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ARTICLE INFO ABSTRACT 

 In this paper, it is proved that if the lattice of all convex sublattices of a given lattice 

L  is respectively 0-modular,0-distributive,0-supermodular,0-semi modular, 
super-0-distributive, pseudo-0-distributive, Eulerian, General disjointness 

condition, then L  is also 0-modular,0-distributive,0-supermodular,0-semi 
modular, super-0-distributive, pseudo-0-distributive, Eulerian and satisfies 

General disjointness condition, then L  also posses the same property. 
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Introduction 

 

Let L  be a lattice and ( )CS L be the set of all non empty convex sublattices of L . The lattice of all convex 

sublattices of `a lattice including empty set under set inclusion relation was first studied thoroughly by 

K.M.Koh in 1972 [5].There he investigated the interdependence of the lattices L and  ( )( )( ) ,CS L  

,from the lattice theoretical point of view. 

In 1996, S.Lavanya and S.Parameshwara Bhatta [7] introduced another partial ordering on ( )CS L . They have 

proved that both L  and ( )CS L with respect to that ordering are in the same equational class. As a further 

study P.V. Ramana murty in 2002[9], had investigated the effect of that ordering on lattices which cannot be 
described by means of identities. Particularly he had looked into semi modular lattices. He obtained that for a 

lattice L , ( )CS L is semi modular if both ( )I L and ( )D L are semi modular. And if L  is of finite length, he 

proved that the converse also holds.Recently R.Subbarayan [10] has proved that ( )CS L is 0-semi modular then 

L  is 0-semi modular. This has motivated us to look into lattices which satisfy other 0-conditios. In this paper, 
we consider the lattices which are (i) 0-modular (ii) 0-distributive (iii) 0-super modular (iv) Super-0-distributive 
(v) Pseudo-0-distributive and(vi) Eulerian lattice and (vii) lattices satisfying the General disjointness condition. 
Among these the converse is also proved to be true for the properties 0-distributivity and 0-semimodular. For 

other properties, we are able to prove only one way namely, ( )CS L satisfies the condition, then L  also 

satisfies the condition. These results are analogous to corollary 8, page number 53[9]. 
 

2.Preliminaries 
 
In this section, we give some basic definitions needed for the development of the paper. 

https://kuey.net/
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2.1 Convex sublattice 

A sublattice K  of a lattice L is called convex iff whenever ,a b K , c L  and  a c b   then c K . 
For example, if ,a b L , a b , the interval    , /a b x a x b=    is an example of a convex sublattices of 

L .The collection of all convex sublattices of a lattice L  is denoted by ( )CS L . 

 

2.2 A new partial ordering on ( )CS L  

We define a binary relation   on ( )CS L by the following rule: for ( ),A B CS L , A B  if and only if ``for 

every a A  there exists a b B  such that a b  and for every b B  there exists an a A  such that b a

'', clearly ‘  ' is a partial order on ( )CS L .Moreover ( ) ,CS L   forms a lattice (see[7]). 

A simple structure of a 0-modular lattice L  which is not modular and its ( )CS L are given in the following figure. 

 

2.3 Ideal and Filter 

A sublattice I of L  is an ideal iff i I  and a L   imply that  a i I  . 
A sublattice F  of L  is a Filter iff f F  and a L  imply that a f F  . 
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2.4 Remark 

Let ( )I L denote the lattice of all ideals of L (ordered by ) 
and ( )D L denote the lattice of all Filters of L (ordered by ) 
Since L  can be embedded in ( )I L and ( )I L is a sublattice of ( )CS L ,the mapping : ( )f L CS L→  defined 

by ( ) ( f a a= for every a L  is an embedding. 
 

2.5 Notations 

Let L  be a lattice. For a subset A  of L  we denote ( A , )A  and A  respectively to represent the ideal, the 

filter and the convex sublattice of L  generated by A . 
 

2.6 Supermodular lattice 

A lattice L  is said to be supermodular if it satisfies the following identity 

( ) ( ) ( ) ( ) ( ) ( ) , , , .a b a c a d a b c a d c d a b b d a c for all a b c d L     =                         

 

2.7 0-Supermodular lattice 

A Lattice L is called 0-Supermodular, if whenever , ,b c d L satisfy 

( ) ( ) ( )0, .b c c d b d then a b a c a d a for every a L =  =  =      =   

 

2.8 0-modular lattice 

A lattice L  is said to be a 0-modular lattice if whenever 0,x y and y z  =  

Then ( ) , ,x x z y for all x y z L=    . 

Example 
3M  is 0-modular. 

 

2.9 0-Semimodular lattice 

A lattice L  is said to be a 0-semimodular lattice if whenever a is an atom of L  and x L  such that 0a x =

, then x a  covers x . 
 

2.10 0-distributive lattice 

A lattice L  with 0 is said to be 0-distributive if for all , ,x y z L ,whenever 0x y = and 

0x z = ,then ( ) 0.x y z  =  

 
2.11 Pseudo-0-distributive 

A lattice L  is said to be pseudo-0-distributive if for all , ,a b c L , 0a b =  and 0a c =  imply that 
( )a b c b c  =  . 
 

2.12 Super-0-distributive 

A lattice L  is said to be super-0-distributive if for all , ,a b c L , 0a b =  implies that 

( ) ( ) ( )a b c a c b c  =    . 
 

2.13 Graded poset 

A Poset P  is graded if all maximal chains in P  have the same length. 
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2.14 Eulerian Poset 

A finite graded poset P  is said to be Eulerian if its mobius function assumes the value ( ) ( )
( ),

, 1
l x y

x y = −  for 

all x y in P , where ( ) ( ) ( ),l x y r y r x= −  and r  is the rank function on P . 
 

3. On the preservability of 0-conditions in CS(L) 
 

In this section we prove the following theorems. 
 

3.1 Theorem 

If ( )CS L is 0-Supermodular, then L  is 0-Supermodular. 
 
Proof 

Let ( )CS L is 0-Supermodular 

Let , ,b c d L  such that ( )0 1b c c d b d =  =  = −−→  

we have to prove that ( ) ( ) ( )a b a c a d a     =  for every a L . 
From (1) In ( )CS L ,we have (    (    (   0 , 0 , 0b c c d b d =  =  = . 

that is, (  (    (  (    (  (   0 , 0 , 0 .b c c d b d =  =  =  

Now ( )a CS L  

Therefore, in ( )CS L , (  ( ( ) (  ( ( ) (  ( ( ) ( a b a c a d a     = as ( )CS L is 0-supermodular. 

which implies (  (  (  ( a b a c a d a     = . 

which implies that ( ) ( ) ( )( ( a b a c a d a     = . 

Therefore , ( ) ( ) ( )a b a c a d a     = . 

Hence, L is 0-Supermodular. 
 

3.2 Theorem 

( )CS L is 0-semimodular, if and only if L  is 0-semimodular. 
 
Proof 

The proof of the part “If ( )CS L is 0-semimodular then L  is also 0-semimodular” can be found in[10]. 

Conversely, 

Suppose that L  is 0-semimodular 

we claim that ( )CS L is 0-semimodular 

Take an atom{0,a} in ( )CS L ,where a is an atom in L . 

let X be any element in CS(L) such that    0, 0a X =  

That is      0 / 0a x x X   =  

which implies that 0a x =  for every x X . 

which implies that a x x  for every x X (Since L is 0-semimodular)-----(1) 

To prove that   ( )0,a X X in CS L  

we have    ( )0, / *a X X a x x X =    −−−→  

suppose there exists a ( )Y CS L such that  /X a x x X Y X      

Therefore, for every y Y ,there exists a  /t X a x x X     such that ( )2y t −−−→  
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And for every  /s X a x x X    ,there exists a 
1y Y such that ( )1 3s y −−−→  

 
Also there exists a 

1x X such that ( )1 1 4y x −−−→  

by (1) , a x x  for every x X . 

By (3), if s is of the form x X , then 
1 1x y x  implies 

1y X (Since X is convex) 

Now  
 

1 1 2 2

1 2 1 2

/
0,

, 0, ,

t L s x t s x
a X

where s s a and x x X

      
 =  

   
 

 

 

1 2

3 4

1 2

1 2

1 2 1 2

/

0,

, 0, ,

t L x t x or

a x t a x or

Then a X x t a x or

a x t x

where s s a and x x X

   
 

    
 

 =    
   
 
   

 

Claim :  0,a X Y   

We prove that for every  0,t a X  ,there exists a y Y such that t y  and 

for every 
11y Y ,there exists  11 /t X a x x X    such that 

11 11t y  

Consider a  0,t a X   

(i)Now take the case when for some 
2 3,x x X , ( )2 3 5x t x  −−−→  

1t y  is true as   ( )0, 6Y a X  −−−→  

Now 
3x X ,there exists a 

3y Y such that ( )3 3 7x y −−−→  

Equation (5) and (7) implies 
3 3t x y   

Now consider an element 
11y Y ,there exists a 

11x X such that ( )11 11 siny x ceY X   

As 
11x  can be considered as an element of  0,a X , 

We have arrived at an element 
11x  of  0,a X ,below 

11y  

Therefore,  0,a X Y   

(ii) Take the case when 3 4a x t a x     for some 3 4,x x X  

1t y is clear for some 1y Y by (6) 

Now 4x X  and X Y implies that there exists an element 4y Y such that 4 4x y . 

Therefore, 4 4t a x a y     

Now 4 4a x x  since L is 0-semimodular. 

Therefore, 4 4t x y  . 

Hence,  0,a X Y  in this case also. 

(iii)Now consider the case when 
5 6x t a x    

As in the case (ii), we can argue that 6t y for some 
6y Y  

Therefore, in this case also  0,a X Y   

(iv)Finally, when 
7 8a x t x    for some 7 8,x x X , 

Then as in the first case, we get  0,a X Y  . 
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Hence, in all the cases we have  0,a X Y  . 

So,  0,a X Y = . 

Therefore,  0,a X X . 

Hence, we conclude that ( )CS L is 0-semimodular. 

 
3.3 Theorem 

If ( )CS L is 0-modular, then L  is 0-modular. 
 
Proof 

Suppose that ( )CS L is 0-modular. 

we have to prove that L  is 0-modular. 

that is to prove that for every , ,x y z L  such that x y 0and y z = ,we have ( )x z y x  = . 

Let , ,x y z L  and x y 0and y z = . 

since x y  we have (x]   (y] 

and 0y z =  implies that (   0y z =  

Therefore, (  (   0y z = . 

If (  ( t y z  , then t y  and t z . 

Which implies that 0t y z  =  

As ( )CS L is 0-modular, we have (  ( ( ) (  ( .x z y x  =  

Which implies that (  (  ( .x z y x  =  

Which implies that ( )( ( .x z y x  =  

Hence , ( )x z y x  = . 

Hence, L  is 0-modular. 
 

3.4 Theorem 

If ( )CS L is Eulerian, then L is Eulerian. 
Proof 

Let ( )CS L be Eulerian. 
we have to prove that L is Eulerian. 

that is to prove that ( ) ( )
( ) ( ) 

, 1
r y r x

x y
−

= −  for all x y  in L . 
Let ,x y L  and x y . 

Therefore, (  (  ( )x y in CS L . 

Now (  ( ( ) ( )
(  ( ( )

, 1
r y r x

x y
−

= −  as ( )CS L is Eulerian. 

Since it is easily seen that ( ( ) ( )r y r y=  for all y L . 

And (  ( ( ) ( ), ,x y x y =  for all ,x y L  as   ( )0 , L I L   . 

Hence ( ) ( )
( ) ( )

, 1
r y r x

x y
−

= − . 

Therefore, L  is Eulerian. 
The converse is not true for 1L  . 

For example, The two element chain is Eulerian, but its lattice of convex sublattices is a 3 element chain 
which is not Eulerian. 
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3.5 Theorem 

( )CS L is 0-distributive if and only if  L  is 0-distributive. 

Proof 

Suppose ( )CS L  is 0-distributive. 

we have to prove that L  is 0-distributive 

Let , ,x y z L  such that 0x y =  and 0x z = . 

To prove ( ) 0x y z  = . 

Now (   0x y =  and (   0x z = . 

which implies (  (   0x y = and (  (   0x z = . 

Therefore, (  (  ( ( )  0 .x y z  =  

That is, (  (   0 .x y z  =  

That is, ( )(  0 .x y z  =  

Hence, ( ) 0x y z  = . 

Therefore, L  is 0-distributive. 
 
Conversely, 

Suppose that L  is 0-distributive. 

then for every , ,x y z L , whenever 0x y =  and 0x z = , then ( ) 0x y z  = . 

We claim that  ( )CS L is 0-distributive 

Let  0X Y = ,  0X Z =  where ( ), ,X Y Z CS L . 

To prove that ( )  0 .X Y Z  =  

We know that ( )  1 1 2 2 1 2 1 2/ , ,X Y Z t L x s t x s where x x X ands s Y Z  =          

Now 
1 2,s s Y Z  implies that 

11 11 1 21 21 12 12 2 22 22,y z s y z y z s y z         

for some 
11 21 12 22 11 21 12 22, , , , , ,y y y y Y and z z z z Z  . 

Hence,
1 1 2 2x s t x s     implies ( ) ( )1 11 11 2 22 22x y z t x y z       

Therefore, 0 ≤ t ≤ 0 (since L  is 0-distributive) 

as 
1 11 0x y = ,

1 11 0x z = ,
2 22 2 220, 0.x y x z =  =  

Which implies that  t = 0 

Therefore, ( )  0 .X Y Z  =  

Hence, ( )CS L is 0-distributive. 

 

3.6 Theorem 

If ( )CS L is super-0-distributive, then L is super-0-distributive 

Proof 

Suppose that ( )CS L is super-0-distributive. 

we have to prove that L  is super-0-distributive. 

Let , ,x y z L  such that 0x y = . 

To prove that ( ) ( ) ( )x y z x z y z  =     for every , ,x y z L . 

Take an element z L ,therefore (  ( )z CS L . 

we have (   0x y =  So, (  (   0x y = . 
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Therefore, ((x] ˅ (y]) ˄ (z] = ((x] ˄ (z]) ˅ ((y] ˄ (z]) as ( )CS L is super-0-distributive. 

which implies that ( )( (  (  ( ) ( )(x y z x z y z x z y z  =    =      . 

which implies ( ) ( ) ( )x y z x z y z  =    . 

Hence, L  is super-0-distributive. 
 

3.7 Theorem 

If ( )CS L is pseudo-0-distributive, then L  is pseudo-0-distributive. 
Proof 

Suppose that ( )CS L is pseudo-0-distributive . 

we have to prove that L  is pseudo-0-distributive. 

Let , ,x y z L  such that 0x y = and 0x z = . 

To prove ( )x y z y z  =  . 

Therefore, we have (   0x y = and (   0x z = . 

Therefore, (  (    (  (   0 , 0x y x z =  = . 

Therefore, (  ( ( ) (  (  ( x y z y z  =   as ( )CS L is pseudo-0-distributive 

which implies that (  (  (  ( x y z y z  =  . 

which implies that ( )( ( .x y z y z  =   

which implies ( )x y z y z  =  . 

Hence, L   is pseudo-0-distributive. 
 

3.8 Theorem 

If ( )CS L satisfies general disjointness condition, then L  also satisfies the general disjointness condition. 
Proof 

Suppose that ( )CS L satisfies general disjointness condition. 
we have to prove that L  satisfies general disjointness condition. 
That is, to prove that 0x y =  and ( ) 0x y z  =  implies that ( ) 0x y z  =  for every , ,x y z L . 

Let , ,x y z L  such that 0x y =  and ( ) 0x y z  = . 

which implies that (   0x y =  and ( )(  0x y z  = . 

That is, (  (   0x y =  and (  ( ( ) (   0x y z  = . 

Therefore, (  (  ( ( )( )  0x y z  =  as ( )CS L satisfies general disjointness condition. 

which implies ( )(  0 .x y z  =  

which implies ( ) 0x y z  = . 

Therefore, L  satisfies the general disjointness condition. 
 

Remark 

Proving the converse of theorem 3.1,3.3,3.6,3.7,3.8 remains open. 
 

References 
 

1. Arivukkarasu.J and Vethamanickam.A.,On 0-supermodular lattices, Mathematical Sciences International 
Research Journal, Volume, Vol-3,Issue-2,748-754 (2014). 

2. Chen, C.C and Koh, K.M., On the lattice of convex sublattices of a finite lattice, Nantha Math.,5, 92-95(1972) 
3. Gratzer,G., General lattice theory, Birkhauser Verlag, Basel,(1978). 



3977  Mrs. S. Christia Soniya et al / Kuey, 30(6), 6380 

 

4. Iqbalunnisa,W.B. Vasantha Kandasamy, Florentine smarandache,Supermodular lattices,Educational 
PublisherInc.Ohio,(2012). 

5. Koh, K.M.,On the lattice of convex sublattices of a lattice, Nantha Math., 6,18-37(1972). 
6. Koh, K.M., On the complementation of the CS(L) of a lattice L, Tamkang   J. Math., 7,145-150(1976). 

7. Lavanya, S., Parameshwara Bhatta, S., A New approach to the lattice of convex sublattices of a lattice, 

Algebra Univ,35,63-71(1996). 
8. Marmazeev, V.I., The lattice of convex sublattices of a lattice (Russian), Ordered sets and lattices,9,50-

58,110-111, (1986) Saratov Gos Univ., Saratov. 
9. Ramana Murty, P.V., On the lattice of convex sublattices of a lattice, Southeast Asian Bulletin of 

Mathematics26,51-55 (2003). 
10. Subbarayan,R., Equational class-like properties of 0-distributive lattices, ,Jnanabha vol.52(2)(2022),73-

76. 




