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ARTICLE INFO ABSTRACT 
 Redesigning and modifying proteins is a leading objective in the pharmaceutical 

industry today. Modern technology has made it possible to efficiently redesign 
proteins by simulating mutation, natural selection, and amplification in the lab. 
There are an infinite number of possible mutations for each protein. It would be 
impossible to synthesise every sequence or even examine every version that could be 
beneficial. Recently, there has been an increase in the use of machine learning to aid 
in protein redesign, as prediction models can be used to virtually evaluate a large 
number of different sequences. Modern machine learning models, notably deep 
learning models, are poorly understood. In addition, few descriptors of protein 
sequences have been considered. This paper presents a novel classification method 
for protein sequences that is propelled by artificial intelligence. Two distinct single-
amino-acid descriptors and one structure-based, three-dimensional descriptor are 
used to create prediction models, and their effectiveness is compared. Several 
various evaluation metrics were applied to a variety of public and private data sets to 
determine the accuracy of the predictions. The study's findings indicate that the 
convolution neural network models constructed using amino acid property 
descriptors are the most pertinent to protein redesign problems encountered in the 
pharmaceutical industry. 
 
Keywords- Natural language processing; Deep learning; Protein sequence. 

 
INTRODUCTION 

 
Bioinformatics is a really multidisciplinary field because it draws on concepts from mathematics, computer 
science, genetics, and molecular biology. Numerous significant and abundant biological subjects are 
examined via the lens of computational science. The most frequent issues are those pertaining to drawing 
inferences and identifying patterns from collected data, which are essential for comprehending molecular 
biological processes. Genetics has advanced significantly in the last many years. This leads to the generation 
of massive amounts of biological data. When drawing conclusions from this type of data, state-of-the-art 
computer techniques must be used. Furthermore, effective techniques for streamlining the examination of 
consecutive data must be created. These techniques can be used to forecast and categorise sequence data. 
This enables us to summarise the results of several studies pertaining to the life sciences. As the amount and 
speed of data produced rise, data mining and machine learning techniques are becoming more and more 
crucial for these applications [1]. 
With the increasing availability of biological data, bioinformatics has advanced significantly [2-4]. 
Researchers can identify significant patterns and correlations by sorting through mounds of biological data 
with the use of data mining. Sequential pattern mining is a branch of data mining where patterns typically 
form over a few thousand bytes (20 for protein sequences and 4 for DNA sequences) or less. Sequences are 
just ordered lists that are used in a variety of sectors, such as commerce, science, security, and medicine. On 
the other hand, sequence data mining offers techniques for locating undiscovered insights inside this data 
mountain [5]. Protein sequence classification is the process of labelling proteins according to their sequences. 
The arrangement of a protein's constituent pieces is indicated by its amino acid sequence. Databases 
maintain a record of every known protein sequence. Proteins are macromolecules composed of lengthy chains 
of particular amino acid sequences. There are protein molecules that have thousands of amino acids, whereas 
others might just have a hundred. 
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Directed evolution techniques are frequently used in the pharmaceutical industry to produce proteins with 
enhanced properties. Examples include the industrial production of pharmaceuticals and drug precursors, 
when the natural enzymes may not be able to function optimally. In these cases, enzymes are used as 
catalysts. Proteins must undergo repeated experiments that simulate natural selection in order to evolve 
under control. The best parent sequence that is currently available is used at each junction to create a panel of 
changed sequences, which are then examined in vitro for desired characteristics such substrate conversion 
percentage. For example, variants that improve the synthesis of the product under particular circumstances 
are retained for future development. Directed evolution, to put it simply, is an optimisation issue within the 
enormous space of potential protein sequences. Finding beneficial mutations with a limited number of tests is 
still difficult [6]. Finding advantageous mutations could be sped considerably with the use of predictive 
models. By evaluating sequence data from real-world scenarios, machine learning algorithms can discover 
relationships between sequences and attributes. This allows algorithms to predict the characteristics of 
fictitious sequences. Computational methods can guide subsequent experimental iterations to synthesise only 
the most promising sequences. The interest in using machine learning models to solve this issue has recently 
increased. (7) 
Protein sequence optimisation can benefit from machine learning, but only if the highly informative 
sequences are given the proper descriptors. The application of protein sequence features such as amino acid 
content (dipeptide and tripeptide composition), projected secondary structure, and predicted solvent 
accessibility has proven beneficial for sequence-based protein classification and ligand docking problems. 
Various approaches have been proposed to accomplish this, including the use of k-Spaced Amino Acid Pairs 
and Conjoint Triads [8], torsion angle density and amino acid distance density histograms [9], and 3D grid 
protein-ligand architectures [10]. 
While this accomplishment has been applied to the classification and binding of proteins with ligands, the 
prediction of protein function—which is frequently assessed on an ongoing basis—remains a major difficulty. 
Although machine learning-guided protein engineering is a relatively new field of study, only few studies have 
included a large number of proteins and models. Kimothi et al. [12] and Yang et al. [13] have applied the 
doc2vec [14] word embedding model to huge protein sequence data sets. These methods use NLP cues to 
compare sequence fragments to words and protein sequences to documents. Using the embedding, one-hot 
encoding, mismatch kernel, ProFET, and AAIndex features, Yang et al. [15] tested their prediction models on 
four public data sets. By utilising a high throughput in silico model, Wu et al. [16] demonstrated how guided 
directed evolution could assist in identifying better mutants with less labour in the laboratory. Although 
several supervised learning techniques were applied, input descriptors for protein sequences were not 
specified. 
An introduction of the fundamentals of using machine learning in protein engineering is given by Yang et al. 
[17]. The authors use two case studies to demonstrate these theories. The fact that a machine-learning 
sequence-function model for proteins is addressed and supported based on a literature review complicates 
quantitative data analysis. Protein sequences provide a wealth of descriptors, but predicting biological 
features from them is difficult due to low signal-to-noise ratio experimental data. The process of choosing or 
amplifying samples for in vitro protein analysis frequently involves multiple phases. These low-volume, high-
throughput studies could yield wildly surprising results. Oftentimes, promising variants receive more 
research or confirmation. Determining how to extend forecasts to incorporate mutations not seen in the 
current data set presents another challenge. Building trustworthy prediction models that work well with the 
actual condition of the data is therefore essential. 
This study offers a methodology for using natural language processing (NLP) to the available dataset in order 
to extract the contextual elements required in order to build a framework for protein sequence classification. 
This paper describes the steps involved in effectively classifying proteins into their several categories, 
including data pre-processing, visualisation, feature engineering, modelling, training, and evaluation. CNN 
models recover high-level properties based on the ordering information of the full protein sequence, as 
opposed to other approaches that just account for altered sites.  A survey of recent presentations by a range of 
scholars whose work is relevant to the subject at hand is included in the second section of the paper. You will 
study about CNN's organisational structure in Section III. For the given dataset, Section IV presents a 
Convolutional Neural Network (CNN) based Protein sequence categorization system. The work is concluded 
in Part VI. Part V reports the findings of an experimental research that examines and discusses the efficacy of 
the suggested approach. 

 
RELATED WORK 
Drug development is a critical step in the pharmaceutical industry. Computational approaches have 
dramatically reduced the time and expense of generating new medicines. To deal with challenges of all shapes 
and sizes, we'll have to use a variety of drug screening and design methodologies. Machine learning and deep 
learning approaches, which go beyond the constraints of prior studies, are the primary emphasis of this 
section. Multi-objective evolutionary techniques were created by Wei-Li et al. [18] by combining Rama 
torsion angle sampling with loop-based resampling, stochastic rank-based selection, loop-based crossover, 
and near-native sampling. The secondary structural similarity criterion has the potential to address the 
energy function's inaccuracy. Protein secondary structure prediction was made possible by Zhou et al.'s [19] 
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use of convolutional deep neural networks (CDNN) trained with reinforcement learning. CDNN possesses a 
robust classification capability on top of the abstraction powers of CNN and the sequence data analysis skills 
of LSTM. The cross-entropy error between labels for protein secondary structures and dense layer outputs is 
used to train the CDNN architecture. Empirical validation on two independent datasets demonstrates the 
efficacy of the CDNN method. But the projection is still plausible despite the imbalances. This reduces the 
reliability of future projections. 
You et al. [20] created Deep ResNet to predict protein contact/distance and template-free protein folding. 
Protein-protein interaction and tertiary structure prediction are two areas where deep ResNet has made great 
strides in recent years. When it comes to making use of inter-residue orientation information, the proposed 
3D modelling approach is still less advanced and more fundamental. Since the proposed deep ResNet does 
not rely on evolutionary information to generate predictions about natural protein folds, it is capable of 
correctly folding the vast majority of human-created proteins. 
Xu et.al. [21] proposed that a computer technique dubbed "deep structural inference" may be used to predict 
protein residue/residue interactions using a deep-learning algorithm and template-based structural 
modelling. More than 1,200 single-domain proteins were used for the first time to make a widespread tertiary 
structure prediction. It appears that the coupling scores derived by CCMPred, which relied on the raw 
frequency distributions from multiple sequence alignments, cannot fully replace the information gained by 
statistical co-evolutionary analyses. Du et al. [22] designed a novel recurrent geometric network (RGN) that 
can predict protein structure from sequences without using any prior knowledge. When orphan and designer 
proteins don't have enough sequence similarity for multiple sequence alignment to work, this 
computationally efficient alternative has many advantages. RGN2 does this by employing a simple strategy to 
describe the geometry of the C backbone. In order to successively recreate the backbone's structure, this 
method is constrained to considering only local interactions between C atoms (curvature and torsion angles). 
By developing a multi-advanced deep belief network-based method, Guo et al. [23] enhanced protein 
secondary structure prediction. They worked together to improve forecast accuracy by over 80%. Further, the 
results demonstrated the predictive power of hidden Markov model profiles derived from emission/transition 
probabilities in identifying secondary structure. However, the network's features will be uneven. By feeding a 
protein feature vector into a DNN, including the suggested MOS descriptor with AA classification, Wang et al. 
[24] were able to accurately predict PPIs. The suggested MOS descriptor is able to account for the order 
connection of the entire AA sequence, unlike earlier protein representations like AC, CT, and LD. After careful 
deliberation, the network parameters cross entropy cost function, ADAM optimizer, and ReLU AF were 
chosen for the task. The ideal values for the other parameters, like network depth, network width, and the LR, 
were determined by computing them for the specific method. The author independently trained the DNN 
model with AC, CT, and LD to facilitate a comparison with the suggested Work. 
Another fascinating and original piece of work was conducted by Jha and Saha [25], who used an LSTM-
based classifier that included properties supplied by two separate protein modalities, namely sequence-based 
and structure-based information. Using the structural representation of the proteins, we first generated three 
distinct protein representations based on three different characteristics, and then we got corresponding 
feature sets using a ResNet50 model. Li et al. [26] released the first work on sequence-based PPI prediction 
using DNs that relied solely on auto-feature engineering, i.e., without the use of manually derived features. 
The NN architecture can only acquire knowledge from numerical input. The author modified the protein 
sequence by randomly assigning natural numbers to each amino acid. 
PPIs prediction with RNNs and embedding systems was also done by Gonzalez-Lopez et al. [27] without the 
need for feature engineering. Each sequence triplet was assigned a token (an integer) as part of the 
tokenization procedure so that the sequence could be represented numerically. Each protein's pair 
representation in the NN was fed to and analysed by two similar-looking branches. The design's FC layer 
served a unique purpose, as did the embedding and recurrent layers. To avoid over-fitting and ensure 
consistent input, we also made use of Dropout and Branch normalization. 
 
ARCHITECTURAL  FRAMEWORK OF CNN  
CNNs are among the greatest learning algorithms for comprehending visual content, and they show 
extraordinary performance in tasks relating to picture segmentation, classification, detection, and retrieval. 
The academic community isn't the only one interested in CNNs anymore. Google, Microsoft, AT&T, NEC, and 
Facebook are just a few of the major tech companies with active research groups investigating novel CNN 
designs for commercial usage. At present, deep convolutional neural network (CNN)-based models perform 
the best in image processing and computer vision (CV) contests. 
CNN's appeal comes from its capacity to make use of temporal or geographical correlation in data. There are 
several stages of learning embodied in a CNN's structure, including convolutional layers, non-linear 
processing units, and subsampling layers. A convolutional neural network (CNN) is defined by LeCun et al. 
[28] as a feedforward multilayered hierarchical network in which each layer uses a pool of convolutional 
kernels to perform different transformations. Significant characteristics can be extracted from locally 
connected data points with the help of the convolution method. The activation function takes the output of 
the convolutional kernels and incorporates non-linearity into the feature space; this has dual benefits for 
learning abstractions. This non-linearity generates unique activation patterns for unique responses, which 
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aids in learning the semantic differences between images. Subsampling is typically applied to the output of a 
non-linear activation function in order to generalise the results and prevent geometric distortions in the 
input. Because CNN can extract features automatically, a specialised feature extractor is unnecessary. Thus, 
CNN can obtain a suitable internal representation from raw pixels with no further processing required. 
Hierarchical learning, automatic feature extraction, parallel processing, and weight sharing are just a few of 
CNN's other distinguishing features. 
During training, CNN uses the backpropagation technique to learn by controlling the weight rebalancing to 
get the desired outcome. Similar to how the brain acquires knowledge through experience, a backpropagation 
algorithm optimises an objective function. Because of its multi-level, hierarchical design, Deep CNN can 
efficiently process data at varying levels of complexity. The combination of lower and middle-level features 
yields the more abstract high-level features. Like the human brain's Neocortex, CNN can dynamically learn 
properties from the raw data by extracting them in a hierarchical fashion. CNN's success is largely 
attributable to the method's ability to extract features in a hierarchical structure. [29] 
Deep designs often outperform shallow structures when dealing with severe learning difficulties. By stacking 
several linear and non-linear processing units, it becomes able to learn sophisticated representations at 
various levels of abstraction. In recognition tests including hundreds of image categories, deep CNNs 
significantly outperformed traditional vision-based models. CNNs have been increasingly popular for use in 
image classification and segmentation applications once it was discovered that deep architectures can 
increase a CNN's representational capacity. To create deep CNNs, significant technological progress and vast 
volumes of data had to be made available. [30] 
Today, CNN is among the most widely used machine learning techniques, especially in visual contexts. 
Modern ML applications benefit greatly from CNN's capacity to learn representations from grid-like input. 
Due to its superior feature creation and discriminating capabilities, CNN is frequently used in ML systems for 
both feature production and classification. 

  
PROPOSED DEEP CNN BASED PROTEIN SEQUENCE CLASSIFICATION 
This paper describes approaches such as data pre-processing, visualisation, feature engineering, modelling, 
training, and evaluation to efficiently categorise various proteins into different categories. Figure 1 illustrates 
how the entire project is primarily divided into four parts, which are outlined as follows: 
a) Dataset definition 
The dataset from kaggle.com known as the Structural Protein Sequences is used in this specific experiment. 
Protein meta data, covering subjects like protein classification and extraction techniques, makes up the first 
section of the collection. Protein structural sequences make up the collection's second section. The 
"structureID" feature of the proteins that serve as the foundation for both databases' organisation. The first 
data set has 1,41,000 rows and 14 columns, while the second data set has 4,67,000 rows but only five 
columns. The proteins utilised in this work were sourced from the Protein Data Bank (PDB) at the RCSB's 
Research Collaboratory for Structural Bioinformatics. 

 
b) Data Preprocessing 
Using the "structureID" property, we combine the two data sets into a single one in the first phase. Rows 
without appropriate names or sequences are eliminated after merging. Next, we use the 
"macromoleculeType_x" feature to filter out all macromolecule kinds other than proteins because the dataset 
contains many different types of macromolecules. The data set includes representations of many different 
kinds of macromolecules that are relevant to biology. The majority of the files contain data regarding 
proteins. Since RNA is converted into proteins by DNA and because DNA is the building block of RNA, 
proteins are the biomolecules that directly interact in biological pathways and cycles. A protein may be able to 
carry out one or two particular functions, depending on their family. For example, a protein belonging to the 
Hydrolase group works to catalyse hydrolysis, which is the process of dissolving bonds by adding water, in 
order to help break down protein chains and other compounds. A transporter protein, which facilitates the 
passage of other molecules into and out of cells, including water and sugars like fructose and sucrose, is 
another example. Furthermore, based on the total number of rows, only the top 10 protein classes are used.  
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Fig.1 Proposed Framework 

 
c) Feature Extraction 
For All ten labels are found to be categorical values. These categorical data must be translated into binary or 
numeric form because machine learning algorithms can only read numeric values. Using LabelBinarizer, the 
labels in the string are converted to a single hot representation for this. In a single hot representation, values 
are given a 1 if they are present, else a 0. The Tokenizer method from the Keras library is used to further pre-
process sequences by turning each character in the sequence into a number. Additionally, each sequence's 
length is uniformized for exact processing. Here, a character limit of 256 is applied. 
Term Frequency - Inverse Document Frequency (tfidf) [31], which is widely used in the field of NLP, is one of 
the main features that are now derived from the segmented data in this stage of the work. The word2vec 
approach is then used to extract the more detailed attributes, using the tfidf as a point of reference. The two 
statistics that are utilized in the tfidf to identify the significance of a word in a document are the frequency of 
a word's occurrence in a document (referred to as tf) and the rare or frequent appearance of the word in a 
document (referred to as idf). The parameter idf is defined as follows: where nd represents the total number 
of documents, and df(d,w) represents the number of documents that include the word w.: [32] 

1 

 
Tokenizing the training text allows for the use of the statistical distribution of tf across the dataset in order to 
compute the tfidf. The tfidf can then be determined. After that, the appropriate idf was applied to each word 
on the list. Word vectors can be generated with the help of the word2vec model by feeding it a tokenized 
corpus. To locate the words that are close to the supplied one and extract the context, we employed an 
architecture called Continuous Bag of Words (CBOW). Its structure is very similar to that of a neural network, 
and its inputs are projections. In an effort to streamline the time series, this method omits the standard non-
linear hidden layer often displayed in the output. Furthermore, the projection layer information is consistent 
across all words, and the context of the word is used as an input.  

 
d) CNN Model Training and Testing 
Several iterative rounds of testing are commonly used in protein engineering to expand the sequence space. 
New mutations can be introduced into previously unidentified and known genetic areas. In order to replicate 
the conditions of an actual application, the data is split into training and testing sets according to when they 
were collected.  The convolutional neural network (CNN) family of neural networks is widely used for image-
based applications. Each hidden node in a convolutional neural network (CNN) model receives its input from 
a condensed region of the layer above it. Convolutional layers are better than fully-linked ones because they 
can take use of these local connections to extract significant high-level properties and manage spatial 
dependency in images. Some data sources may benefit more from a 1D CNN, but most can benefit from a 2D 
CNN model's ability to take in numerous channels (such as the RGB colour channels). 
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For this investigation, a one-dimensional convolutional neural network (CNN) model on protein sequence 
data is suggested. High-level information can be extracted from surrounding sites using a 1D convolution 
filter by operating along the amino acid sequence dimension (columns) in Figure 1 (top). Either a big number 
of unique amino acid properties or a high number of input channels may be indicated by the columns. In 
Figure 2, a typical CNN architecture is displayed. 
 

 
Figure 2 Common layout for a single-dimensional CNN [33] 

 
In this case, when the input protein sequence is 300 amino acids long, we use the 11-dimensional PCscores 
descriptor as a single amino acid feature. The first block of Figure 2 depicts the 11 vertical lines of an 11x300 
matrix, which is one input characteristic for one protein. To reduce the number of features recovered, the 
following max-pooling layer downsamples along the sequence dimension after each convolutional layer 
receives input from positions in its immediate neighbourhood. Each convolutional layer contains a collection 
of filters that, like a sliding window, extract a different set of features from the underlying layer's data 
channels. Figure 2 shows an example of a convolution layer that uses 20 filters to generate a 20-channel 
output feature (the 20 vertical lines) for the layer that follows it. The first max-pooling layer then takes the 
maximum value for each of the two elements in the feature sequence to shorten the sequence by 2. Multiple 
convolution and maxpooling layers can be applied to the input feature matrix to extract features. The final 
step in processing the high-level features and performing the regression task is to use a "fingerprint vector" 
derived from the output of the convolutional layers. After that, a number of layers, each of which is fully 
connected, will be used. 
The design of the CNN architecture must also be predetermined, much like MLP. The model's architecture 
can be tailored in a variety of ways by adjusting parameters like the number of convolution and max-pooling 
layers, the number of filters in each convolution layer, the filter size and stride, and the number of fully 
connected layers that come after the flattening of the CNN's output features. The hyperparameter settings in 
2 for things like minibatch size and learning rate were used in a gridsearch. 
 
e) Classification 
Most proprietary protein engineering efforts are focused on identifying the protein sequences that allow for 
the highest possible substrate conversion. Thus, machine learning models are required to differentiate 
between protein sequences that are predicted to have high conversion and those that are not. As a result, it is 
better to build a positive or negative label based on the actual measured conversion and evaluate the 
predicted model's performance using a binary classification problem. 
 

IMPLEMENTATION AND RESULTS 
 
In order to compare the efficacy of various techniques and descriptors for predicting protein attributes, 
prediction models were trained using every possible combination of descriptor available for each data set. 
Since CNN takes a 2D matrix as input, there are 44 possible combinations of technique and descriptor. Each 
set of prediction models was trained using the other set as testing data. The following are the modifications 
made to the hyperparameters in Table 1: 
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Table 1. Hyperparameters [33] 

 
The aforementioned strategy has been successfully applied to both public and private datasets. The publicly 
available dataset contains various experimentally observed properties that can be predicted and a wide range 
of protein classifications (membrane, globular). 
This is helpful since it allows you to evaluate the broader applicability of the principles outlined here. 
Particular enzymes, starting with "Enzyme A" and going through "Enzyme D," are given unique names to 
highlight their significant involvement in the confidential information. Even though the specific chemistry at 
play in each case is unique, all of the patented enzymes are manufactured using the same precise protocol. 
This is because the end goal of all patented enzymes is substrate conversion (how quickly an enzyme turns a 
substrate into a product). This phenomenon has developed consequently. Normalisation and conversion of 
the raw experimental results are performed to facilitate quantitative modelling. 
The 11-dimensional PCscores descriptor is used as a single amino acid feature to characterise each of the 300 
amino acids in the input protein sequence. In the top block of Figure 2, 11 vertical lines represent the input 
characteristic for a single protein, which is a matrix of size 11 by 300. When the input from the convolutional 
layers in the near vicinity has been processed, the next layer does a downsampling along the sequence 
dimension using a max-pooling layer. This is done to restrict the amount of previously retrieved features. 
Each convolutional layer comprises a collection of filters that, in a manner akin to that of a sliding window, 
extract a unique set of properties from the data channels of the layer behind it. Each convolutional layer 
comprises a collection of filters that, in a manner akin to that of a sliding window, extract a unique set of 
properties from the data channels of the layer behind it. 
It is essential to plan out CNN's structure in great detail in advance. Changing the number of convolution and 
max-pooling layers, the number of filters in each convolution layer, the filter size and stride, and the number 
of fully connected layers that come after the flattening of the CNN's output features are all ways to alter the 
model's architecture. All of these settings can be found in the model's configuration file. 
Several model configurations were available as options during the tuning procedure. The hyperparameters, 
including the minibatch size and the learning rate, were used in a gridsearch. The GPU processing was 
handled by Theano, while the Lasagne module was used to build the structure of the Python CNN model. The 
MXNet Python library's features were implemented using the MLP model's GPU mode. While the RF model 
was built in Python with the Scikit-learn module, the remaining machine learning techniques relied on the R 
packages glmnet, kernlab, xgboost, and caret. Experiment hardware consisted of a 2.40 GHz Intel(R) 
Xeon(R) CPU E5-2640 v4 and a single NVIDIA TITAN X (Pascal) GPU card. Figure 3 displays the optimal 
tuning of the proposed model, which indicates superior training performance in terms of the cost function. 
Figure 4 depicts the variation of estimating error and the learning features is reflected from converging 
nature of the error.   
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Figure 3 Cost function v/s time 
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Figure 4 Estimation error v/s time 

 

 
Figure 5 Modeling Accuracy v/s number of iterations 
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b 
Figure 6 Training and Validation Error wrt number of iterations 

 
Figure 5 and 6 show the modelling accuracy and error during the training and validation over time for the 
training run on the online database. 
 

CONCLUSION 
 
In this study, we present a novel AI-based method for classifying protein sequences. Two single-amino-acid 
descriptors and one structure-based, three-dimensional descriptor are employed to construct prediction 
models, and their efficacy is compared. Several evaluation metrics were applied to both public and private 
data sources to determine the accuracy of the predictions. The study found that convolution neural network 
models constructed from descriptions of amino acid properties are most effective in addressing protein 
redesign issues in the pharmaceutical industry. Even though CNN models have a more complex model 
structure and a large number of hyperparameters compared to other machine learning techniques, the 
recommended model structures and hyperparameter sets that have been optimized for the data set may serve 
as a good starting point for researchers pursuing a machine learning approach to protein engineering. In 
contrast to other methods, which only take into account changed sites, the CNN models recover high-level 
features based on the ordering information of the entire protein sequence. 
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