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ARTICLE INFO  ABSTRACT  

  In this paper, we prove that CS(L)under set inclusion relation is  Eulerian 
whenever L is a simple Eulerian lattice for some known simple Eulerian latticeslike 
Q, the dual of the face lattice of a cube, R, the face lattice of an icosahedron ,S(Q) 
and so on. We also prove that CS(L) is Eulerian for a dual simplicial Eulerian 
lattice.   
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1. Introduction 

  
K.M. Koh [2] began the study on the lattice of convex sublattices of a given lattice with respect to the set 
inclusion relation.  

A sublattice C of a lattice L is said to be convex if a, b C, c L, a ≤ c ≤ b imply that c C. Let CS(L) be the family 

of all convex sublattices of L, including the empty set. Then CS(L), partially ordered by inclusion, forms an 

atomistic algebraic lattice. He had proved that CS(L) is distributive if and only if L Ln,n = 1,2 where 
L

n denotes 

the chain of n elements. When L is a finite lattice and he has given a characterization for  
CS(L) to be lower semi modular as CS(L) is lower semi modular if and only if L is a chain. He had also proved 
that when L satisfies ACC and DCC, then L is relatively complemented if and only if CS(L) is relatively 
complemented. As any Eulerian lattice L is relatively complemented[8],by this result we infer that CS(L) is also 
relatively complemented. Now a natural question is whether CS(L) is Eulerian whenever L is Eulerian.  Many 
authors have attempted to solve this problem. For example,. Dr.A.Vethamanickam and Dr.R.Subbarayan[14], 
have proved that CS(Bn) is Eulerian when Bn is a Boolean algebra of rank n. In 2011, Sheeba Merlin.G and 
Vethamanickam.A[12] have proved the same for Eulerian lattices S(Bn), S(Cn) and Sm(Bn).But they have done 
it only for some particular Eulerian lattices.  
 In the thesis of K.E.Usha[7], one open question was raised as to whether CS(L) is simple if L is an Eulerian 
lattice. By remark 3.4.2 in Usha’s thesis we infer that to decide whether CS(L) is simple whenever L is  Eulerian 
reduces to the problem of proving whether CS(L) is Eulerian whenever L is a simple Eulerian lattice. Therefore, 
the problem will be completely solved if we can prove that CS(L) is Eulerian whenever L is a simple Eulerian 
lattice. But one bottleneck in this attempt is we do not yet have a complete list of simple Eulerian lattices. The 
only known simple Eulerian lattices so far are the two element chain B1, the face lattice  

Cn of the polygon of n sides n > 3, a lattice of the form S L  B2 L 1,1 , where L is an Eulerian 

lattice [13], Sg(L1,L2,…,Ln)[13], where Li’s ,i = 1,2,3,…,n  are Eulerian,  
r 

 . .   

Dr L Li 0,1 ,where Li  Li \ 0,1  where each Li is an Eulerian lattice of same rank and  stands  
 i 1   
for disjoint union [13], and some strongly uniform non-Boolean Eulerian lattices of rank ≤ 5 found in [8] . In 
this paper we prove that CS(L) is Eulerian for each of the above lattices L.  
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 The lattice of all convex sublattices of a two element chain is B2, the Boolean algebra of rank 2 and it is Eulerian.   
 CS[S(L)] is Eulerian have been proved for some particular Eulerian lattices L,viz.,Bn, Cm by Sheeba Merlin .G 

and Vethamanickam. A [12] , S(Bn)[9] and  Bn  Cm  [10] by  Usha Nirmala Kumari.K.E. and Vethamanickam.A. 

For a general Eulerian lattice L, proving CS[S(L)] to be Eulerian is an open problem. In the following sections 
we provide proofs for the remaining lattices mentioned in the previous paragraph.   
 
2. Preliminaries   
To prove this result, we need the following definitions and theorems.  
 
Definition(simple)  
 A lattice L is said to be simple if it has no non- trivial congruences. For example,   

1. The lattice 
M

3 is simple which is not  Eulerian. Rank 2 Eulerian lattice is not simple.  

2. The lattice Cn ,n  4is simple.  

 
Definition(Relatively complemented)  
 A lattice with 0 and 1 is said to be relatively complemented, if every interval of L is complemented. For example, 

Cn ,n  3 is relatively complemented.  

 
Definition (Simplicial)  

 Let P be a poset with 0. P is said to be simplicial if for every element t P , 0,t  is Boolean.  

Dual simplicial poset is defined dually. Definition(r-simplicial)  

A lattice L of rank d  r is said to be r-simplicial, if 0,x   is Boolean, for all elements x of rank r.  

 
Definition(Strongly uniform)  

 A lattice L is said to be strongly uniform, if for every two elements x and y in L of the same rank, the upper 

intervals x,1  and y,1  are isomorphic.  

 
Definition(Mobius function)  

Let P be a finite poset, The Mobius function  is an integer- valued function defined on P P by the formulae: 

(x, x) = 1, for x P  

 0, if x  y     

x, y   x,z , if x  y 

x z y 

 
Definition(Graded)   
A lattice L is said to be graded if all its maximal chains have same length.  
 
Definition(Height of an element )  
The height of an element a of a lattice L, denoted by  ht(a) is the length of the longest maximal chain in (0,a] 
Definition(Eulerian lattice)   

A finite graded poset P is said to be Eulerian, if its Mobius function assumes the value x, y  1 l x,y  

for all x ≤ y in P, where l x, y  ht y ht x  .  

 
Example.  Every Boolean algebra of Rank n is Eulerian and the lattice C4 is a non modular  Eulerian lattice.  
 
Definition[5]  

 

S L  B2 L 1,1 ,B2 B2 1 and L L 1    

where B2 is the Boolean lattice of rank 2.  
 
Remark  
Face lattice of a polytope need not be simple.  
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For example, B3 is not simple, B3 is the face lattice of a triangle. 
 
3. Simplicity of some known non-Boolean strongly uniform  Eulerian lattices Theorem 3.1  
 The dual of the face lattice Q of a cube(hexahedron) is simple.  
 
Proof  

Since Q  S C4  it is simple.  

  
Theorem 3.2  
 The face lattice R of an icosahedron  is simple.  
 
Proof  
 

 

Let  be a congruence relation on R.  

Since R is atomistic, there exists an atom x in R such that 0,x   

Let y be the diametrically opposite vertex of x in the icosahedron, which is the constituent of R. Then there are 
5 vertices connected with y with edges and faces which do not contain x . Let the vertices be y1,y2, y3,y4, y5  

Therefore in R, x  y1  R and x  y R  

Similarly, x  y2  R , x y3 R , x  y4  R , x y5 R  

Now 0,x  implies y,R , y1,R , y2,R , y3,R , y4,R , y5,R   by  

taking join with y,y1, y2, y3, y4, y5  

Now take meet of two of these elements we get, 0,R .  

Therefore, R R  

This is true for any atom a of R.  
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Therefore, we conclude that R is simple.  
 
Theorem  
The face lattice D of an dodecahedron is simple.  
 
Proof   
 

 

Let  be a congruence relation on D.  

Since D is atomistic, there exists an atom x in D such that 0,x   

Let y be a vertex in the face which is diametrically opposite to the face in which x is one of the vertices of 
Dodecahedron, which is the constituent of D.  
Besides y, we have four more vertices in that face say, y1, y2, y3 and  y4 .  

Taking join of y, y and y1, y1 with 0,x  we get y,D , y1,D . On taking meet we get 

0,D .  

So,  D D,  the same argument is valid for all the other atoms.  

Hence D D  

Hence, D contains no proper congruences.  
Therefore, D is simple.  
 
Theorem 3.2  
 The face lattice S of an octahedron is simple.  
 
Proof  

 Let  be a congruence relation on S.  

Since S is atomistic, there exists an atom x in S such that 0,x   

Let y be the diametrically opposite vertex of x in the octahedron, which is the constituent of S. There is a face 
containing y which does not intersect of a face containing x. The face containing y contains two more vertices , 

say,y1 and y2. Taking join of  (y1,y1) and (y2,y2) with (0,x) we get (y1,D),(y2,D)  Now take meet of these 

elements we get, ,S .  

Therefore, S S  

This is true for any atom a of S.  
Therefore, S has no proper congruences.  
Therefore, we conclude that S is simple.  
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4. Eulerian property of the lattice of convex sublattices of some strongly uniform Eulerian 
Lattices  
  
Lemma 4.1  
A finite graded poset P is said to be Eulerian if and only if all intervals [x, y] of length l ≥ 1in P contain an equal 
number of elements of odd and even rank.  
  
Lemma4.2  
An  Eulerian  lattice  of  rank  3  which  is  strongly  uniform  is  of  the  form  

r    

L Cni  0,1  whereCni Cni \ 0,1  
i 1 

  
Theorem 4.3  
If L is strongly uniform Eulerian lattice of rank 3, then CS(L ) is Eulerian. Proof  
   Since rank of L is 3, the rank of CS(L) is 4.  
Let Ai be the number of elements of rank i in CS(L)  
Then, A1 = 2(n1+n2+…+nr)+2  
A2  = n1+n2+…+nr + 2(n1+n2+…+nr)+ (n1+n2+…+nr)  
A3 = 2(n1+n2+…+nr)  
Hence, A1-A2+A3 =  2(n1+n2+…+nr)+2   
 – (n1+n2+…+nr) - 2(n1+n2+…+nr) - (n1+n2+…+nr)  
 + 2(n1+n2+…+nr)                               = 2.  
Hence, CS(L) is Eulerian. 
 
Corollary 4.4        CS(Cn )  is Eulerian  Proof  
 

 
If we take one copy in the above theorem, then we get the result.    
  
Remark  

r  

We have CS Dr L  CS Lj  ,Dr L   

j 1 
Theorem 4.5  

CS Dr L  is Eulerian if and only if  CS Lj  is Eulerian for every j =1,2,…,r   

 
Proof  

Let Dr(L) be of rank d+1,then each Lj is of rank d+1,rank of CS Dr L  is d+2 and rank of each CS(Lj) is 

also d+2.  

Let CS Dr L  be Eulerian  

Let A1, A2,, Ad 1be number of elements of rank 1,2,…,d+1 of CS Dr L .  

Let Aj1, Aj2,, Aj d 1 be the number of elements of ranks 1,2,…,d+1 in CS(Lj).  

Now, Let d be odd, then d+2 is also odd.  
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As CS Dr L  is Eulerian, A1 A2  1 d 1Ad 1 0  

Suppose that for some j, CS(Lj) is not Eulerian.  

                Therefore, Aj1 Aj2  1 d 1Aj d 1  0  

But we have   A1  A11  A21   Ar1  

                       A2 A12 A22  Ar2   

                         …etc      

                       Ad 1  A1 d 1  A2(d 1)  Ar d 1   

Now, A1  A2  1 d 1 Ad 1  A11  A12  A13  1 d 1 A1 d 1    

 

 A21  A22  A23  1 d 1 A2 d 1    

  d 1   i  

  Aj1  Aj2  Aj3  1  Aj d 1   

  d 1  

   Ar1  Ar2  Ar3  1  Ar d 1   

Here, left side is 0 whereas the right side is non zero, which is a contradiction.  
Therefore, our assumption is wrong.  
Hence, each CS(Lj)  is Eulerian.  
The converse follows by a similar argument by view of (i).  
When d is even , a similar argument holds.  
Hence the theorem.  
  
Lemma[8]  
Let L be an Eulerian lattice of rank 4 which is strongly uniform and dual uniform. Then L is either B4 or Q or R 
or their duals.  
  
Theorem 4.3  
If Q is the dual of the face lattice of a cube, then CS(Q) is Eulerian.  
 
Proof.  
Let Q be the dual of the face lattice of a cube   
Now the rank of Q is 4  
Let  ai be the number of elements of rank i in Q.   then a1= 6,a2= 12 ,a3=8   
To prove that ,CS(Q) is Eulerian, we have to prove that the number of elements of even rank is equal to the 
number of elements of odd rank, in CS(Q).  
Since rank of Q is 4, rank of  CS(Q) is 5.  
Let Ai be the number of elements of rank i in CS(Q), i=1,2,3,4  
Therefore,  

A
1  number of singleton sets of Q = 6 +12 +8+2 = 28  

A
2 = number of edges of Q = 6 +24 +24 +8 = 62  

A
3 =  number of rank 2 convex sublattices of Q =  12 + 6 + 4 +12= 48  

A
4  number of rank 3 convex sublattices of Q = 8 + 6 =14  

Hence, A1 A2 A3 A4  28 62  48 14  0  

Therefore,  CS(Q)  is  Eulerian. 
  
Remark  As  Q = S(C4), CS(Q) is Eulerian follows from the theorem 4.1 of  [12].  
  
Theorem 4.4  
If R is the face  lattice of an icosahedron, then CS(R) is Eulerian.   
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Proof   
Let R be the face lattice of an icosahedron.  
Now the rank of R is 4  
Then the rank of CS(R) is 5  
Let ai be the number of elements of rank i in R. We have  a1 = 12, a2 = 30, a3 =20. To prove that CS(R) is Eulerian, 
we have to prove that the number of elements of even rank is equal to number of elements of odd rank. Let A i 
be the number of elements of rank i in CS(R)  
Therefore,  
  A1  = number of singleton sets of R  = 12 +30 +20 +2= 64  

  A2  =  number of edges of R = 12 + (12 5 ) + (30  2) + 20   

        =  12 + 60 + 60 +20  = 152   

  A3  = number of rank 2 convex sublattices of R =  30 +12  5 +30  1 =  120  

  A4  = number of rank 3 convex sublattices of R =  12 + 20 = 32  
Hence, A1 - A2 +  A3 - A4 = 64 - 152 + 120 - 32   
           = 184-184 = 0.  
Therefore, CS(R) is Eulerian.  
 
Lemma[8]  

A 4-simplicial strongly uniform Eulerian lattice of rank 5 with 8 atoms in which x,1 Q, for every atom x, 

is isomorphic to B2 \ 1 Q \ 1 1,1  S Q .  

 
Theorem 4.5  
Prove that CS[S(Q)] is Eulerian.  
 
Proof   

Since S Q B2 \ 1 Q\ 1 1,1  ,it is of rank 5,then the rank of CS[S(Q)] is 6  

Now,a1  8,a2  24,a3  32,a4 16where a1,a2,a3,a4 are the number of elements in S(Q) of ranks  

1,2,3,4,respectively.  

Let 
A

i be the number of elements of rank i in CS[S(Q)].  

Then, A1  number of singleton sets of S Q  = 8+24+32+16=82  

A2  number of edges of S Q {0 at the bottom + rank 1 at the bottom+…}  

  6  4  2   

     = 8 8 1  24 1 32 1 16   8 8 6  24 4 32 2 16        

   

      = 8 + 48+96+64+16 = 232  

A3  number of rank 2 convex sublattices of S Q   

      = 24  [24+12 6]+[(6 4) 2+(12 4)]+(2  12+8)  

      = 24+[24+12  6]+[(6  4) 2+12  4]+[2  12+8]  

      = 24+96+96+32=246  

A4  number of rank 3 convex sublattices of S Q   

      = 32  + [2 8+ 8 6]+[ 2 6+12]  

      = 32 + 64 + 24 =120  

A5  number of rank 4 convex sublattices of S Q   

      =  (2  8)+(2 1+6)   

      = 16+2+6=24  

A1 A2 A3 A4 A5 = 82 – 232 + 246 – 120 + 24 = 2.  

Hence,CS S Q  is Eulerian.   
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Theorem  
Prove that CS[S(R)] is Eulerian.  
 
Proof   

Since S R B2 \ 1 R \ 1 1,1 , it is of rank 5,then the rank of CS[S(R)] is 6  

Now,a1 14,a2  54,a3  80,a4  40 where a1,a2,a3,a4 are the number of elements in S(R) of ranks  

1,2,3,4,respectively.  

We observe that if x is any atom in an extreme copy of S(R), then x,1 C5 and if it is in the middle copy of 

S(R), then x,1 S C5 .  

We also note that if y is an element of rank 2 in the middle copy of S(R), then y,1  S B2 C4 Let 
A

i be 

the number of elements of rank i in CS[S(R)].  

Then, 
A

1  number of singleton sets of S(R) = 16+54+80+40=190.  

A2 =  Number of edges of S(R) = number of edges containing zero+ number of edges containing an atom + 
number of edges containing rank 2 elements  + number of edges containing rank 3 elements + number of edges 
containing rank 4 elements at the bottom   

         =         [12 + 2] +[2 12  +12 7] + [(12  5)  2+ 30  4]+[(30  2)  2+20  2]+[20+20]          =         

14+24+84+120+120+120+60+20 = 562.  
A3      =         number of rank 2 convex sublattices of S(R).  

         =         54+[2 30+15 12]+[(12 5)  2+30  4]+[(30  1)  2]+20  1  

         =         54+240+240+60+20=614  
A4    =          number of rank 3 convex sublattices of S(R).  

        =           80+2 20+12 10+2 12+30  

        =          80+40+120+24+30=294  
A5    =         number of rank 4 convex sublattices of S(R).  
        =          40+14=54  

A1-A2+A3-A4+A5     =  190-562+614-294+54=858-856=2 Hence,CS S R  is Eulerian.   

      
5.Lattice of convex sublattices of a dual simplicial Eulerian lattice  Theorem 5.1  
Lattice of convex sublattices of any dual simplicial Eulerian lattice is Eulerian.  
 
Proof. 
 Let L be a dual simplicial Eulerian lattice of rank d+1 with  ai ,  number of elements of ranks i=1,2…,d Then the 
rank of CS(L) is d + 2.   
Let d be even  

Therefore, a1 a2 ... 1 d 1ad  0  

Claim: CS(L) is Eulerian   

Let 
A

i  be the  number of elements of rank i in CS(L)  

Now,  

 A a a1     1 2 ... ad 2  

A
2    =      number of edges with {0 at the bottom  + an atom at the bottom + a rank 2 element                                    at 

the bottom + … + a rank d elements at the bottom}  

         =     a1 a1d a2 d 1 ... ad   

A
3    =    number of rank 2 convex sublattices with {0 at the bottom  +  an atom at the bottom                   

               +  … + a rank  (d-1) element at the bottom}  

 d  d 1  

          =   a2 2 a1 2 a2  ad 1  

A
4    =    number of rank 3 convex sublattices with {0 at the bottom  +  an atom at the bottom   

               +  … +  a rank (d-2) element at the bottom}   

 d  d 1  
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         =    a3 3 a1  3 a2  ad 2  

 And so on .  

A
d   =    number of rank (d-1) convex sublattices with {0 at the bottom + an atom at the                 bottom + a 

rank 2 element at the bottom}  

 d  

Ad ad 1  a 

   d 1  1 a2  

A
d 1 =    number of rank d convex sublattices   

         =     number of convex sublattices of rank d{containing 0 at the bottom + containing an                         atom 

at the bottom} Ad 1  =    a1 ad  

Hence A1 A2 A3 A4  Ad Ad 1  

                 =   a1 a1d a2 d 1 ... ad  a2 d2 a1 2d 1 a2 

 ad 1   

  d  d 1   

                       a3 3 a1  3 a2  ad 2   

   

   d   

                         ad 1 d 1 a1 a2 a1 ad   

   

                                                                                                                                                                                     

2 a2 a4  ad  2 a1d a2 d 1  ad  

    
= 

 d  d 1  d  d 1  

a1 2 C2 a2  2 C2  ad 1 a1 3 a2 3  

 d  

ad 2  a1 d 1 a2 a1. 

 

  d d d 

2 a2 a4  ad  2 a1 1 

2 3  dd 1 1                                                 

 

    
 d 1  d 1  d 1  d 1  

a2  1  2  3  d 1  ad 1 2 1 ad .
    

 
2 a2 a4  ad  2 a1 1 1 1 d a2 1 1 1 d 1  

  

a3 1 1 1 d 2  ad 1 ad 

     =    2 a2 a4  ad  2 a1 a2 a3  ad 1 ad  

     a1 a2 a3 a4  ad 1 ad  2  

     =     0 + 2 = 2. If d is odd, then   

A1 A2 A3  Ad Ad 1  
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    =     a1 a2  ad  2 a1 a1d a2  ad  a2 

a1 d2 a2 d2 1  ad 1    

   

  d  d 1     d   

        a3 a1 3 C3 a2  3  ad 2  +…+ ad 1 a1 d 1 a2 

a1 ad   

   =     2 a2 a4  ad 1  2 + a1 d d2 3d  dd 

1 1   

   

            + a2 d 1 d2 1 d2 1 d3 1  1   

   

  d  2   

              + a3 d  2  3  1  ad 1   

   

  =     2 a2 a4  ad 1  2 + a1 1 1 d 
1

a2 1 1 d 1 
1

    

         + a3 1 1 d 2 1  ad 1    

  =     2 a2 a4  ad 1  2 a1 a2  ad   

  =    a1 a2 a3 a4 a5  ad 1 ad  

  =     0   
Hence, the Lattice of all convex sublattices of a dual simplicial Eulerian lattice is Eulerian.  
  

Conclusion 
 
We have proved above that the lattice of convex sublattices of some known simple Eulerian lattices are Eulerian. 
Also we have investigated the truthfulness of the Eulerian property for strongly uniform and dual uniform 
Eulerian lattices upto rank 5 only. The study on the strongly uniform and dual uniform Eulerian lattices of 
ranks > 5 is also possible, but it looks difficult.  
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