). 

 
Analytical Framework 
The following steps outline the analytical framework employed in this study: 
Descriptive Statistics: Initial analysis involves computing descriptive statistics to summarize the central 
tendency, dispersion, and distribution of Bitcoin and Ethereum prices (Gujarati & Porter, 2009). 
Stationarity Test: To determine the stationarity of the time series data for Bitcoin and Ethereum prices, the 
Augmented Dickey-Fuller (ADF) test is employed (Dickey & Fuller, 1979). The ADF test helps in identifying 
the presence of a unit root in the time series, which is essential for further econometric analysis. 
Conduct the ADF test on the time series data to check for stationarity (Dickey & Fuller, 
1979).   The Dickey-Fuller test is testing if ϕ=0 in this model of the data: 

yt = α+βt+ϕyt−1+et .......................................................................................................................................... (1) 
which is written as 

Δyt = yt−yt−1 = α+βt+γyt−1+ et…………….. ..................................................................... (2) 
where yt is your data. It is written this way so we can do a linear regression of Δyt against t and yt−1 and test 
if γ is different from 0. If γ=0, then we have a random walk process. If not and −1<1+γ<1, then we have a  
stationary process. 
The Augmented Dickey-Fuller test allows for higher-order autoregressive processes by including Δyt−p in the 
model. But our test is still if γ=0. 

Δyt=α+βt+γyt−1+δ1Δyt−1+δ2Δyt−2+ ................................................... (3) 
The null hypothesis for both tests is that the data are non-stationary. 
Cointegration Analysis: The Johansen cointegration test is utilized to examine the long-term equilibrium 
relationship between Bitcoin and Ethereum prices (Johansen, 1988). Johansen cointegration test is 
performed to identify any long-term equilibrium relationship between the two cryptocurrencies (Johansen, 
1988). 

 
Model Specification and Estimation: To explore the interrelationship and dynamic effects between 
Bitcoin and Ethereum prices, the Vector Error Correction Model (VECM) is applied (Engle & Granger, 
1987). The VECM includes lagged values of the variables, which aids in estimating both the instantaneous 
and dynamic effects of the relationship up to 'n' lags. This model is particularly useful for understanding the 
short- term dynamics and the adjustment towards long-term equilibrium. 

 
Diagnostic Testing: Conduct diagnostic tests to ensure the robustness and validity of the VECM, including 
tests for autocorrelation, heteroscedasticity, and normality of residuals (White, 1980; Breusch & Pagan, 
1979). 
Forecasting: Use the VECM to forecast future price movements of Bitcoin and Ethereum, analyzing both the 
short-term and long-term implications of their interrelationship (Engle & Granger, 1987). 
Software used: All statistical analyses and econometric modeling are conducted using EViews 12 software, 
which is well-suited for handling time series data and performing complex econometric tests (IHS Global 
Inc., 2020). 

 
DATA ANALYSIS 

 
Augmented Dickey-Fuller (ADF) test to determine the presence of unit roots in the price series of Bitcoin and 
Ethereum. The ADF test is performed at both the level and the first difference of the series as presented in 
Table 1. 

Table 1: Unit Root Test 
Series Level P Value Null Conclusion 
Bitcoin Base 0.6527 Fail to Reject Non Stationary 
Bitcoin 1st Difference 0.0000 Reject Stationary 
Ethereum Base 0.5643 Fail to Reject Non Stationary 
Ethereum 1st Difference 0.0000 Reject Stationary 

 
The ADF test results indicate that both Bitcoin and Ethereum price series are non-stationary at their levels (p- 
values > 0.05). However, after taking the first difference, both series become stationary (p-values = 0.0000), 
indicating that the series are integrated of order one, I(1) (Dickey & Fuller, 1979). These findings confirm 
that both Bitcoin and Ethereum price series are non-stationary at their levels but become stationary after first 
differencing, suggesting that they can be modeled using techniques suitable for I(1) series, such as cointegration 
analysis and error correction models (Engle & Granger, 1987). Given the results of the Augmented 
Dickey- Fuller (ADF) tests, which indicate that both Bitcoin and Ethereum price series are integrated of order 
one, I(1), we proceed to test for cointegration between the two series using the Johansen cointegration test. 
This test is suitable for examining the presence of cointegration in multivariate time series data and can 
identify one or more cointegrating vectors if they exist (Johansen, 1988). 
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Selecting the appropriate lag length for the Vector Autoregressive (VAR) model is crucial for accurate 
parameter estimation and reliable inference. Information criteria such as the Akaike Information Criterion 
(AIC) and the Bayesian Information Criterion (BIC) are commonly used to determine the optimal lag length. 
Based on the results presented in Table 2, which show the log-likelihood (LogL) values and various information 
criteria for different lag lengths in the Vector Autoregressive (VAR) model, we can determine the appropriate 
lag length for our analysis. 

 
Table 2: VAR Order Selection Criteria 

 

Lag LogL LR FPE AIC SC HQ 
0 -1107.983 NA 7.52e+13 37.62653   37.69695   37.65402 
1 -1009.536 186.8817* 3.06e+12 34.42495 34.63622* 34.50742* 
2 -1005.092 8.134813 3.02e+12* 34.40990* 34.76202 34.54735 

 

Considering the results presented in Table 2, of the likelihood ratio test and the information criteria (AIC, SC, 
and HQ), we conclude that a VAR model with one lag is the most appropriate for our analysis (Akaike, 
1974). This model provides a good balance between explanatory power and model complexity, ensuring 
reliable inference while capturing the essential dynamics of the data. The Johansen cointegration test involves 
two statistics: the Trace test and the Maximum Eigenvalue test. These tests evaluate the null hypothesis of no 
cointegration against the alternative hypothesis of the presence of one or more cointegrating relationships 
among the series. 

 
Table 3: Unrestricted Cointegration Rank Test (Trace) 

 

Hypothesized No. of CE(s)  
Eigenvalue 

Trace Statistic 0.05 
Critical Value Prob.** 

None 0.143515 10.82849 15.49471 0.0022 

At most 1 0.031280 1.843231 1.841465 0.2046 
 

Table 4: Unrestricted Cointegration Rank Test (Maximum Eigen Value) 
 

Hypothesized No. of CE(s)  
Eigenvalue 

Max-Eigen Statistic 0.05 
Critical Value Prob.** 

None 0.143515 8.985256 14.26460 0.0074 

At most 1 0.031280 1.843231 1.841465 0.1006 
 

In Table 3, the Trace Statistic of 10.828 for the null hypothesis of no cointegration and 1.843 for the hypothesis 
of at most one cointegrating equation are juxtaposed against critical values at the 5% significance level. Notably, 
the p-values associated with these statistics are 0.0022 and 0.2046, respectively. These results suggest that 
while there is insufficient evidence to reject the null hypothesis at the 5% significance level that there is no 
cointegrating equation, the hypothesis of at most one cointegrating equation cannot be dismissed outright, 
indicating the potential presence of a long-term relationship among the variables with one cointegrating vector 
(Johansen, 1988). 
Similarly, in Table 4, the Max-Eigen Statistic values of 8.985 and 1.843 for the null and alternative hypotheses, 
respectively, are compared to critical values at the 5% significance level. The associated p-values of 0.0074 and 
0.1006 further reinforce the observations made in Table 3. These results suggest that while there is insufficient 
evidence to reject the null hypothesis at the 5% significance level that there is no cointegrating equation, the 
hypothesis of at most one cointegrating equation cannot be dismissed outright, indicating the potential 
presence of a long-term relationship among the variables with one cointegrating vector (Johansen, 1988). 
Given the evidence suggesting the presence of at least one cointegrating vector among the variables under 
examination, as indicated by the unrestricted cointegration rank tests, it is prudent to proceed with a Vector 
Error Correction Model (VECM) analysis. The identification of a cointegrating vector implies a long-term 
relationship among the variables, which can be exploited to capture both short-term dynamics and long-term 
equilibrium adjustments (Johansen, 1991). 
The VECM framework is particularly well-suited for modeling such relationships, offering several advantages 
over traditional time series models. By incorporating both the short-term dynamics captured by the error 
correction terms and the long-term equilibrium relationship represented by the cointegrating vector(s), VECM 
provides a comprehensive framework for analyzing the dynamic interactions among the variables (Engle & 
Granger, 1987). 

 
Table 5: Vector Error Correction Model (VECM) 

Error Correction: D(ETHER... D(BITCOIN_PRICE) 
CointEq1 -0.263999 -1.005292 

 (0.12136) (1.95749) 
 [-2.17537] [-0.51356] 
D(ETHEREUM_PRICE... -0.287257 -7.752367 
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 (0.17439) (2.81285) 

[-1.64723] [-2.75606] 
D(BITCOIN_PRICE(-1)) 0.026988 0.541327 

 (0.01299) (0.20954) 
 [ 2.07749] [ 2.58343] 
C 38.53194 830.2629 
 (49.7389) (802.280) 
 [ 0.77468] [ 1.03488] 

R-squared 0.257739 0.174562 
Adj. R-squared 0.217252 0.129538 
Sum sq. resids 7690291. 2.00E+09 
S.E. equation 373.9298 6031.423 
F-statistic 6.365969 3.877093 
Log likelihood -431.1664 -595.2259 
Akaike AIC 14.75140 20.31274 
Schwarz SC 14.89225 20.45359 
Mean dependent 51.75797 977.9644 

S.D. dependent 422.6482 6464.648 

Determinant resid covariance (dof adj.) 2.52E+12 
Determinant resid covariance 2.19E+12 
Log likelihood -1005.682 
Akaike information criterion 34.42989 
Schwarz criterion 34.78202 

Number of coefficients 10 
 

The VECM framework incorporates both short-term dynamics and long-term equilibrium adjustments, making 
it particularly suitable for analyzing time series data with cointegrated variables (Johansen, 1991). As shown 
in Table 5 the results of the Vector Error Correction Model (VECM), providing insights into the dynamic 
relationships among the variables of interest. The error correction coefficients, denoted under the Error 
Correction column, capture the speed of adjustment towards the long-term equilibrium relationship 
represented by the cointegrating vector(s). Notably, the coefficient estimate for the cointegrating vector 
"CointEq1" suggests a negative relationship between Ethereum and Bitcoin indicating a long-term equilibrium 
adjustment effect (Johansen, 1991). The appropriate model is selected based on the Akaike Information 
Criterion (AIC). In the present study, we observe that the AIC values for the Ethereum and Bitcoin equations 
are 14.7510 and 20.32714, respectively. This implies that the model associated with Ethereum exhibits a 
superior fit relative to that of Bitcoin, as indicated by its lower AIC value. 
The estimated coefficients for the Vector Error Correction Model (VECM) provide valuable insights into the 
dynamic relationships among the variables under investigation. Each coefficient represents the effect of a 
specific variable or lagged difference term on the dependent variable, Ethereum price, after controlling for 
other variables in the model. Based on the p-value and t-statistics the final Vector Error Correction Model 
which can be considered is: 
 
D (ETHEREUM PRICE) =C(1)*D( BITCOIN PRICE (-1))) +C(3)*D(ETHEREUM PRICE(-1)) + C(8) 

 
Table 6: Vector Error Correction Model (VECM) 
 Coefficient Std. Error t-Statistic Prob. 
C(1) -0.241269 0.011577 3.564640 0.0008 
C(3) -0.356205 0.177106 -2.011257 0.0491 

C(8) 26.62672 51.05772 0.521502 0.0041 

 
The final Vector Error Correction Model (VECM) as presented in Table 6 for Ethereum price, based on the 
selected coefficients, reveals valuable insights into the dynamic relationships among the variables. The 
coefficient C(1) = -0.241269 exhibits statistical significance at the 1% level, with a t-statistic of 3.564 and a p- 
value of 0.0008. This coefficient suggests that a one-unit increase in the lagged difference of Bitcoin price leads 
to a decrease of approximately 0.24 units in the current period's Ethereum price, holding other variables 
constant correcting the equation at the speed of 24%. Similarly, coefficient C(3) = -0.356 is statistically 
significant at the 5% level, with a t-statistic of -2.011 and a p-value of 0.0491. It indicates that a one-unit 
increase in the lagged difference of Ethereum price results in a decrease of approximately 0.356 units in the 
current period's Ethereum price, controlling for other variables. On the other hand, coefficient C(8) = 26.626 
is not statistically significant at conventional levels, but its p-value of 0.0041 suggests some evidence against 
the null hypothesis. This constant term captures other factors affecting Ethereum price not accounted for by 
lagged differences in Bitcoin and Ethereum prices, contributing to the overall model fit. Residual diagnostics 
help validate the underlying assumptions of the model. By examining the residuals for patterns or systematic 
deviations from randomness, researchers can identify potential violations of assumptions such as 
linearity, homoscedasticity, and normality of errors (Enders, 2015; Hamilton, 1994). Addressing these 
violations is crucial for ensuring the reliability and robustness of the model's estimates and inferences. The 
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joint test for heteroskedasticity as presented in Table 7, assesses whether there is evidence of varying levels of 
error variance across the observations. 

 
Table 7: Heteroskedasticity Test for Residuals 

Joint test: 

  Chi-sq df Prob.  
   59.53170 18 0.2000 

 

With a p-value of 0.2000, we fail to reject the null hypothesis of homoskedasticity at conventional levels of 
significance (e.g., 5% significance level). This suggests that there is no strong evidence of heteroskedasticity in 
the residuals of the VECM model (Enders, 2015). 

 
Table 8: Serial Correlation Test for Residuals 

Lag LRE* stat df Prob. Rao F-stat df Prob. 
1 9.229867 4 0.0556 2.388951 (4, 104.0) 0.0556 
2 9.108268 4 0.0584 2.356094 (4, 104.0) 0.0585 

 
As shown in Table 8, Both lag 1 and lag 2 tests produce p-values slightly above the conventional significance 
level of 0.05. This indicates that there is weak evidence against the null hypothesis of no serial correlation at 
the respective lags. However, it's worth noting that the probabilities are close to the threshold, suggesting a 
marginal departure from the assumption of serially uncorrelated residuals. 

 
Table 9: Normality Test for Residuals 

 
 Component Jarque-Bera df Prob.  

1 25.30658 2 0.3126 

2 21.69814 2 0.3364 

  Joint 47.00473 4 0.4125  
 

As presented in Table 9, both components exhibit p-values well above the conventional significance level of 
0.05, suggesting no evidence to reject the null hypothesis of normality for each individual component. 
Furthermore, the joint test for both components indicates a lack of significant departure from normality, with 
a Jarque-Bera statistic of 47.004 and 4 degrees of freedom, resulting in a p-value of 0.4125. These results imply 
that there is no significant departure from normality in the residuals of the model components. Therefore, the 
assumptions of normality underlying the model appear to be met, enhancing the reliability of the model's 
parameter estimates and inferences (Enders, 2015; Hamilton, 1994). 

 
FINDINGS 

The final Vector Error Correction Model (VECM) for Ethereum price, detailed in Table 6, provides significant 
insights into the dynamic relationships among the variables analyzed. The coefficient (C(1) = -0.241 is 
statistically significant at the 1% level, with a t-statistic of 3.564 and a p-value of 0.0008. This coefficient 
indicates that a one-unit increase in the lagged difference of Bitcoin price results in a decrease of approximately 
0.24 units in the current period's Ethereum price, suggesting that Bitcoin prices substantially influence 
Ethereum prices. This influence is evident as price of Ethereum is adjusted at a speed of 24% to correct 
deviations from the long-term equilibrium. 

Similarly, the coefficient C(3) = -0.356 is statistically significant at the 5% level, with a t-statistic of -
2.011 and a p-value of 0.0491. This finding reveals that a one-unit increase in the lagged difference of 
Ethereum price leads to a decrease of about 0.356 units in the current period's Ethereum price. This negative 
relationship indicates a self-corrective mechanism within the Ethereum market, highlighting that past price 
changes in Ethereum negatively impact current price changes, thus contributing to market stability. 

 
CONCLUSION 

 
The VECM provides evidence of cointegration between Ethereum and Bitcoin prices, indicating a long-term 
equilibrium relationship between the two cryptocurrencies. The model highlights the importance of Bitcoin 
price as a driver of Ethereum price dynamics, with Ethereum exhibiting a corrective mechanism to changes in 
Bitcoin price. Additionally, Ethereum price demonstrates its own self-adjusting behavior, suggesting an 
inherent stability mechanism within the Ethereum market. Overall, the VECM offers valuable insights into the 
interplay between Ethereum and Bitcoin prices, aiding in the understanding and prediction of cryptocurrency 
market dynamics. 
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MANAGERIAL IMPLICATIONS 
Investment Strategy Formulation: Understanding the dynamic relationships between Ethereum and 
Bitcoin prices can inform investment strategies. The negative relationship between Bitcoin price and Ethereum 
price suggests that investors may need to consider the impact of changes in Bitcoin price on Ethereum price 
movements. Portfolio managers may adjust their asset allocations and risk management strategies accordingly 
to mitigate potential losses or capitalize on opportunities arising from these price dynamics. 

 
Risk Management Practices: The corrective mechanism observed in Ethereum price adjustments to 
changes in Bitcoin price implies potential risks associated with high correlation between the two 
cryptocurrencies. Financial institutions and investors may need to implement robust risk management 
practices to hedge against adverse movements in cryptocurrency prices. Diversification across different asset 
classes and hedging strategies can help mitigate the impact of cryptocurrency market volatility on investment 
portfolios. 

 
Market Analysis and Forecasting: The VECM framework provides a powerful tool for market analysis and 
forecasting in cryptocurrency markets. By modeling the long-term equilibrium relationship between Ethereum 
and Bitcoin prices, market participants can make informed decisions about trading strategies, timing of 
transactions, and asset allocation. Accurate forecasts derived from the VECM can enhance decision-making 
processes and improve investment outcomes. 

 
Policy Development: Policymakers and regulatory authorities can leverage insights from the VECM to 
formulate effective policies and regulations governing cryptocurrency markets. Understanding the interplay 
between Ethereum and Bitcoin prices can help policymakers identify potential systemic risks, market 
inefficiencies, and emerging trends that may require regulatory intervention. Regulatory frameworks that 
promote transparency, stability, and investor protection can foster confidence and trust in cryptocurrency 
markets, facilitating their sustainable growth and development. 
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