Harmonic Mean Cordial Labeling of Some Cycle Related Graphs

Harsh Gandhi ${ }^{* *}$, Jaydeep Parejiya ${ }^{2}$, M M Jariya ${ }^{3}$, Ramesh Solanki ${ }^{4}$

${ }^{1}$ Research Scholar, Children's University, Gandhinagar - 382021, Gujarat (INDIA), Email ID: hrgmaths@gmail.com
${ }^{2}$ Lecturer, Government Polytechnic College, Rajkot - 360004, Gujarat (INDIA), Email ID: parejiyajay@gmail.com
${ }^{3}$ Associate Professor, Children's University, Gandhinagar - 382021, Gujarat (INDIA), Email ID: mahesh.jariya@gmail.com
4Lecturer, Government Polytechnic College, Vyara - 394650, Gujarat (INDIA), Email ID: rameshsolanki_maths12@yahoo.com
*Corresponding Author: Harsh Gandhi
*Research Scholar, Children's University, Gandhinagar - 382021, Gujarat (INDIA), Email ID: hrgmaths@gmail.com
Citation: Harsh Gandhi, et al (2024) Harmonic Mean Cordial Labeling Of Some Cycle Related Graphs, Educational Administration: Theory and Practice, 30(1), 1180-1188
Doi: 10.53555/kuey.v30i1.6074

ARTICLE INFO

Abstract

All the graphs considered in this article are simple and undirected. Let $\boldsymbol{G}=$ $(\boldsymbol{V}(\boldsymbol{G}), \boldsymbol{E}(\boldsymbol{G})$) be a simple undirected Graph. A function $\boldsymbol{f}: \boldsymbol{V}(\boldsymbol{G}) \rightarrow\{\mathbf{1}, \mathbf{2}\}$ is called Harmonic Mean Cordial if the induced function $\boldsymbol{f}^{*}: \boldsymbol{E}(\boldsymbol{G}) \rightarrow\{\mathbf{1}, \mathbf{2}\}$ defined by $f^{*}(u v)=\left\lfloor\frac{2 f(u) f(v)}{f(u)+f(v)}\right\rfloor$ satisfies the condition $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\mid e_{f}(i)-$ $\boldsymbol{e}_{\boldsymbol{f}}(\boldsymbol{j}) \mid \leq \mathbf{1}$ for any $\boldsymbol{i}, \boldsymbol{j} \in\{\mathbf{1}, \mathbf{2}\}$, where $\boldsymbol{v}_{\boldsymbol{f}}(\boldsymbol{x})$ and $\boldsymbol{e}_{\boldsymbol{f}}(\boldsymbol{x})$ denotes the number of vertices and number of edges with label \boldsymbol{x} respectively and $[x\rfloor$ is the floor function. A Graph \boldsymbol{G} is called Harmonic Mean Cordial graph if it admits Harmonic Mean Cordial labeling. In this article, we have discussed Harmonic Mean Cordial labeling of Some Cycle Related Graphs.

Keywords: Harmonic Mean Cordial Labeling, Cycle, Helm graph, Web Graph, Total Graph

AMS Subject Classification (2020): 05C78, 05C76

1. Introduction

The notion of graph labeling in graph theory has garnered significant attention from scholars because of its wide-ranging and rigorous applications in domains such as communication network design and analysis, military surveillance, social sciences, optimization, and linear algebra. Various graph labelings are documented in the current body of literature. A dynamic survey of graph labeling by Gallian [1] is a condensed compilation of a lengthy bibliography of articles on the subject.

Let $G=(V(G), E(G))$ be a simple undirected Graph. Recall from [2] that a function $f: V(G) \rightarrow\{1,2\}$ is called Harmonic Mean Cordial if the induced function $f^{*}: E(G) \rightarrow\{1,2\}$ defined by $f^{*}(u v)=\left|\frac{2 f(u) f(v)}{f(u)+f(v)}\right|$ satisfies the condition $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for any $i, j \in\{1,2\}$, where $v_{f}(x)$ and $e_{f}(x)$ denotes the number of vertices and number of edges with label x respectively and $\lfloor x\rfloor$ is the greatest integer less than or equals to x. A Graph G is called Harmonic Mean Cordial graph if it admits Harmonic Mean Cordial labeling. Motivated by the interesting results proved in [2, 3, 4] and on Root Cube Mean Cordial Labeling in [5], we have discussed HMC labeling of Harmonic Mean Cordial labeling of Some Cycle Related Graphs.

Definition 1.1. [1] The armed crown is a graph in which path P_{2} is attached at each vertex of cycle C_{n} by an edge. It is denoted by $A C r_{n}$ where n is the number of vertices of cycle C_{n}.
Definition 1.2. [1] The helm graph H_{n} is the graph obtained from a wheel W_{n} by attaching a pendent edge at each vertex of the cycle.
Definition 1.3. [1] A web graph $W b_{n}$ is the graph obtained by joining the pendent vertices of a helm to form a cycle and then adding a single pendent edge to each vertex of this outer cycle.

Definition 1.4. [1] The Flower graph $F l_{n}$ is obtain from helm H_{n} by joining each pendent vertex to the apex of the helm.
Definition 1.5. [1] The Tadpole (Kite) is formed by joining the end point of a path P_{n} to a cycle C_{m}. It is denoted by $C_{m} @ P_{n}$.
Definition 1.6. [1] Let G be a graph with two or more vertices then the total graph T (G) of graph G is the graph whose vertex set is $V(G) \cup E(G)$ and two vertices are adjacent whenever they are either adjacent or incident in G.

In Theorem 2.1 we have proved that Armed Crown graph $A C r_{n}$ is HMC. The Helm graph H_{n} is HMC proved in Theorem 2.3. It is shown that The Web graph $W b_{n}$ is HMC in Theorem 2.5. In Theorem 2.7, it is proved that the Flower graph $F l_{n}$ is HMC. In theorem 2.9 and 2.11 we have derived the condition on natural numbers m, n for which the Tadpole (Kite) graph $C_{m} @ P_{n}$ is HMC. It is shown in Theorem 2.12 that the Total Path graph $T\left(P_{n}\right)$ is HMC.

2. Main Results

Theorem 2.1. The Armed crown $A C r_{n}$ is HMC.
Proof. Let $G=(V, E)=A C r_{n}$ be the armed crown graph. Note that $|V|=|E|=3 n$. Let $V=\left\{x_{1}, x_{2}, \ldots, x_{3 n}\right\}$ be the vertex set of G as shown in the following figure - 1:

Case 1: 3n is even

Define a labeling function $f: V\left(A C r_{n}\right) \rightarrow\{1,2\}$ as follows,
$f\left(x_{i}\right)=\left\{\begin{array}{l}2 \text { if } 1 \leq i \leq \frac{3 n}{2} \\ 1 \text { if } \frac{3 n}{2}+1 \leq i \leq 3 n\end{array}\right.$
Then $v_{f}(1)=v_{f}(2)=\frac{n}{2}$ and $e_{f}(1)=e_{f}(2)=\frac{n+2}{2}$. So, we have $\left|v_{f}(1)-v_{f}(2)\right|=0$ and $\left|e_{f}(1)-e_{f}(2)\right|=0$.

Case 2: $3 n$ is odd

Define a labeling function $f: V\left(A C r_{n}\right) \rightarrow\{1,2\}$ as follows,
$f\left(x_{i}\right)=\left\{\begin{array}{l}2 \text { if } 1 \leq i \leq \frac{3 n+1}{2} \\ 1 \text { if } \frac{3 n+3}{2} \leq i \leq 3 n\end{array}\right.$
Then $v_{f}(1)=\frac{3 n-1}{2}, v_{f}(2)=\frac{3 n+1}{2}$ and $e_{f}(1)=\frac{3 n-1}{2}, e_{f}(2)=\frac{3 n+1}{2}$. So, we have $\left|v_{f}(1)-v_{f}(2)\right|=1$ and $\mid e_{f}(1)-$ $e_{f}(2) \mid=1$.
Hence, $A C r_{n}$ is HMC.

Illustration 2.2. HMC labeling of $A C r_{5}$ and $A C r_{6}$ is shown in following figure -2.

Figure - 2
Theorem 2.3. The Helm graph H_{n} is HMC.
Proof. Let $G=(V, E)=H_{n}$ be the Helm graph. Note that $|V|=2 n+1$ and $|E|=3 n$. Let $V=\left\{v, x_{1}\right.$, $\left.x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right\}$ be the vertex set of G as shown in the following figure -2 :

Figure-3

Case 1: \boldsymbol{n} is even

Define a labeling function $f: V\left(H_{n}\right) \rightarrow\{1,2\}$ as follows,
$f(v)=2$,
$f\left(x_{i}\right)=2$, if $1 \leq i \leq \frac{n}{2}+1$,
$f\left(y_{i}\right)=2$, if $1 \leq i \leq \frac{n}{2}-1$,
$f\left(x_{i}\right)=1$, if $\frac{n}{2}+2 \leq i \leq n$ and
$f\left(y_{i}\right)=1$, if $\frac{n}{2} \leq i \leq n$.
Then $v_{f}(1)=n, v_{f}(2)=n+1$ and $e_{f}(1)=e_{f}(2)=\frac{3 n}{2}$. So, we have $\left|v_{f}(1)-v_{f}(2)\right|=1$ and $\left|e_{f}(1)-e_{f}(2)\right|=0$.
Case 2: n is odd
Define a labeling function $f: V\left(H_{n}\right) \rightarrow\{1,2\}$ as follows,
$f(x)=2$,
$f\left(x_{i}\right)=2$, if $1 \leq i \leq \frac{n+1}{2}$,
$f\left(y_{i}\right)=2$, if $1 \leq i \leq \frac{n-1}{2}$,
$f\left(x_{i}\right)=1$, if $\frac{n+3}{2} \leq i \leq n$ and
$f\left(y_{i}\right)=1$, if $\frac{n+1}{2} \leq i \leq n$.
Then $v_{f}(1)=n, v_{f}(2)=n+1$ and $e_{f}(1)=\frac{3 n+1}{2}, e_{f}(2)=\frac{3 n-1}{2}$. So, we have $\left|v_{f}(1)-v_{f}(2)\right|=1$ and $\mid e_{f}(1)-$ $e_{f}(2) \mid=1$.
Hence, The Helm graph H_{n} is HMC.
Illustration 2.4. HMC labeling of H_{6} and H_{7} is shown in following figure -4 .

Figure - 4
Theorem 2.5. The Web graph $W b_{n}$ is HMC.
Proof. Let $G=(V, E)=W b_{n}$ be the Web graph. Note that $|V|=3 n+1$ and $|E|=5 n$. Let $V=$ $\left\{x, x_{1,1}, x_{1,2}, \ldots, x_{1, n}, x_{2,1}, x_{2,2}, \ldots, x_{2, n}, x_{3,1}, x_{3,2}, \ldots, x_{3, n}\right\}$ be the vertex set of G as shown in the following figure 5:

$W b_{n}$
Figure-5

Case 1: $3 n+1$ is even

Define a labeling function $f: V\left(W b_{n}\right) \rightarrow\{1,2\}$ as follows,
$f(x)=2$,
$f\left(x_{1, i}\right)=2$, if $1 \leq i \leq n$,
$f\left(x_{2, i}\right)=2$, if $1 \leq i \equiv 0(\bmod 2) \leq n$,
$f\left(x_{2, i}\right)=1$, if $1 \leq i \equiv 1(\bmod 2) \leq n, f\left(x_{3, i}\right)=1$, if $1 \leq i \leq n$. Then $v_{f}(1)=v_{f}(2)=\frac{3 n+1}{2}$ and $e_{f}(1)=\frac{5 n+1}{2}$, $e_{f}(2)=\frac{5 n-1}{2}$. So, we have $\left|v_{f}(1)-v_{f}(2)\right|=0$ and $\left|e_{f}(1)-e_{f}(2)\right|=1$.

Case 2: $3 n+1$ is odd

Define a labeling function $f: V\left(W b_{n}\right) \rightarrow\{1,2\}$ as follows,
$f(x)=2$,
$f\left(x_{1, i}\right)=2$, if $1 \leq i \leq n$,
$f\left(x_{2, i}\right)=2$, if $1 \leq i \equiv 1(\bmod 2) \leq n$,
$f\left(x_{2, i}\right)=1$, if $1 \leq i \equiv 0(\bmod 2) \leq n$,
$f\left(x_{3, i}\right)=1$, if $1 \leq i \leq n$. Then $v_{f}(1)=\frac{3 n}{2}, v_{f}(2)=\frac{3 n+2}{2}$ and $e_{f}(1)=e_{f}(2)=\frac{5 n}{2}$. So, we have $\left|v_{f}(1)-v_{f}(2)\right|=$ 1 and $\left|e_{f}(1)-e_{f}(2)\right|=0$.
Hence, The Web graph $W b_{n}$ is HMC.
Illustration 2.6. HMC labeling of H_{6} and H_{7} is shown in following figure - 6 .

Figure - 6
Theorem 2.7. The Flower graph $F l_{n}$ is HMC.
Proof. Suppose $G=(V, E)=F l_{n}$ be the Flower graph. Note that $|V|=2 n+1$ and $|E|=4 n$. Let $V=$ $\left\{x, x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}, x_{n+2}, \ldots, x_{2 n}\right\}$ be the vertex set of G as shown in the following figure -7 :

Figure-7

Define a labeling function $f: V\left(F l_{n}\right) \rightarrow\{1,2\}$ as follows,
$f(x)=2$,
$f\left(x_{i}\right)=2$ if $1 \leq i \leq n$ and
$f\left(x_{i}\right)=1$ if $n+1 \leq i \leq 2 n$.
Then $v_{f}(1)=n, v_{f}(2)=n+1$ and $e_{f}(1)=e_{f}(2)=2 n$. So, we have $\left|v_{f}(1)-v_{f}(2)\right|=1$ and $\left|e_{f}(1)-e_{f}(2)\right|=$ 0.

Hence, Flower graph $F l_{n}$ is HMC
Illustration 2.8. HMC labeling of $F l_{5}$ is shown in following figure -8 .

Theorem 2.9. The Tadpole $C_{m} @ P_{n}$ is HMC for $m+n$ is even or $m+n$ is odd and $m<n$.
Proof. Let $G=(V, E)=C_{m} @ P_{n}$ be the tadpole graph. Note that $|V|=|E|=m+n-1$. Let $V=$ $\left\{x_{1}, x_{2}, \ldots, x_{m+n-1}\right\}$ be the vertex set of G as shown in the following figure -9:

$C_{m} @ P_{n}$
Figure-9

Case 1: $m+n$ is even

Define a labeling function $f: V\left(C_{m} @ P_{n}\right) \rightarrow\{1,2\}$ as follows,
$f\left(x_{i}\right)=\left\{\begin{array}{l}2 \text { if } 1 \leq i \leq \frac{m+n}{2} \\ 1 \text { if } \frac{m+n+2}{2} \leq i \leq m+n-1\end{array}\right.$
Then $v_{f}(1)=\frac{m+n-2}{2}, v_{f}(2)=\frac{m+n}{2}$ and $e_{f}(1)=\frac{m+n-2}{2}, e_{f}(2)=\frac{m+n}{2}$. So, we have $\left|v_{f}(1)-v_{f}(2)\right|=1$ and $\mid e_{f}(1)-$ $e_{f}(2) \mid=1$.

Case 2: $m+n$ is odd and $m<n \forall m, n \in \mathbb{N}$
Define a labeling function $f: V\left(C_{m} @ P_{n}\right) \rightarrow\{1,2\}$ as follows,
$f\left(x_{i}\right)=\left\{\begin{array}{l}2 \text { if } 1 \leq i \leq \frac{m+n-1}{2} \\ 1 \text { if } \frac{m+n+1}{2} \leq i \leq m+n-1\end{array}\right.$
Then $v_{f}(1)=v_{f}(2)=\frac{m+n-1}{2}$ and $e_{f}(1)=e_{f}(2)=\frac{m+n-1}{2}$. So, we have $\left|v_{f}(1)-v_{f}(2)\right|=0$ and $\left|e_{f}(1)-e_{f}(2)\right|=$ 0.

Hence, The Tadpole $C_{m} @ P_{n}$ is HMC for $m+n$ is even or $m+n$ is odd and $m<n$.
Illustration 2.10. HMC labeling of $C_{5} @ P_{5}$ and $C_{5} @ P_{6}$ is shown in following figure - 10.

Theorem 2.11. The Tadpole $C_{m} @ P_{n}$ is not HMC for $m+n$ is odd and $m>n$.
Proof. Let $G=(V, E)=C_{m} @ P_{n}$ be the tadpole graph. Note that $|V|=|E|=m+n-1$ (even). Let $V=$ $\left\{x_{1}, x_{2}, \ldots, x_{m+n-1}\right\}$ be the vertex set of G as shown in the following figure -11 :

Figure-11
Suppose that G is HMC. Then we have $v_{f}(1)=v_{f}(2)=\frac{m+n-1}{2}$. Now, we consider the following cases.

Case 1: Vertex x_{m-1} has labeling 1

Note that we have at least two edges whose one end vertex is 1 and another end vertex is 2 in C_{m}. Suppose that there exist r-edges whose one end vertex is 1 and another end vertex is 2 . Then we have $e_{f}(1) \geq \frac{m+n+r-1}{2}$, $e_{f}(2) \leq \frac{m+n-r-1}{2}$. Note that $\left|e_{f}(1)-e_{f}(2)\right| \geq r>1$.

Case 2: Vertex x_{m-1} has labeling 2

Subcase 2.1: All the vertices of path have label 2. Then in C_{m} we have $\frac{m+n-1}{2}-(n-1)=\frac{m-n+1}{2}$ vertices of label 2. Hence $e_{f}(2) \leq n+\frac{m-n+1}{2}-1=\frac{m+n-1}{2}$ and $e_{f}(1) \geq \frac{m+n-1}{2}+1=\frac{m+n+1}{2}$. So, $\left|e_{f}(1)-e_{f}(2)\right| \geq n>1$. we have $\left|e_{f}(1)-e_{f}(2)\right|>1$.

Subcase 2.2: All the vertices of path have label 1. Then in C_{m} we have $\frac{m+n-1}{2}$ vertices of label 2. So, we have $m-\left(\frac{m+n-1}{2}\right)=\left(\frac{m-n+1}{2}\right) \geq 1$ vertices with labeled 1 in C_{m}. So, in this case we have at least two edges in C_{m} with one end vertex has labeled 1 and another end vertex has labeled 2. Also, edge $x_{m-1} x_{m+1}$ has one end vertex has labeled 1 and another end vertex have labeled 2. So, we have at least three edges whose one end vertex has labeled 1 and another end vertex have labeled 2. Suppose that there exist r-edges whose one end vertex is 1 and another end vertex is 2 . Then we have $e_{f}(1) \geq \frac{m+n+r-2}{2}, e_{f}(2) \leq \frac{m+n-r}{2}$. Note that $\left|e_{f}(1)-e_{f}(2)\right|=r-1>$ 1.

Subcase 2.3: If some of the vertices of labeled 2 are in P_{n} and some of the vertices of labeled 1 in C_{m} Then in C_{m} we have at least two edges with one end vertex has labeled 2 and another end vertex has labeled 1 and in P_{n} we have at least one edge with one end vertex has labeled 2 and another end vertex has labeled 1 . So, we have at least three edges whose one end vertex has labeled 1 and another end vertex have labeled 2. Suppose that there exist r-edges whose one end vertex is 1 and another end vertex is 2 . Then we have $e_{f}(1) \geq \frac{m+n+r-2}{2}$, $e_{f}(2) \leq \frac{m+n-r}{2}$. Note that $\left|e_{f}(1)-e_{f}(2)\right|=r-1>1$.
Hence, The Tadpole $C_{m} @ P_{n}$ is not HMC for $m+n$ is odd and $m>n$.
Theorem 2.12. The total path graph $T\left(P_{n}\right)$ is HMC.
Proof. Let $G=(V, E)=T\left(P_{n}\right)$ be the total path graph. Note that $|V|=2 n-1$ and $|E|=4 n-5$. Let $V=$ $\left\{x_{1}, x_{2}, \ldots, x_{2 n-1}\right\}$ be the vertex set of G as shown in the following figure -12:

Define a labeling function $f: V\left(T\left(P_{n}\right)\right) \rightarrow\{1,2\}$ as follows,
$f\left(x_{i}\right)=\left\{\begin{array}{l}2 \text { if } 1 \leq i \leq n \\ 1 \text { if } n+1 \leq i \leq 2 n-1\end{array}\right.$
Then $v_{f}(1)=n-1, v_{f}(2)=n$ and $e_{f}(1)=2 n-2, e_{f}(2)=2 n-3$. So, we have $\left|v_{f}(1)-v_{f}(2)\right|=1$ and $\mid e_{f}(1)-$ $e_{f}(2) \mid=1$.
Hence, the total path graph $T\left(P_{n}\right)$ is HMC.

Illustration 2.13. HMC labeling of $T\left(P_{5}\right)$ is shown in following figure -13 .

4. Conclusion

In this article we have proved that Armed Crown graph $A C r_{n}$, Helm graph H_{n}, Web graph $W b_{n}$, Flower graph $F l_{n}$, Total Path graph $T\left(P_{n}\right)$ are HMC. Also, we have derived the condition on natural numbers m and n for which Tadpole (Kite) $C_{m} @ P_{n}$ is HMC.

5. References

1. Gallian JA. A dynamic survey of graph labeling. Electronic Journal of combinatorics. 2022;1(Dynamic Survey):DS6.
2. Harsh Gandhi, Jaydeep Parejiya, M. M. Jariya and Ramesh Solanki. Harmonic Mean Cordial labeling of one chord C ${ }_{n}$ V G. IJMST. vol. 10. no. 4. pp. 2449-2456. Dec. 2023.
3. Gowri J. and Jayapriya J. Hmc Labeling of Certain Types of Graph. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2021 Apr 28;12(10).
4. Gowri J, Jayapriya J. HMC Labeling of Some Snake Graphs. INTERNATIONAL JOURNAL OF SPECIAL EDUCATION. 2022;37(3).
5. Jaydeep Parejiya, Premkumar Lalchandani, Daxa Jani, and Sneha Mundadiya. Some remarks on harmonic mean cordial labeling. AIP Conf. Proc. 14 November 2023; 2963 (1): 020019.
6. Jaydeep Parejiya, Sneha Mundadiya, Harsh R. Gandhi, Ramesh Solanki and Mahesh Jariya. Root Cube Mean Cordial Labeling of $K_{1, n} \times P_{m}$. AIP Conf. Proc. 14 November 2023; 2963 (1): 020020.
