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ARTICLE INFO  ABSTRACT

Let R be a commutative ring with identity and Nil(R) be the ideal of all nilpotent elements
of R. Let I(R) = {I: I is a non-trivial ideal of R and there exists a non-trivial ideal J such

that IJSNil(R).} The nil-graph of ideals of R is defined as the graph AGy (R) whose vertex
set is the set I(R) and two distinct vertices I and J are adjacent if and only if IJSNil(R). In

this paper, we determine distance signless Laplacian and distance Laplacian spectrum of
AGy (R) when R is reduced.
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1 Introduction

G is a graph with vertex set V (G) and edge set E(G). The adjacency matrix A(G) = (a;) of G is a square matrix
of order n, whose (i,j)-entry is 1, if v; and v; are adjacent and is 0, otherwise. Let Deg(G) = diag(d,, ds, - - -, dn)
be the diagonal matrix, where d; = dg(vi) are the degrees of the vertices of G. The matrix L(G) = Deg(G) -
A(G) and Q(G) = Deg(G) + A(G) are called the Laplacian and the signless Laplacian matrices and their
eigenvalues with multiplicities are known as the Laplacian spectrum and the signless Laplacian spectrum of
the graph G.

In a graph G, the distance between any two vertices u, v € V (G), denoted by d(u, v), is defined as the length
of a shortest path between u and v. The diameter of G is the maximum distance between any two vertices of
G. The distance matrix of G, denoted by D(G), is defined as D(G) = [d(u, v)], where u, v € V (G). The
transmission degree Tre(v)

of a vertex v is defined to be the sum of the distances from ©» to all other vertices in (7.

that is, Trg(v) = 3 d(u,v). If Trg(vs) (or simply Tr;) is the transmission degree of
weV (e
the vertex v; € V((Z), the sequence {Try,Try.--- ,Try} is called the transmission degree

sequence of the graph G .

Let Tr(G) = diag[Tr1,Tra,--- ,Tra] be the diagonal matrix of vertex transmissions of
(. Aouchiche and Hansen [1] introduced the Laplacian and the signless Laplacian for the
distance matrix of a connected graph. The matrix D*(G) = Tr(G) — D(G) is called the
distance Laplacian matrix of . The matrix D¥(G) = Tr(G) — D(G) is real symmetric
and positive semi-definite, so we order the distance Laplacian eigenvalues as 98(G) = --- =
v (G) = 8,(G) = 0, where ('Ji‘?[f;} is called the distance Laplacian spectral radius of G.
The matrix DY(G) = Tr(G) + D(G) is called the distance signless Laplacian matrix of .
The matrix DY(G) = Tr(G)+ D(G) is real symmetric and positive definite for n > 3, so its
elgenvalues can be arranged as ;J?{G] Za = ,rrfjl_ (G > ;Jff?{(}']_ where ,rJ{l‘?{(;} is called the
distance signless Laplacian spectral radius of . For detailed notion of spectrum of graphs

one can refer -I 5. 6, E]].
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A commutative ring K is called a local ring if it has a unique maximal ideal. Throughout
this paper R denotes a commutative Artinian nonloeal ring with identity and which is not
an integral domain, We call an ideal T of R, an annihilating-ideal if there exists a non-zero
ideal .J of R such that I.J = (0). Let A*(R) be the set of non-zero annihilating ideals of R.
Behboodi and Rakeei [2, 3] have introduced and investigated the annihilating-ideal graph of
a commutative ring. The annihilating-ideal graph of R is defined as the graph AG(R) with
the vertex set A*(R) and two distinet vertices I and .J are adjacent if and only if I.J = (0).
In [7], Shaveisi et al. extended this notion of the annihilating-ideal graph as the nil-graph of
ideals of R. Let Nil(R) be the ideal of all nilpotent elements of R and I(R) ={I:1 isa
non-trivial ideal of R and there exists a non-trivial ideal J such that I.J C Nil(R)}. The
nil-graph of ideals of R is defined as the graph AGy(R) whose vertex set is the set I(R)
and two distinet vertices I and J are adjacent if and only if I.J € Ni(I?). Obviously the
notion of nil-graph of ideals is different from the notion of annihilating-ideal graph and it is
easy to see that AG(R) is a subgraph of AGy(R).

Let G(V,E) be a graph of order n and G;(V;, E;) be graphs of order n;, where i =

Tt
1,---,n. The joined union G[Gq,---,G,] is the graph G*(W.F) with W = [J V; and
i=1
n
F=UEU U VixV.
i=1 {t't,t'_T}E.H

The rest of the paper is organized as follows. In section 2, we view AGy(R) as joined union
of graphs when R is reduced. In section 3, we view AGy(R) as joined union of graphs using
canonical representation when 7 is reduced. In section 4, we determine transmission degree
of each vertex of AGy(R) when R is reduced and we state two Lemmas proved in [51 ﬁ]
which are used in the subsequent sections. In Section 5, 6, we investigate the distance signless

laplacian and distance Laplacian spectrum of AGx(R) respectively when R is reduced. Also
we note that if B is Artinian reduced then R is isomorphic to finite direct produect of felds
and Ni(R) =< 0 = . We have used computational software, Wollram Mathematica for
computing approximate eigenvalues. For any set 4. we denote the complement of A by A'.
We denote transmission degree of a vertex Iy in AGx(R) by Tr(Iy).

2 Nil-graph as joined union of graphs

In this section the nil-graph of ideals of a commutative Artinian ring R is viewed as joined
union of suitable choices of graphs when R is reduced.

Assume that B = F} = --- % F, where each F; is a field and n > 2. We define an
equivalence relation ~ on I{R) as follows. For I..J € [(R), define I ~ J if and only if
N({I)=N({J) in AGy(R), where N(I)={K el(R): K # LIK =< >=}.

Let .....C% be the equivalence classes of this relation with respective representatives
Ji,--- . By €(R) and C; = {I €I(R): N(I) = N(J;)}. Then I(R) = U!_,C;. First we see
some properties of s
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Lemma 2.1. [§]

(i) For 4,5 € {1,--- ,t} and i # j, a vertex of C; is adjacent to a vertex of j in AGy(R)
if and only if J;J; =< 0> .

(ii) |Cs] =1 forall i=1,--- 1.

We define H(R) (or simply H ) as the simple graph whose vertices are the representatives
Ji,--- . Jp in which two distinet vertices are adjacent if and only if J;.Jp =< 0> .

Lemma 2.2, [8] The graph H is connected.
Proposition 2.3. [§]

Let (7; be the subgraph induced by the set 5 for all ¢ = 1.+« f in AGx(R). Then
ﬁE_I\rI[R} — H[Gl,cz,- sy Gt]

3 Partition for nil-graph

Let R be a commutative reduced ring and P; = {A : A C [n], A # 0}, where [n] =
{1,---,n}. For A € P;, we define the characteristic vector of A to be the ideal I4 =

It % ---x 1, in R satisfying I; = F; if 1 ¢ A and [; =< 0 > otherwise. Also for A € Py,
we define the set

Ca={I %+ xI,is an ideal in B: I; = F; if and only if i & A}.

From these notions and the results discussed in Section 2, we have the following two lem-

mas. The lemmas explain about the non-zero proper ideals of R and the cardinalities of the
equivalence classes 'y of K.

Lemma 3.1. [8] Consider the equivalence relation ~ on I(R) given by I ~ .J if and only if
N(I)= N(J) in AGNI(R).

(i) Let I} x ---x I, and .J; x -+ x .J, be two elements of I(R), Then N(I)= N(J) if
and only if Supp I'={i: 1<i<nLi=R} ={j: 1<j<n.J;=R; }:= Supp
J.

(ii) The equivalence classes of the equivalence relation ~ are precisely the sets U4 =
for A € Py, In particular

I(®) = ca

AsPy

(iii) The characteristic vector Iy = J; of set A € P can be taken as the canonical repre-

sentative of the class 4. Therefore 2™ — 2 distinct equivalence classes in I(R) for the
relation ~ .

(iv) |C4| =1 for all AC [n].

In the following lemma, we calculate the distance between two vertices of H .

The vertex set of H is V(H) = {l4: A€ P:} and the vertices I4 and Ig are adjacent
in H if and only if T4fg C Nil(R), if and only if AU B = [n].

Lemma 3.2. [8] Let I4 and Iy be two distinet vertices of H, then
1 if AUB = [n]

dy(la.Ig) =42 fANB#0and AUBC [n]
3 fANB=0and AUBC [n]
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4 Distance Laplacian and distance signless Laplacian spec-
trum of graphs

In this section we find the transmission degree of a vertex Iy € V(AGy(R)). Also we see two
lemmas proved in [5, 6] which are used in the subsequent sections.

If R =F x Fy x--- = F,, we find the transmission degree Tr(l4) for each 4 in
V(AGN(R)). If T4 € V(AGN(R)), we define Sq1={B€ P:: AUB = [n]},

Siz={BeP:ANB#0and AUB C [n]},

Saz={BeP::AnB=0and AUBC [n]}.
Saal = 241 -2,

.‘:fA:g| =

We have |Sq1| = {l‘gl} + {"f"} NS {|,-*|-|q—|1} — ol _q
(2" —3)—( Saal).

J.q_q._] | -

Theorem 4.1. If R=Fy x Fa x---x F, and I4 € V(AGN(R)), then Tr(la) = 1(|Sa.1])+
2(1Saz() + 3(|Saal)-

Proof. Tr(ls) = 2 d(Ia.1g).
IgeViAGN(R]))

Since diameter of AGx(R) < 3, we have, Tr(l4) = 1(|Sa1]) + 2(|Saz2|) +3(|Sas). O

Lemma 4.2, [5] Let & be a graph of order n having vertex set V(G) = {vy.v2.--- ,v,}. Let
{; be r; regular graphs of order n; having adjacency eigenvalues Aj; =3 = Az = -+ 2 Ay
where ¢ = 1,2,--- ,n. The distance signless Laplacian spectrum of the joined union graph
G[G1.Ga, -+ ,Gy] of order EL] mn; consists of the eigen values 2n; + n: — i — A — 4 for
i=1,---,n and k = 2,3,--- ,n;, where n, = ZLI__,L.# ngde(vi,vr). The remaining n
eigenvalues are given by the equitable quotient matrix

dny +nj —2r; — 4 nadg (v, v2) cee npdg(t, tn)
0 mdg(ve, v1) dnz+nh—2ra—4 --- npde (v, vg)
mde(tn, t1) nade (v, va) cor dnp 40l —2r,—4

Lemma 4.3. [6] Let G be a graph of order n having vertex set V(G) = {v1,vo,---vn}.
Let (; be a graph of order m; with Laplacian eigenvalues gy > piz = --- = iy, where
i = 1,2,--- ,n. The distance Laplacian spectrum of the joined union G[Gy.Ga,--- .Gyl

consists of the eigenvalues 2my; — e+ for i =1.---,n and k=1,2.3,--- .m; — 1, where
0 = ELI_&.# s mpdg(vi, v ). The remaining n eigenvalues are given by the matrix

o —madg(vy,vz) -0 —mgdg(v1, vy)
—myde(ve, 11) rz coo —mpdg(ve, v
M= i ) X
—pdea(v,, 1) —mado(v,, 1a) - 0,

5 Distance signless Laplacian spectrum of nil-graph

In this section we find distance signless Laplacian Spectrum of AGy(R) when R = Fy = Fa =
-+« x Fy . In particular, we determine the distance signless Laplacian spectrum of AGN(F1 x

Fp), AGn(Fy x Fo x F3), AGN(F) x F3 x Fy x Fy),
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Lemma 5.1. If R = F) = Fy = --- = F; then the distance signless Laplacian spectrum of
AGy(R) are the zeros of the characteristic polynomial of the equitable quotient matrix

Tr(la,) d(1y,.14,) coe d(T gy T, 2}
"I'I[IA::'!IA|:I Tr["rﬂz} s J{I.‘l::-‘fﬂfl ;_r}

Q= : : :
Eil:f_qu. 25'1-‘11} Eil:'rﬂ'zﬂ z‘-I-‘l'z} T]"[IAE., 2}

Proof. f R=F x Fax---xF, then P! ={4: AC [n. A#0} and V(AGN(R)) =
{I4: A< P}l We have 2" — 2 elements in V{AGx( R}} Let Pr = {A;, Az, --- , Aan_3}.
Each (7; has exactly one element and so the adjacency eigen value of each ; is 0 for

an_3
i=1,2---,2" -2 Now n,= 3 d(la,.14,)=Tr(l4,). By Lemma 4.2, we have
k=L ki
TT‘UA,} d["r.-l1-‘"rﬂ2:| EEER (F ST e -_,}
J[IA';‘- IA|:| TT[IAz} te J{I.‘lz-"rﬂzrl 2}

d(I.‘!.zh 231.4.1} d{IA2,|_ 2‘.1."!.2} s Tr[IAHIi '_}}

Lemma 5.2. If R = F; x F5 then the distance signless Laplacian spectrum of AGy(R) are
0,2

Proof. We have Pj = {{1}.{2}}, Tr(Ipy) = LTr(Ipy) = 1 and d(Iyy.Igy) = 1, By

! 1) and the eigenvalues of ) are 0,2,

Lemma 5.1, ()} = (1 1

Lemma 5.3. If R = F} x F x Fy then the distance signless Laplacian spectrum of AGy(R)

are T+ 39,7 — 33 13 4+ 1,13 — V1I.

Proof. We have P = {{1},{2}.{3}.{1.2},{1.3}.{2.3}}. [S{1}a| = [Szpal = S{a}1| =
L |Snyal = [Spzpal = |Spapsl =22 -2 =2, |"T{1}z| = |Si212| = Spa2l =5-1-2=2

|5{12}1| = |q{1 al. 1| = |5{21}1| =22-1=

Sl = Spspal = Spasl =2 -2= “-

Siroy2| = |Sp a2l = |Spaay2l =5-3=2.

Now TT[I{I}} = TT[I{E}:} = TTI{I{;;}} — 1{1} + 2{2} +32)=11

TT[I{I:E}} = T?‘[I{lg}:} — TT[I{E::;};I =13 +22)=T.

11 3 3 2 21
3 11 3 21 2
3 3 111 2 2
Q=12 2 1 711
2 1 2 171
1 2 2 117

and the eigenvalues of ) are 7+ ﬁ[zl, T — \/ﬁlzl._ 13 + /41,13 — 411.
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Lemma 5.4. If | = F} = Fa = F3 = F; then the distance sign]es& Laplacian spectrum of
AGN(R) are 52.9.23 + 30", 24.7, 2481 29121 18.4,23 — \/30".

Proof. P} = {{1}. {2}, {31, {4}, {1,2}, {1,3}, {1,4}. {2.3}, (2.4}, {3.4}, {1, 2,3},
{1,2.4}.{1.3,4}, {2,3.4}}.
If |[A| =1 then |Sy1|=2'—1
Tr(14) = 1(1) + 2(6) + 3(6) = 31.
If |[A =2 then |Sy1|=2%-1
Tr(14) = 1(3) + 2(8) + 3(2) = 25.
If [A] =3 then |Say| =23 —1=17,|Sa3| =2' —2=0,|S42| =2 —3—-7 =6 and
Tr(14) = 1(7) + 2(6) = 19.

1,843 =2 —2=16,|S40/ =20 —3-1-6=6 and

3,|S43] =22 —2=2,|S40) =21—3-3-2=8 and

r:u 3 3 3 2 2 2 3 3 3 2 2 2 1)
3 31 3 3 2 3 3 2 2 3 2 2 1 2
3 3 31 3 3 2 3 2 3 2 2 1 2 2
3 3 3 31 3 3 2 3 2 2 1 2 2 2
2 2 3 3 2 2 2 2 2 1 2 2 1 1
2 3 2 3 2 2 2 2 1 2 2 1 2 1
12 3 3 2 2 2 32 1 2 2 1 2 2 1
=13 2 2 3 2 2 1 25 2 2 2 1 1 2
3 2 3 2 2 1 2 2 2 2 1 2 1 2
3 3 2 2 1 2 2 2 2 251 1 2 2
2 2 2 1 2 2 1 2 1 1 191 1 1
2 2 1 2 2 1 2 1 2 1 1 19 1 1
2 1 2 2 1 2 2 1 1 2 1 1 19 1
l\l 2 2 2 1 1 1 2 2 2 1 1 1 19/

and the eigenvalues of Q are 52.9,23 + 30", 24.7, 24, 222] 18.4,23 — /30"

6 Distance Laplacian spectrum of nil-graph

In this section we find distance Laplacian spectrum of AGx(R) when R=Fy x Fox---x F, .
In particular, we determine the distance Laplacian Spectrum of AGy(F % Fa), AGN(F x
Fy x F3), AGx(F) x Fy x Fy x Fy),

Lemma 6.1. If R =F % Fs % --- % F, then the distance Laplacian spectrum of AGy(R)
are the zeros of the characteristic polynomial of the matrix

TT‘{IA[:I _d[IA]‘.IH-z} Ut _J(I.‘llh'rﬂgn ;_p}

e —d(Ta,,14,) Tr(la,) coe —d(Tay LAy, o)

—d(Tagn_y-da,) —d(Tayn_,.das) --- Tridam )
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Proof. f R=Fy x Fa x- - x F, then P; = {A: AC [n], 4 # 0}, and V(AGN(R)) =
{Iy: A€ P}, We have 2" — 2 elements in V(AGy(R)). Let Pr = {4, Aa,--+ , Asn_a}.
Each ; has exactly one element and so the Laplacian eigenvalue of each &; is (0 and

an_z
aj= 3 d{la.Ja,)=Tr(ly) forall i=1,2---,2" — 2, By Lemma 4.3, we have
k=1 ki
Tr(la,) —d(Ia,, Ta,) - —d(Ia,, Ty )
A —d(Iay. 1a,) Tr(l4,) oo —d(Tay. Tag )

—d[IAzﬁ -_yr-'rA]) _J{I.-l;_m 231.42} - TT(I.‘!.zh 2:'
O
Lemma 6.2, If B = I} = F3 then the distance Laplacian spectrum of AGx(R) are 0,2

Proof. We have ’Pz* = {{1},{2}}._ T:r‘(f{l}j = I,Tr[I{z}} = 1 and d{I{l},I{g}} =1, By
Lemma 6.1,

1 -1
=2

and the eigenvalues of M are 0, 2. O

Lemma 6.3. Il B = F} x Fs x Fy then the distance Laplacian spectrum of AGy(R) are
11+ v10?, 11 — v10©, 10,0.

1nm -3 -3 -2 -2 -1
-3 11 -3 -2 -1 -2
-3 -3 1 -1 -2 -2
-2 -2 -1 7 -1 -1
-2 -1 -2 -1 7 -1
-1 -2 -2 -1 -1 7

FProof. By Lemma 6.1, M =

and the eigenvalues of M are 11 + lﬂ[z],ll — u’ﬁp], 10,10
O

Lemma 6.4. If B = F] = Fs = F3 % F; then the di_ﬁ}mme Laplacian spectrum of AGxy(R)
are 3(9+ vB)F, 3(9 — BB, 27 + /22, 27 — /22, 2819 26P1, 0.
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Proof. By Lemma 6.1,

/31 -3 -3 -3 -2 -2 -2 -3 -3 -3 -2 -2 -2 -1\
-3 31 -3 -3 -2 -3 -3 -2 -2 -3 -2 -2 -1 -2
-3 -3 31 -3 -3 -2 -3 -2 -3 -2 -2 -1 -2 -2
-3 -3 -3 31 -3 -3 -2 -3 -2 -2 -1 -2 -2 -2
-2 -2 -3 -3 25 -2 -2 -2 -2 -1 -2 -2 -1 -1
-2 -3 -2 -3 -2 25 -2 -2 -1 -2 -2 -1 -2 -1
Mo |2 3-8 -2-2-22 -1-2-2-1-2 -2 -1
-3 -2 -2 -3 -2 -2 -1 25 -2 -2 -2 -1 -1 -2
-3 -2 -3 -2 -2 -1 -2 -2 25 -2 -1 -2 -1 -2
-3 -3 -2 -2 -1 -2 -2 -2 -2 25 -1 -1 -2 -2
-2 -2 -2 -1 -2 -2 -1 -2 -1 -1 19 -1 -1 -1
-2 -2 -1 -2 -2 -1 -2 -1 -2 -1 -1 19 -1 -1
-2 -1 -2 -2 -1 -2 -2 -1 -1 -2 -1 -1 19 -1
\-1 -2 -2 -2 -1 -1 -1 -2 -2 -2 -1 -1 -1 19/

and the eigenvalues of M are 3(9+ V6B 39— VBB 27 + /22 27 — /23 2802 268 .
|
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