4-Total Geometric Mean Cordial Labeling Of Graphs

L.Vennila ${ }^{*}$, Dr.P.Vidhyarani ${ }^{2}$
${ }^{1 *}$ Research Scholar [Reg. No: 19211202092025], Department of Mathematics, Sri Parasakthi College for Women, Courtallam-6278o2, Affiliated to Manonmaniam Sundaranar University, Abisekapatti -627012, Tamilnadu, India. Email id: vennila319@gmail.com ${ }^{2}$ Assistant Professor, Department of Mathematics, Sri Parasakthi College for Women, Courtallam-627802, India.
Citation: L.Vennila, et al (2024) 4-Total Geometric Mean Cordial Labeling Of Graphs, Educational Administration: Theory and Practice, 30(5), 14203-14206
Doi: 10.53555/kuey.v3oi5.6425

ARTICLE INFO

Abstract

Let G be a (p, q) graph. Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3, \ldots, \mathrm{k}\}$ be a function where $\mathrm{k} \in \mathrm{N}$ and $\mathrm{k}>1$. For each edge uv, assign the label $\mathrm{f}(\mathrm{uv})=\lceil\sqrt{f(u) f(v)}\rceil$. f is called k -Total geometric mean cordial labeling of G if $\left|\mathrm{t}_{\mathrm{mf}}(\mathrm{i})-\mathrm{t}_{\mathrm{mf}}(\mathrm{j})\right| \leq 1$, for all $i, j \in\{1,2,3, \ldots, k\}$, where $t_{m f}(x)$ denotes the total number of vertices and edges labeled with $\mathrm{x}, \mathrm{x} \in\{1,2,3$,.., k $\}$.A graph that admits the k -total geometric mean cordial labeling is called k-total geometric mean cordial graph. In this paper we investigate 4 - total geometric mean cordial labeling of graphs. "AMS Subject Classification 2010: 05C78"

Keywords: H-graph, Pan graph, Bistar, Crown graph, 4-total geometric mean cordial labeling, 4 -total geometric mean cordial graphs.

I. Introduction

Finite, simple and undirected graphs are considered here. Cordial labeling was introduced by Cahit [1]. For notations and terminology we follow [2]. Geometric mean cordial labeling of graphs was introduced in [3]. ktotal mean cordial labeling of graphs was introduced in [4]. 4-total mean cordial labeling of some graphs derived from H-graph and Star was introduced in [5]. 4-total mean cordial labeling of some graphs derived from path and cycle was introduced in [6]. k-total geometric mean cordial labeling of some graphs was introduced in [7]. In this paper we investigate 4-total geometric mean cordial labeling behavior of H -graph, Pan graph, bistar and crown graphs.

Definition 1.1.

Let G be a (p, q) graph. Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2,3, \ldots, \mathrm{k}\}$ be a function where $\mathrm{k} \in \mathrm{N}$ and $\mathrm{k}>1$. For each edge $u v$, assign the label $\mathrm{f}(\mathrm{uv})=\lceil\sqrt{f(u) f(v)}\rceil$. f is called k -Total geometric mean cordial labeling of G if $\mid \mathrm{t}_{\mathrm{mf}}(\mathrm{i})-\mathrm{t}_{\mathrm{mf}}$ $(\mathrm{j}) \mid \leq 1, \mathrm{i}, \mathrm{j} \in\{1,2,3, \ldots, \mathrm{k}\}$ where $\mathrm{t}_{\mathrm{mf}}(\mathrm{x})$ denotes the total number of vertices and edges labeled with $\mathrm{x}, \mathrm{x} \in\{1,2,3$, $\ldots, \mathrm{k}\}$.A graph that admits the k -total geometric mean cordial labeling is called k -total geometric mean cordial graph.

Definition 1.2.

Let $\mathrm{P}_{\mathrm{n}}{ }^{(1)}: \mathrm{u}_{1} \mathrm{u}_{2} \ldots \ldots \mathrm{u}_{\mathrm{n}}$ and $\mathrm{P}_{\mathrm{n}}{ }^{(2)}: \mathrm{v}_{1} \mathrm{v}_{2} \ldots \ldots \mathrm{v}_{\mathrm{n}}$ be any two paths. We join the vertices $\frac{u_{n+1}^{2}}{}$ and $\frac{v_{n+1}^{2}}{2}$ by an edge, if n is odd and join the vertices $\frac{u_{\frac{n+z}{2}}}{}$ and $\frac{v \frac{n}{z}}{}$ by an edge, if n is even.
Then the resulting graph is called a H -graph on 2 n vertices. We denote it by H_{n}.

Definition 1.3.

The pan graph is the graph obtained by joining a cycle graph to a singleton graph with a bridge. The pan graph is therefore isomorphic with the tadpole graph.

Definition 1.4 .

The Bistar $\mathrm{B}_{\mathrm{m}, \mathrm{n}}$ is the graph obtained by joining the two central vertices of $\mathrm{K}_{1, \mathrm{~m}}$ and $\mathrm{K}_{1, \mathrm{n}}$.

Definition 1.5.

The graph obtained by joining a single pendant edge to each vertex of a path is called a comb $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$.

II. Main Results

Theorem 2.1.

Any H_{n} graph, $n \geq 3$ is a 4-total geometric mean cordial labeling.

Proof:

Let H be a graph with 2 n vertices and $2 \mathrm{n}-1$ edges. Let P_{n} be a path and $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the vertices of first copy of P_{n} and $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the vertices of second copy of P_{n}.

Case (i): when n is odd
Allocate the $\frac{n+1}{2}$ vertices $u_{1}, u_{2}, \ldots, \frac{u_{n+1}^{2}}{}$ are labeled with 1 , the $\frac{n-1}{2}$ vertices $\frac{u_{n+8}^{2}}{2}, \frac{u_{n+5}^{2}}{2}, \ldots, u_{n}$ are labeled with 2, the $\frac{n+1}{2}$ vertices $v_{1}, v_{2}, \ldots, \frac{v_{n+1}}{z}$ are labeled with 3 . Finally the $\frac{n-1}{2}$ vertices $\frac{v_{n+s}}{2}, v_{n+5}^{z}, \ldots, v_{n}$ are labeled with 4.

Case (ii): when n is even
 labeled with 2, then we allocate the $\frac{n}{2}$ vertices $v_{1}, v_{2}, \ldots, v \frac{n}{2}$ are labeled with 3 . Finally the $\frac{n}{2}$ vertices $\frac{v_{n+2}^{2}}{2}, \frac{n+4}{2}, \ldots, v_{n}$ are labeled with 4.
The vertex labeling f is a 4 total geometric mean cordial labeling

Nature of n	$\mathrm{t}_{\mathrm{mf}}(1)$	$\mathrm{t}_{\mathrm{mf}}(2)$	$\mathrm{t}_{\mathrm{mf}}(3)$	$\mathrm{t}_{\mathrm{mf}}(4)$
n is odd	n	n	n	$\mathrm{n}-1$
n is even	$\mathrm{n}-1$	n	n	n

In the above two cases we see that the function f is 4-total geometric mean cordial labeling. Hence H_{n} is 4total geometric mean cordial graph.

Theorem 2.2.

Any Pan graph $\mathrm{n} \geq 3$ is a 4-total geometric mean cordial graph.

Proof:

Let G be a pan graph with $n+1 v e r t i c e s ~ a n d ~ n+1 e d g e s . ~ L e t ~ u_{1} u_{2} \ldots . . u_{n} u_{1}$ be the cycle C_{n} and v be the pendant vertex and join the pendant vertex to the vertex u_{1}. The edges of the pan graph are $v u_{1}, u_{1} u_{2}, u_{2} u_{3}, \ldots, u_{n} u_{1}$. Assign the label 1 to the vertex v.
Case (i): $n \equiv 1(\bmod 4)$
Allocate the $\frac{n-1}{4}$ vertices $u_{1}, u_{2}, \ldots, u_{\frac{n-1}{4}}$ are labeled with 1 , next we allocate the $\frac{n-1}{4}$ vertices $u_{\frac{n+1}{4}}, u_{\frac{n+7}{4}}, u_{\frac{n+11}{4}}, \ldots, u_{\frac{n-1}{2}}$ are labeled with 2 , now we allocate the $\frac{n+\pi}{4}$ vertices $\frac{u_{n+1}^{2}}{}, u_{\frac{n+8}{2}}, \ldots, u_{\frac{s n-s}{4}}$ and u_{n} are labeled with 3 . Finally the $\frac{n-1}{4}$ vertices $\frac{u^{3 n+1}}{4}, u_{\frac{3 n+5}{}}^{4}, u_{\frac{3 n+9}{}}^{4}, \ldots, u_{n-1}$ are labeled with 4 .
Case (ii): $n \equiv 2(\bmod 4)$
Allocate the $\frac{n-2}{4}$ vertices $u_{1}, u_{2}, \ldots, u_{\frac{n-z}{4}}^{4}$ are labeled with 1 , next we allocate the $\frac{n-2}{4}$ vertices $\frac{u_{n+2}}{4}, \frac{u_{n+6}}{4}, u_{\frac{n+10}{}}^{4}, \ldots, u_{\frac{n-2}{2}}$ are labeled with 2 , then we allocate the $\frac{n+2}{4}$ vertices
 with 4.
Case (iii): $n \equiv 3(\bmod 4)$
It is easy to verify for $n=3$.
If $n \geq 7$. Allocate the $\frac{n+1}{4}$ vertices $u_{1}, u_{2}, \ldots, u_{\frac{n+1}{4}}$ are labeled with 4 , the $\frac{n+1}{4}$ vertices $\frac{u_{n+5}}{4}, u_{\frac{n+9}{4}}, \ldots, u_{\frac{n+1}{2}}$ are labeled with 1 , the $\frac{n+1}{4}$ vertices $\frac{u_{n+5}^{2}}{2}, u_{\frac{n+5}{2}}, u_{\frac{n+7}{2}}^{2}, \ldots, u_{\frac{m n-1}{4}}$ and u_{n} are labeled with 3 . Finally the $\frac{n-1}{4}$

Case (iv): $\mathrm{n} \equiv 4(\bmod 4)$
Allocate the $\frac{n}{4}$ vertices $u_{1}, u_{2}, \ldots, u_{\frac{n}{4}}$ are labeled with 1 , next we allocate the $\frac{n}{4}$ vertices $\frac{u_{n+4}^{4}}{}, u_{\frac{n+8}{4}}, \ldots, u_{\frac{n}{2}}$ are labeled with 2 , then we allocate the $\frac{n}{4}$ vertices $\frac{u_{n+2}}{z}, \frac{u_{n+4}}{z}, \frac{u_{n+6}}{z}, \ldots, u_{\frac{m}{4}}$ are labeled with 3 . Finally the $\frac{\pi}{4}$ vertices $\frac{u_{\mathrm{sn+4}}}{4}, u_{\frac{s n+8}{4}}^{4}, u_{\frac{3 n+12}{}}^{4}, \ldots, u_{n}$ are labeled with 4 .
The vertex labeling f is a 4 total geometric mean cordial labeling.

Nature of n	$\mathrm{t}_{\mathrm{mf}}(1)$	$\mathrm{t}_{\mathrm{mf}}(2)$	$\mathrm{t}_{\mathrm{mf}}(3)$	$\mathrm{t}_{\mathrm{mf}}(4)$
$\mathrm{n} \equiv 1 \bmod 4$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{n+1}{2}$
$\mathrm{n} \equiv 2 \bmod 4$	$\frac{n}{2}$	$\frac{n}{2}$	$\frac{n+2}{2}$	$\frac{n+2}{2}$
$\mathrm{n} \equiv 3 \bmod 4$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{n+1}{2}$
$\mathrm{n} \equiv 4 \bmod 4$	$\frac{n+2}{2}$	$\frac{n+2}{2}$	$\frac{n}{2}$	$\frac{n}{2}$

Hence the graph G is 4- total geometric mean cordial graph.

Theorem 2.3.

The Bistar $B_{n, n}$ is 4-total geometric mean cordial for all n.

Proof:

Let u, v be the centre vertices of the bistar $B_{n, n}$. Let $u_{i}(1 \leq i \leq n)$ be the pendant vertices adjacent to u and v_{i} $(1 \leq \mathrm{i} \leq \mathrm{n})$ be the pendant vertices adjacent to $\mathrm{v} . \mathrm{E}\left(\mathrm{B}_{\mathrm{n}, \mathrm{n}}\right)=\{\mathrm{uv}\} \cup\left\{\mathrm{uu}_{\mathrm{i}}, \mathrm{vv}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$
Allocate the label 3, 4 to the central vertices u, v.
Consider the vertices $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$. The n vertices $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$ are labeled with 1 , the label 2 to the one vertex v_{1} and allocate the label 3 to the $\mathrm{n}-1$ vertices $\mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}$.
Clearly $\mathrm{t}_{\mathrm{mf}}(1)=\mathrm{t}_{\mathrm{mf}}(2)=\mathrm{t}_{\mathrm{mf}}(3)=\mathrm{n}$ and $\mathrm{t}_{\mathrm{mf}}(4)=\mathrm{n}+1$.
Hence the graph $B_{n, n}$ is 4 - total geometric mean cordial graph.

Theorem 2.4.

Let G be the graph obtained by attaching a pendant vertex with a vertex of degree two on both sides of a comb graph $P_{n} \odot K_{1}$. Then G is the 4 - total geometric mean cordial for all n.

Proof:

Comb $P_{n} \odot K_{1}$ be the graph obtained from the path $P_{n}=u_{1} u_{2} u_{3} \ldots . . . u_{n}$ by joining a pendant vertex u_{i} to $v_{i}(1 \leq i$ $\leq n$). Let G be a graph obtained by attaching a pendant vertex x and y to u_{1} and u_{n} respectively.

Case (i): when n is even
Allocate the label 1 to the pendant vertices $v_{1}, v_{2}, v_{3}, v_{4}, \ldots, v_{n}$, the label 2 to the vertex x, the label 3 to the $\frac{n+2}{2}$ vertices $u_{1}, u_{2}, \ldots, u_{\frac{n}{2}}^{2}$ and y. Finally we allocate the label 4 to the $\frac{n}{2}$ vertices $\frac{u_{n+2}^{2}}{2}, u_{\frac{n+4}{2}}, \ldots \ldots . u_{n}$.
Case (ii) when n is odd
Allocate the label 1 to the pendant vertices $v_{1}, v_{2}, v_{3}, v_{4}, \ldots, v_{n}$, the label 2 to the vertex x, the label 3 to the $\frac{n+1}{2}$ vertices $u_{1}, u_{2}, u_{3}, u_{4}, \ldots, u_{\frac{n+1}{2}}$ and the label 4 to the $\frac{n+1}{2}$ vertices $\frac{u_{n+5}^{2}}{2}, u_{\frac{n+5}{2}}, \ldots, u_{n}$ and y.
Clearly $\mathrm{t}_{\mathrm{mf}}(1)=\mathrm{n}$ and $\mathrm{t}_{\mathrm{mf}}(2)=\mathrm{t}_{\mathrm{mf}}(3)=\mathrm{t}_{\mathrm{mf}}(4)=\mathrm{n}+1$.
Hence the graph G is 4 - total geometric mean cordial graph.
Theorem 2. 5:
The Crown $\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}$ is a 4-total geometric mean cordial for all n .

Proof:

Let $\mathrm{u}_{1} \mathrm{u}_{2} \ldots \ldots . \mathrm{u}_{\mathrm{n}} \mathrm{u}_{1}$ be the cycle C_{n}. Let $\mathrm{V}\left(\mathrm{C}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)=\mathrm{V}\left(\mathrm{C}_{\mathrm{n}}\right) \cup\left\{\mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and
$E\left(C_{n} \odot K_{1}\right)=E\left(C_{n}\right) \cup\left\{u_{i} V_{i}: 1 \leq i \leq n\right\}$.
Case (i): when n is odd
Allocate the label 1 to the pendant vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$, the label 3 to the $\frac{n+1}{2}$ vertices

Case (ii): when n is even
It is easy to verify for $n=4,6$
Subcase (i)
$\mathrm{n} \equiv 2(\bmod 4)$
If $\mathrm{n} \geq 10$. Allocate the label 1 to the pendant vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$, the label 3 to the $\frac{n+2}{2}$ vertices $u_{1}, u_{2}, u_{3}, u_{4}, \ldots, u_{\frac{n-2}{4}}$ and $\frac{u_{n}}{2}, \frac{u_{n+2}}{2}, u_{\frac{n+4}{2}}, \ldots, u_{\frac{s n-6}{4}}$ and u_{n-1}, u_{n} and the label 4 to the $\frac{n^{2}-2}{2}$ vertices $u_{\frac{n+2}{4}}, u_{\frac{n+6}{4}}, u_{\frac{n+10}{4}}, \ldots, u_{\frac{n-2}{2}}$ and $u_{\frac{3 n-2}{4}}, u_{\frac{3 n+2}{4}}, u_{\frac{3 n+6}{4}}, \ldots, u_{n-2}$.
Subcase (ii)
$n \equiv 4(\bmod 4)$
If $\mathrm{n} \geq 8$. Assign the label 1 to the $\frac{n+2}{2}$ vertices $u_{1}, u_{2}, u_{3}, u_{4}, \ldots, u_{\frac{n}{4}}$ and $v_{1}, v_{2}, v_{3}, \ldots, \frac{v_{n+4}}{4}$, the label 4 to the $\frac{n}{2}$ vertices $\frac{u_{n+4}}{4}, u_{\frac{n+8}{4}}, \frac{u_{n+12}}{4}, \ldots, u_{\frac{n+z}{2}}$ and $\frac{v_{n+8}}{4}, \frac{v_{n+12}}{4}, \frac{v_{n+16}}{4}, \ldots, v_{\frac{n}{2}}$, the label 3 to the $\frac{n}{2}$ vertices $v_{\frac{n+2}{}}^{z}, \frac{v_{n+4}^{z}}{z}, \ldots, v_{n}$ and the label 2 to the $\frac{n-2}{2}$ vertices $\frac{u_{n+4}}{2}, u_{\frac{n+6}{2}}, u_{\frac{n+8}{2}}, \ldots, u_{n}$.
Clearly $\mathrm{t}_{\mathrm{mf}}(1)=\mathrm{t}_{\mathrm{mf}}(2)=\mathrm{t}_{\mathrm{mf}}(3)=\mathrm{t}_{\mathrm{mf}}(4)=\mathrm{n}$.
Hence $C_{n} \odot K_{1}$ is a 4-total geometric mean cordial graph.

References:

1. I.Cahit, Cordial graphs: A weaker version of Graceful and Harmonious graphs, Ars Combin. 23(1987),201-207
2. F.Harary, Graph Theory, Addition Wesley, New Delhi, 1969
3. K. Chitra Lakshmi and K.Nagarajan, Geometric mean cordial labeling of graphs, International journal of mathematics and soft computing vol.7,no.1(2017),75-87.
4. R.Ponraj,S.Subbulakshmi and S.Somasundaram, k-Total mean cordial graphs, J.math.comput.sci.10(2020),no 5,1697-1711.issn:1927-5307.
5. Ponraj, S. Subbulakshmi and S.Somasundaram, Some 4-Total mean cordial graphs derived from H graph and Star, international J.math.combin. vol 3(2022), 99-106
6. R.Ponraj, S. Subbulakshmi and S.Somasundaram, Some 4-Total mean cordial graphs derived from path and cycle, AIP conference proceedings 2516,210031(2022)
7. L.Vennila and P.Vidhyarani, k-total geometric mean cordial labeling of some graphs, communicated in journal.
