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ARTICLE INFO ABSTRACT 

 Presently, the extensive variety of biomaterials and their broad range of applications 
have broadened the scope of these materials. Biomaterials are integrated into 
biosensing platforms to create devices characterized by high sensitivity and 
specificity, rapid detection capabilities, portability, cost-effectiveness, and user-
friendly operation. The limelight of this review focus on potential role and 
applications of bio based electrochemical sensors. The eMIP/PB/SPCE-based lactate 
sensors demonstrate significant promise as point-of-care (POC) devices for detecting 
sweat lactate. This technology could be adapted for reagent-free detection of a wide 
range of molecules. We discussed a dual-trigger and reusable electrochemical 
biosensor for microRNA. It achieved sequential signal amplification by integrating 
CHA and tripedal walker mechanisms. The tripedal DNA walker was activated 
through APE1 enzymatic cleavage reactions. Strand displacement was engineered for 
electrode regeneration and optimizing signal strength. It effectively discriminates 
the target from other interfering RNAs and enables detection in serum. This study 
introduces an innovative non-invasive electrochemical biosensor designed for 
detecting glucose concentration in human saliva. The biosensor utilizes a nickel foam 
substrate decorated with needle-like CoO nanowires, providing an optimal surface 
area for nanowire growth. These nanowires form a self-assembled flower-like 
nanostructure with a highly porous configuration, featuring an impressive BET 
surface area of 154.3 m2 g−1 and demonstrating excellent catalytic capabilities. 
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Introduction 

 
Biosensors are analytical devices that combine bio cognitive components and signal transduction devices. 
Taking advantage of the precision and resolution inherent in biological sensors, they have an enormous ability 
to study a wide range of target molecules, including small entities, proteins, nucleic acids and cells [1].Among 
biological sensors, electrochemical biosensors, using electrochemical agents for signalling have clear 
advantages such as easy integration, higher sensitivity, fast detection kinetics and cost-effectiveness.  
Electrochemical biosensors are analytical devices that combine a biological recognition element (such as 
enzymes, antibodies, or DNA) with an electrochemical transducer to detect and quantify specific analytes in a 
sample [2-4] They are widely used in various fields including medical diagnostics, environmental monitoring, 
food safety, and bioprocess control. 
 
The key components of an electrochemical biosensor typically include: 
1. Biological Recognition Element: This could be enzymes, antibodies, nucleic acids, or whole cells that 

selectively interact with the target analyte, leading to a measurable signal. 
 

2. Transducer: Converts the biochemical reaction into a quantifiable electrical signal. Common types 
include electrodes (working, reference, and counter electrodes), which can measure changes in current, 
potential, impedance or conductance. 
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3. Electronics and Signal Processing: These components amplify and process the electrical signal 
generated by the transducer to provide quantitative information about the analyte concentration. 

     Currently, a variety of biologically active agents, including enzymes, antibodies, antigens, microorganisms, 
cells, tissues, and nucleic acids, can directly function as both bio recognition and transduction components. 
Nano enzymes, which exploit their strong physicochemical properties and greatly improve electro catalytic 
performance, have become an important driving force in the development of electrochemical sensors [5-6]. 
In essence, the amalgamation of nanozymes and electrochemical sensing has permeated diverse domains, 
spanning food science, healthcare, environmental monitoring, disease diagnostics, and immune analysis.  

 
Reagentless Lactate Sensing with Prussian Blue and Electro polymerized Molecularly 
Imprinted Polymers in Electrochemical Bio sensing: The rapid progress in bio sensing, microfluidics, 
flexible electronics, and wireless communications technologies has spurred the creation of wearable biosensors 
for sweat analysis, with a focus on lactate monitoring. An increase in lactate production can result in cellular 
acidosis and impair muscle function [7-9]. Elevated levels may also indicate ischemic pressure and serve as a 
biomarker for tissue perfusion progression. 
  

 
Fig 1: (A) Diagram depicting the fabrication process of the eMIP/PB/SPCE-based sensor; Field Emission 

Scanning Electron Microscopy (FE-SEM) images showing (B) the bare SPCE, (C) PB/SPCE, and (D) 
eMIP/PB/SPCE configurations; (E) Characteristic cyclic voltammetry (CV) curves measured in 0.1 M KCl for 

(a) bare SPCE, (b) PB/SPCE after PB deposition, (c) after eMIP polymerization, (d) post-lactate template 
removal, (e) eMIP/PB/SPCE after overnight drying, and (f) following 1 mM lactate incubation; (F) Cyclic 
voltammograms detailing PB electrodeposition, (G) electro polymerization of 50 mM 3-APBA, 100 mM 

pyrrole, and 10 mM lactate on PB/SPCE, and (H) an illustration depicting the lactate detection mechanism, 
showing the eMIP partially obstructing electron transfer, with corresponding Differential Pulse Voltammetry 

(DPV) and Electrochemical Impedance Spectroscopy (EIS) responses 
 
Therefore, detecting lactate in sweat provides a non invasive and convenient method for assessing exercise 
intensity [10], optimizing athletic training, enhancing performance, and supporting medical diagnosis and 
monitoring. Electro polymerization provides a rapid and straightforward method for constructing MIP-based 
electrochemical sensors, enabling direct deposition of the MIP layer onto the electrode surface. However, many 
MIP-based electrochemical sensors rely on external redox couples (e.g., ferricyanide/ferrocyanide) to detect 
binding events between electrochemically inactive  analytes and the MIP. This dependence may interfere with 
the interaction between MIP and analyte molecules and complicate on-body applications [11-14]. Therefore, 
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there is an urgent need to develop reagent-free MIP-based biosensors for straightforward and convenient 
lactate detection, advancing wearable MIP-based biosensor technology.  
Prussian Blue (PB) stands as a prominent electron-transfer mediator in enzymatic biosensors. The sensor 
incorporates an electrodeposited layer of Prussian Blue (PB) as the internal redox probe, along with an electro-
polymerized Molecularly Imprinted Polymer (eMIP). The eMIP utilizes 3-APBA and pyrrole as functional 
monomers for the specific recognition of lactate. The growth of eMIP [15-18], removal of the template, and 
lactate rebinding processes were monitored and confirmed in real-time using Electrochemical-Surface 
Plasmon Resonance (EC-SPR). The sensor's efficacy was assessed in spiked 0.1 M KCl solution and artificial 
sweat (AS) using Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). 
 
Creation of a reusable tripedal DNA walker electrochemical biosensor for highly sensitive 
detection of microRNA-155: Given that microRNAs (miRNAs) are pivotal biomarkers for disease diagnosis 
and prognosis, there is a growing emphasis on enhancing detection sensitivity through signal amplification 
strategies in research on detecting low-abundance miRNAs. MicroRNAs (miRNAs) are short endogenous RNA 
molecules, typically 20–24 nucleotides long, that play critical regulatory roles within cells [20–24]. Extensive 
research has demonstrated that miRNAs can either inhibit or promote the expression of genes associated with 
various diseases [25], establishing them as valuable biomarkers in disease classification, diagnosis, and 
prognosis [26,27]. For instance, miRNA-21 shows increased expression in breast cancer patients, which 
significantly decreases post-surgery [28]. Meanwhile, miRNA-155 is notably upregulated in several cancers, 
including breast cancer [29], leukemia [30], thyroid cancer [31], gastric cancer [32], colorectal cancer [33], 
bladder cancer [34], and renal cell carcinoma [35]. This intimate connection between miRNAs and cancer 
progression underscores their importance in cancer screening and therapeutic strategies. Various techniques, 
such as electrochemistry [36,37], fluorescence [38,39], colorimetry [40,41], and electro chemiluminescence 
(ECL) [42], have been developed for miRNA detection. However, these methods may lack sufficient sensitivity 
to detect ultra-low levels of miRNA without signal amplification. To bolster detection capabilities, various 
signal amplification strategies have been integrated into electrochemical analysis. These include catalytic 
hairpin reaction (CHA) [44–46], hybridization chain reaction (HCR) [47–49], entropy-driven catalytic 
reaction (EDC) [50–52], as well as enzyme-free and nuclease-mediated signal amplification methods [53,54]. 
Notably, DNA walkers have emerged as dynamic nano devices responsive to targets, capable of converting 
chemical energy into mechanical kinetic energy. This enables incremental movement along a track and 
amplification of signals throughout the walking process. 
 

 
Fig 2: Diagram illustrating a regenerative electrochemical biosensor featuring a robust cascade amplification 

method. This includes CHA activation for generating a tripedal DNA walker (TDW) triggered by the target, 
along with APE1 enzyme digestion-driven amplification. A: Electrode regeneration via S2 strand 

displacement reaction; B: Bio sensing process for miRNA 155, utilizing S1 strand displacement to maximize 
current signal changes induced by the target. 

 
This technology for electrode regeneration, based on a strand displacement strategy, allows for the repetitive 
use of DNA-modified gold electrodes. This presents an innovative method toward achieving an efficient and 
economical detection system [55]. The novel electrode regeneration technique exhibits excellent scalability, 
making it suitable for detecting various disease-related RNA targets. This development shows potential for 
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implementing signal amplification through DNA nanostructures and introduces further analytical strategies 
for clinical diagnostics. 
 
Electrochemical biosensor for glucose detection in human saliva: Diabetes, a metabolic disorder, 
poses significant health risks [61,62]. Hence, monitoring glucose levels is crucial for diabetes management. 
However, many current methods for detecting glucose, such as blood collection from fingertips or veins, are 
invasive, increasing the risk of infection and causing psychological distress among patients [63,64]. Therefore, 
there is a strong need to develop safe and painless non-invasive methods for diagnosing glucose levels in 
human biofluids. Several electrochemical biosensors utilizing glucose oxidase (GOx) have been created for 
saliva glucose detection [67]. However, research indicates that GOx enzymes possess inherent drawbacks such 
as instability and susceptibility to environmental factors like pH, moisture, and temperature [68]. 
Consequently, researchers have explored enzyme-free glucose sensors employing noble-metal and transition-
metal catalysts to overcome these limitations. In contrast, Ni foam (NF) is recognized as an ideal substrate for 
manufacturing glucose biosensors due to its three-dimensional interconnected microstructure. It is cost-
effective owing to its abundant availability, large surface area, and excellent conductivity [66–68]. Therefore, 
growing transition metal oxides directly on NF presents a promising approach to developing glucose sensors 
that are both cost-effective and high-performing. Cobalt oxide (CoO), a readily available transition metal oxide 
material, has garnered significant interest in non-enzymatic glucose sensors due to its easy preparation and 
theoretically significant electrocatalytic activity [69,70].  
 

 
Fig 3: SEM images of (a) NF and (b, c, and d) CoO NWs/NF with different magnifications. 

 
Despite these advantages, bulk CoO suffers from limited active sites and poor conductivity, which hinders 
achieving optimal catalytic performance. As a result, efforts have focused on nano structuring bulk CoO to 
enhance electrocatalytic activity by increasing active surface areas and accelerating reaction kinetics [81,82]. 
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Among nanostructured CoO materials, cobalt oxide nanowires (CoO NWs) offer short radial pathways and 
efficient electron transport in the axial direction, effectively reducing resistance and enhancing reaction 
kinetics. In this investigation, we successfully achieved the uniform and extensive growth of mesoporous 
nanoneedle-assembled CoO microflowers on a nickel foam (NF) substrate. Utilizing this distinctive 
nanostructure, we developed a non-invasive electrochemical biosensor for detecting glucose levels in human 
saliva. We systematically evaluated the sensing capabilities of the biosensor. 
 

Conclusion: 
 

The diverse array of biomaterials and their wide-ranging applications have expanded the possibilities for these 
materials. Biomaterials are now integrated into biosensing platforms to develop devices known for their high 
sensitivity, specificity, rapid detection, portability, cost-effectiveness, and user-friendly operation. The tripedal 
DNA walker is activated via APE1 enzymatic cleavage reactions. Strand displacement is engineered for 
electrode regeneration, optimizing signal strength and effectively distinguishing the target from other 
interfering RNAs, allowing for detection in serum. Furthermore, we introduce an innovative non-invasive 
electrochemical biosensor designed for detecting glucose concentration in human saliva. This biosensor 
utilizes a nickel foam substrate decorated with needle-like CoO nanowires, providing an optimal surface area 
for nanowire growth. This technology can be adapted for reagent-free detection across various molecules. 
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