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ARTICLE INFO ABSTRACT 
 In this research, we construct deep learning (DL) networks to comprehend and analyze 

difficult graph structures. Due to DL’s remarkable rise in popularity in recent years, 
difficult tasks in difficult domains like visual analysis and linguistic processing are 
resolved with great efficiency. In light of this achievement, the deep neural network 
(DNN) replicates lower-level neural processes. It is challenging to describe such 
visualizations and they aren’t particularly helpful for comprehending the decision-
making process. By incorporating Recurrent Neural Network (RNN) in co-activation 
graphs and analyzing their capacity to improve understanding, we develop prior 
investigations in this work. To better understand the connection among sets of neuron 
layers from hidden layers and output categories, the co-activation graph accumulates 
relationships among the activation levels of the neurons. This research is expanded to 
take into account various data sets that were gathered from public sources to validate the 
validity of the findings. By examining behaviors and strong nodes and utilizing graph 
imaging techniques, this work showed an understanding of the RNN function and the 
understanding of process modeling requirements. 
 
Keywords: Graph structures, Deep Learning, Nodes, Recurrent Neural Network (RNN) 

 
1. Introduction 

 
Graphs are established to visualize a wide range of real-world interaction systems, including social media, 
citation, and bibliographic graphs. Learning efficient graph representations and to solve challenges down the 
line is especially crucial given their extensive use [1]. The node embedding in a Graph Neural Network (GNN) 
is created by combining and modifying the embeddings of its neighbors, according to a message passing 
architecture. GNNs are employed for a variety of analytical tasks, such as recommender systems, link 
prediction, and node categorization, because of their strong performance [2]. Graphs are an effective tool for 
representing information generated by both natural and artificial processes. A graph is relational as the 
linkages that define its structure indicate communication among the linked entities, and compositional since 
the made up of discrete information components [3]. The hidden layers are typically not addressed by these 
methods, and some of them are not relevant to convolutional layers. However, a number of models explain 
essentially the impact of feature area inputs on a model's output, while others application with the predictions 
of the neural network as an oracle to develop more decision tree-style models for machine learning (ML). 
Network managers can see possible bottlenecks, security risks, and other problems with graphs to monitor 
network traffic in real time [4]. In this work, we build on earlier studies by integrating RNN in co-activation 
graphs and assessing their ability to enhance comprehension. 
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2. Related work 
 
To address different issues in traffic jobs, these architectures are made up of many deep learning (DL) 
approaches. The traffic network is broken down into grids using convolution neural networks (CNNs) to 
simulate spatial dependence. The offered mechanical classification framework and linear discriminant analysis 
(LDA)-based network analysis approach are an efficient means to enable machine-assisted comprehension of 
text-based accident reports [5]. CNN [6] model is trained to identify accident tales and automatically extract 
text characteristics without requiring human feature processing. They contend that these graph topologies are 
more appropriate than sequences for learning tasks related to compiler optimization. They demonstrate that 
none of the approaches can provide a performance gain overall on the job of thread coarsening factor prediction 
[7]. A description of DL approaches at a high level and looked further into a thorough description of current 
advances in DL for atomistic modeling, materials imaging, spectrum analysis, and natural language processing 
(NLP) [8]. They presented an Artificial Intelligence (AI) based approach that bridges the gap between the 
design space and material performance through the application of a conditional generative adversarial neural 
network (cGAN) [9] and game theory. This communication proposes an effective method for predicting 
radiation patterns for antenna arrays with varying physical geometries: a residually connected complex-valued 
GNN. The antenna array's topology and excitation are represented graph-wise by the model, which employs 
GNN [10] as its structural backbone. According to the experimental results, using five different types of antenna 
arrays, the simulation's average absolute percent error and mean root-mean-square error averages are 0.032 
and 1.86%, respectively. This study presented Temporal Graph Networks (TGNs) [11], a general and effective 
structure for DL on dynamic graphs that are time-series representations of graphs. 
 

3. Materials 
 
The study outlines of training procedure, elaborates on model parameterization, and presents the suggested 
RNN algorithm. 
 
3.1 Dataset 
Two significant datasets that we obtained from Kaggle were employed in our study: MNIST fashion 
(https://www.kaggle.com/datasets/zalando-research/fashionmnist) and MNIST handwritten digits 
(https://www.kaggle.com/datasets/hojjatk/mnist-dataset). Ten classes, with 70,000 images, comprise both 
datasets. The handwritten digits dataset has classes related to numbers 0-9, whereas the fashion dataset has 
classes related to clothes. 
 
3.2 Co-activation graph 
This research aims to better understand the functioning of the hidden component of the model by extracting 
and representing knowledge from trained RNN. With the extraction and representation of information from 
trained RNN, this study requires providing insights into operation the hidden part of network. Since the 
connections between its nodes show that their activation levels are connected, we refer to this network as a co-
activation graph. Since the latter are easier for humans to understand, the primary goal of a co-activation 
structure is to establish a relationship among neurons in the neurons in all hidden layer depths and the 
characteristic input space of the result classes. The three procedures listed below can be used to create a co-
activation graph given a trained RNN: 
● Determine activation values 
Extracting activation values for every prediction is the initial step in feeding the RNN with data samples. 
Because each neuron produces a single activation value, this technique is simple for thick layers. Conversely, 
because convolutional layers' filters have distinct activation values for every area in the input, they will produce 
a range of values. 
 
● Establish and determine edge weights 
Determining the strength of the interactions with neurons in every layer comes after the activation levels for 
each layer's neurons have been gathered. We compute the statistical correlation among every pair of neurons 
using the activity values. 
 
● Construct and evaluate the co-activation graph 
The co-activation graph may be constructed and examined in this last and third stage. Weighted edges show 
the correlation between the activation levels of the neurons represented by the nodes, which can be neurons in 
any layer of the RNN. 
 
3.3 Recurrent neural network (RNN) 
The RNN has several fixed activation function units, one for each time step. Each entity have an internal 
condition that's referred to as the unit's hidden state. This hidden state represents the network's current level 
of knowledge from the past at a specific time step. Let {𝑤𝑠}𝑠∈𝑁𝑝 represent a series of 𝑁-dimensional data 
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points𝑤𝑠𝜖𝑅𝑀. From this sequence, information is extracted by RNN in the form of a hidden state variable 𝑦𝑠 ∈
𝑅𝑀. A nonlinear map is used to learn the states {𝑤𝑠}𝑠∈𝑁0from the sequence 𝑦𝑠. It receives as inputs the current 
data point 𝑤𝑠 and the previous hidden state 𝑤𝑠−1 and outputs the updated hidden state 𝑤𝑠. The parameters for 
this map are Equation (1), 
𝑦𝑠 = 𝜎(𝐵𝑤𝑠 + 𝐴𝑤𝑠−1)           (1) 
For a computational graph, let 𝜎: 𝑅 →  𝑅 be linear operators and point-wise nonlinearity and 
𝐵 ∈ 𝑅𝑀×𝑀, 𝐴 ∈ 𝑅𝑀×𝑀. Although it's not required, for the sake of simplicity of explanation, we'll assume that 𝑦𝑠 
and  𝑤𝑠 have the same dimensions. 
The target representation 𝑌, which is often viewed as a more suitable illustration of {𝑤𝑠}for the current job, is 
usually provided with the sequence{𝑤𝑠}. The components of 𝑌 get another sequence {𝑧𝑠}𝑠∈𝑁𝑝

, 𝑧𝑠𝜖𝑅𝑁, as is the 

case in automated voice recognition, and could be a single value 𝑧 ∈ 𝑌 that summarizes information from the 
whole series, such as a sentiment characterizing a tweet. RNN use a second nonlinear map 𝛷(𝑦𝑠) = 𝜌(𝐷𝑦𝑠, to 
apply the hidden state to estimate 𝑌. When a sequence serves as the target representation, this map is 
parameterized as Equation (2), 
𝛷(𝑦𝑠 ) = 𝜌(𝐷𝑦𝑠)           (2) 
Where the point-wise nonlinearity is utilized to compute the output, 𝐷𝜖𝑅𝑁×𝑀is represented by𝜌: 𝑅 → 𝑅, and the 
linear output map[𝜌(𝑤)]𝑗 = 𝜌([𝑤]𝑗). We might calculate 𝑠 from the situation at the end 𝑈 of the series 𝛷(𝑦𝑠  ) =

𝜌(𝐷𝑦𝑠, in situations where a single result 𝑠 is connected to the sequence{𝑤𝑠}. 
The optimum linear mappings D, E, and F are achieved by minimizing a loss function  
𝐿(𝛷(𝑦𝑠), 𝑌)𝑜𝑟 𝐿(𝛷(𝑦𝑆  ), 𝑌) over a training set, which consists of multiple sequences𝑦𝑆 and their corresponding 
representations 𝑦. With the help of the available training examples, this learning framework determines which 
sequential information is relevant to keep in the hidden state𝑦𝑠, allowing the hidden state to adapt to the job at 
hand. 
The idea that several parameters in linear operators D, E, and F are independent of time index 𝑠 is crucial to 
the performance of RNNs. The series is executed using the same linear operators. Two primary benefits of this 
parameter-sharing system across the time dimension are that it permits learning compared to sequences of 
varied length while also controlling the number of parameters. This is in line with our hidden state recurrent 
approximation model, in which every learned state depends only on the input received at that moment and its 
predecessor. The updated state is constantly the same, regardless of starting time 𝑠0, provided that the input's 
current value and its prior state are equal. The ability to determine which neurons have a significant influence 
on the decisions made by the model aligns a representation of co-activation graph with data through trained 
RNN. 

4. Results 
 
This section includes a series of in-depth tests that demonstrate the suggested RNN method beats a wide range 
of forecasting techniques, including one that picks up on a hidden graph structure. 
 
4.1 Visualization of co-activation graph 
Figure 1 shows that the visualization strategy inserts specific groups close to one distinct while keeping other 
classes spread out on both graphs. This might suggest that there is a chance for co-activation graphs to include 
a community structure. Before carrying out this kind of graph analysis, it's crucial to determine if the 
information from each RNN is represented in the graphs. The blue nodes in the buried layers indicate neurons, 
while those in the final layer are represented by maroon nodes. 

 
Figure 1: Co-activation graph visualizations of handwritten 

 
4.2 Analysis of community structure 
The RNN information samples from the testing set as a result could determine each neuron's activation value. 
The examined community structure in this graph, based on the idea shown in Figure 2, determines whether it 
is useful in identifying comparable classes from the perspective of the RNN. 
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Figure 2: Extracting neuron layers in co-activation graph 

 
The method is used to the connections among nodes in hidden layers that represent neurons and the nodes in 
an outcome layer that represent classes. The identified communities and classifications found in each of them 
are displayed in Table 1. It is shown from the fashion dataset that classes within the same groups have semantic 
meanings that are comparable. This is evident from the placement of classes such as coats and pullovers in one 
community and sandals and sneakers in another. Since the meaning of the handwritten numerals is less 
obvious. It is noteworthy that the modularity for both datasets was more than 0.4, indicating denser sections 
within the communities that were observed, but not completely distinct. 
 

Table 1: Division and section in two datasets 

 
Handwritten 
digits 

Fashion 

Section division division 

Class 1 0,2,4,6 
pullover, T-shirt/Top, coat, 
shirt 

Class 2 5,7,8,9 dress, Trouser 

Class 3 1,3 
bag, sneaker, ankle boot, 
Sandal 

Modularity 0.45 0.413 
 

5. Conclusion 
 
In this research, we formalize and test a unique method for analyzing and elucidating the inner workings of 
deep learning models. The suggested approach makes use of the formalized concept of a co-activation graph, 
which first appeared to extract and express information from a developed RNN. Our evaluation showed that 
identify neurons for significantly contribute to the connection of certain classes by examining the graph 
structure. This is important to understand since we can analyze the neurons' strong influence on certain classes' 
prediction values to improved understand the decisions the model made. Graph visualization approaches were 
demonstrated to be an effective means of providing further transparency by elucidating the outcomes of 
individual analyses conducted on co-activation graphs. A potential approach for future research is examining 
the function of our effective framework for early stopping. 
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