

https://kuey.net/

Research Article

4-Total Geometric Mean Cordial Labeling Of Graphs

L.Vennila1*, Dr.P.Vidhyarani2

1*Research Scholar [Reg. No: 19211202092025], Department of Mathematics, Sri Parasakthi College for Women, Courtallam-627802, Affiliated to Manonmaniam Sundaranar University, Abisekapatti -627012, Tamilnadu, India. Email id: vennila319@gmail.com ²Assistant Professor, Department of Mathematics, Sri Parasakthi College for Women, Courtallam-627802, India.

Citation: L.Vennila, et al (2024) 4-Total Geometric Mean Cordial Labeling Of Graphs, Educational Administration: Theory and Practice, 30(5), 14203-14206 Doi: 10.53555/kuey.v30i5.6425

ARTICLE INFO	ABSTRACT
	Let G be a (p, q) graph. Let $f : V(G) \rightarrow \{1, 2, 3,, k\}$ be a function where $k \in N$
	and k>1. For each edge uv, assign the label f (uv)= $\left[\sqrt{f(u)f(v)}\right]$. f is
	called k-Total geometric mean cordial labeling of G if $ t_{mf}(i) - t_{mf}(j) \le 1$, for
	all i, $j \in \{1, 2, 3,, k\}$, where $t_{mf}(x)$ denotes the total number of vertices and
	edges labeled with x, $x \in \{1, 2, 3,, k\}$. A graph that admits the k-total geometric mean cordial labeling is called k-total geometric mean cordial graph. In this paper we investigate 4- total geometric mean cordial labeling of graphs.
	"AMS Subject Classification 2010: 05C78"
	Keywords: H-graph, Pan graph, Bistar, Crown graph, 4-total geometric mean cordial labeling, 4-total geometric mean cordial graphs.

I. Introduction

Finite, simple and undirected graphs are considered here. Cordial labeling was introduced by Cahit [1]. For notations and terminology we follow [2]. Geometric mean cordial labeling of graphs was introduced in [3]. ktotal mean cordial labeling of graphs was introduced in [4]. 4-total mean cordial labeling of some graphs derived from H-graph and Star was introduced in [5]. 4-total mean cordial labeling of some graphs derived from path and cycle was introduced in [6]. k-total geometric mean cordial labeling of some graphs was introduced in [7]. In this paper we investigate 4-total geometric mean cordial labeling behavior of H-graph, Pan graph, bistar and crown graphs.

Definition 1.1.

Let G be a (p, q) graph. Let $f: V(G) \rightarrow \{1, 2, 3, ..., k\}$ be a function where $k \in \mathbb{N}$ and k>1. For each edge uv, assign the label f (uv) = $\left[\sqrt{f(u)f(v)}\right]$. f is called k-Total geometric mean cordial labeling of G if | t_{mf} (i) - t_{mf} $(j) \le 1, i, j \in \{1, 2, 3, ..., k\}$ where $t_{mf}(x)$ denotes the total number of vertices and edges labeled with $x, x \in \{1, 2, 3, ..., k\}$..., k}.A graph that admits the k-total geometric mean cordial labeling is called k-total geometric mean cordial graph.

Definition 1.2.

Let $P_n^{(1)}$: $u_1 u_2$ u_n and $P_n^{(2)}$: $v_1 v_2$ v_n be any two paths. We join the vertices $u_{\frac{n+1}{2}}$ and $v_{\frac{n+1}{2}}$ by an edge, if

n is odd and join the vertices $u_{\frac{n+2}{2}}$ and $v_{\frac{n}{2}}$ by an edge, if n is even.

Then the resulting graph is called a H-graph on 2n vertices. We denote it by H_n.

Definition 1.3.

The pan graph is the graph obtained by joining a cycle graph to a singleton graph with a bridge. The pan graph is therefore isomorphic with the tadpole graph.

Definition 1.4.

The Bistar $B_{m,n}$ is the graph obtained by joining the two central vertices of $K_{1,m}$ and $K_{1,n}$.

Definition 1.5.

The graph obtained by joining a single pendant edge to each vertex of a path is called a comb P_n O K₁.

II. Main Results

Theorem 2.1.

Any H_n graph, $n \ge 3$ is a 4-total geometric mean cordial labeling.

Proof:

Let H be a graph with 2n vertices and 2n-1edges. Let P_n be a path and $u_1, u_2, u_3, ..., u_n$ be the vertices of first copy of P_n and $v_1, v_2, v_3, ..., v_n$ be the vertices of second copy of P_n .

Case (i): when n is odd

Allocate the $\frac{n+1}{2}$ vertices $u_1, u_2, \dots, u_{\frac{n+1}{2}}$ are labeled with 1, the $\frac{n-1}{2}$ vertices $u_{\frac{n+5}{2}}, u_{\frac{n+5}{2}}, \dots, u_n$ are labeled with 2, the $\frac{n+1}{2}$ vertices $v_1, v_2, \dots, v_{\frac{n+1}{2}}$ are labeled with 3. Finally the $\frac{n-1}{2}$ vertices $v_{\frac{n+5}{2}}, v_{\frac{n+5}{2}}, \dots, v_n$ are labeled with 4.

Case (ii): when n is even

Allocate the $\frac{n}{2}$ vertices $u_1, u_2, \dots, u_{\frac{n}{2}}$ are labeled with 1, next we allocate the $\frac{n}{2}$ vertices $u_{\frac{n+2}{2}}, u_{\frac{n+4}{2}}, \dots, u_n$ are labeled with 2, then we allocate the $\frac{n}{2}$ vertices $v_1, v_2, \dots, v_{\frac{n}{2}}$ are labeled with 3. Finally the $\frac{n}{2}$ vertices $v_{\frac{n+2}{2}}, v_{\frac{n+4}{2}}, \dots, v_n$ are labeled with 4.

The vertex labeling f is a 4 total geometric mean cordial labeling

Nature of n	t _{mf} (1)	t _{mf} (2)	t _{mf} (3)	t _{mf} (4)
n is odd	n	n	n	n-1
n is even	n-1	n	n	n

In the above two cases we see that the function f is 4-total geometric mean cordial labeling. Hence H_n is 4total geometric mean cordial graph.

Theorem 2.2.

Any Pan graph $n \ge 3$ is a 4-total geometric mean cordial graph.

Proof:

Let G be a pan graph with n+1vertices and n+1edges. Let $u_1 u_2 \dots u_n u_1$ be the cycle C_n and v be the pendant vertex and join the pendant vertex to the vertex u1. The edges of the pan graph are vu1, u1u2, u2u3,...,unu1. Assign the label 1 to the vertex v.

Case (i): $n \equiv 1 \pmod{4}$ Allocate the $\frac{n-1}{4}$ vertices $u_1, u_2, \dots, u_{\frac{n-1}{4}}$ are labeled with 1, next we allocate the $\frac{n-1}{4}$ vertices $u_{\frac{n+1}{4}}, \dots, u_{\frac{n-1}{4}}$ are labeled with 2, now we allocate the $\frac{n+3}{4}$ vertices $u_{\frac{n+1}{4}}, u_{\frac{n+5}{4}}, \dots, u_{\frac{5n-5}{4}}$ and u_n are labeled with 3. Finally the $\frac{n-1}{4}$ vertices $u_{\frac{3n+1}{4}}, u_{\frac{3n+5}{4}}, u_{\frac{3n+9}{4}}, \dots, u_{n-1}$ are labeled with 4.

Case (ii): $n \equiv 2 \pmod{4}$ Allocate the $\frac{n-2}{4}$ vertices $u_1, u_2, \dots, u_{\frac{n-2}{4}}$ are labeled with 1, next we allocate the $\frac{n-2}{4}$ vertices vertices $u_{\frac{n+2}{4}}, u_{\frac{n+6}{4}}, u_{\frac{n+10}{4}}, \dots, u_{\frac{n-2}{2}}$ are labeled with 2, then we allocate the $\frac{n+2}{4}$ vertices $u_{\frac{n}{2}}u_{\frac{n+2}{2}}u_{\frac{n+4}{2}}, \dots, u_{\frac{3n-2}{4}}$ are labeled with 3. Finally the $\frac{n+2}{4}$ vertices $u_{\frac{3n+2}{4}}, u_{\frac{3n+6}{4}}, u_{\frac{3n+10}{4}}, \dots, u_n$ are labeled with 4. **Case (iii):** $n \equiv 3 \pmod{4}$ It is easy to verify for n=3. If $n \ge 7$. Allocate the $\frac{n+1}{4}$ vertices $u_1, u_2, \dots, u_{\frac{n+1}{4}}$ are labeled with 4, the $\frac{n+1}{4}$ vertices $u_{\frac{n+5}{4}}, u_{\frac{n+9}{4}}, \dots, u_{\frac{n+1}{2}}$ are labeled with 1, the $\frac{n+1}{4}$ vertices $u_{\frac{n+5}{2}}, u_{\frac{n+5}{2}}, u_{\frac{n+7}{2}}, \dots, u_{\frac{5n-1}{4}}$ and u_n are labeled with 3. Finally the $\frac{n-3}{4}$ vertices $u_{\frac{5n+5}{4}}, u_{\frac{5n+7}{4}}, u_{\frac{5n+11}{4}}, u_{\frac{5n+15}{4}}, \dots, u_{n-1}$ are labeled with 2.

Case (iv): $n \equiv 4 \pmod{4}$

Allocate the $\frac{n}{4}$ vertices $u_1, u_2, ..., u_{\frac{n}{4}}$ are labeled with 1, next we allocate the $\frac{n}{4}$ vertices $u_{\frac{n+4}{4}}, u_{\frac{n+8}{4}}, ..., u_{\frac{n}{2}}$ are labeled with 2, then we allocate the $\frac{n}{4}$ vertices $u_{\frac{n+2}{4}}, u_{\frac{n+4}{2}}, u_{\frac{n+4}{2}}, ..., u_{\frac{3n}{4}}$ are labeled with 3. Finally the $\frac{n}{4}$ vertices $u_{\frac{3n+4}{4}}, u_{\frac{3n+3}{4}}, u_{\frac{3n+12}{4}}, \dots, u_n$ are labeled with 4.

The vertex labeling f is a 4 total geometric mean cordial labeling.

Nature of n	$t_{mf}(1)$	$t_{mf}(2)$	$t_{mf}(3)$	$t_{mf}(4)$
$n \equiv 1 \mod 4$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{n+1}{2}$
n≡ 2 mod 4	<u>n</u> 2	<u>n</u> 2	$\frac{n+2}{2}$	$\frac{n+2}{2}$
$n\equiv 3 \mod 4$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{n+1}{2}$
$n \equiv 4 \mod 4$	$\frac{n+2}{2}$	$\frac{n+2}{2}$	$\frac{n}{2}$	<u>n</u> 2

Hence the graph G is 4- total geometric mean cordial graph.

Theorem 2.3.

The Bistar $B_{n,n}$ is 4-total geometric mean cordial for all n.

Proof:

Let u, v be the centre vertices of the bistar $B_{n,n}$. Let u_i ($1 \le i \le n$) be the pendant vertices adjacent to u and v_i $(1 \le i \le n)$ be the pendant vertices adjacent to v. $E(B_{n,n}) = \{uv\} \cup \{uu_i, vv_i : 1 \le i \le n\}$

Allocate the label 3, 4 to the central vertices u, v.

Consider the vertices u₁, u₂,..., u_n. The n vertices u₁, u₂, ..., u_n are labeled with 1, the label 2 to the one vertex v_1 and allocate the label 3 to the n-1 vertices v_2 , v_3 ,..., v_n .

Clearly $t_{mf}(1) = t_{mf}(2) = t_{mf}(3) = n$ and $t_{mf}(4) = n+1$.

Hence the graph $B_{n,n}$ is 4- total geometric mean cordial graph.

Theorem 2.4.

Let G be the graph obtained by attaching a pendant vertex with a vertex of degree two on both sides of a comb graph $P_n \odot K_1$. Then G is the 4- total geometric mean cordial for all n.

Proof:

Comb $P_n \odot K_1$ be the graph obtained from the path $P_n = u_1 u_2 u_3 \dots u_n$ by joining a pendant vertex u_i to $v_i (1 \le i$ \leq n). Let G be a graph obtained by attaching a pendant vertex x and y to u₁ and u_n respectively.

Case (i): when n is even

Allocate the label 1 to the pendant vertices v_1 , v_2 , v_3 , v_4 , ..., v_n , the label 2 to the vertex x, the label 3 to the $\frac{n+2}{2}$ vertices u_1, u_2, \dots, u_n and y. Finally we allocate the label 4 to the $\frac{n}{2}$ vertices $u_{n+2}, u_{n+4}, \dots, u_n$.

Case (ii) when n is odd

Allocate the label 1 to the pendant vertices $v_1, v_2, v_3, v_4, \dots, v_n$, the label 2 to the vertex x, the label 3 to the $\frac{n+1}{2}$ vertices $u_1, u_2, u_3, u_4, \dots, u_{\frac{n+1}{2}}$ and the label 4 to the $\frac{n+1}{2}$ vertices $u_{\frac{n+3}{2}}, u_{\frac{n+5}{2}}, \dots, u_n$ and y.

Clearly $t_{mf}(1) = n$ and $t_{mf}(2) = t_{mf}(3) = t_{mf}(4) = n+1$. Hence the graph G is 4- total geometric mean cordial graph.

Theorem 2. 5:

The Crown $C_n \odot K_1$ is a 4-total geometric mean cordial for all n.

Proof:

Let $u_1 u_2 \dots u_n u_1$ be the cycle C_n . Let $V (C_n \odot K_1) = V(C_n) \cup \{v_i : 1 \le i \le n\}$ and $E (C_n \odot K_i) = E(C_n) \cup \{u_i v_i : 1 \le i \le n\}.$ Case (i): when n is odd Allocate the label 1 to the pendant vertices $v_1, v_2, v_3, ..., v_n$, the label 3 to the $\frac{n+1}{2}$ vertices $u_1, u_2, u_3, u_4, \dots, u_{\frac{n+1}{2}}$ and the label 4 to the $\frac{n-1}{2}$ vertices $u_{\frac{n+3}{2}}, u_{\frac{n+5}{2}}, u_{\frac{n+7}{2}}, \dots, u_n$.

Case (ii): when n is even It is easy to verify for n = 4, 6Subcase (i) $n \equiv 2 \pmod{4}$ If n ≥10. Allocate the label 1 to the pendant vertices $v_1, v_2, v_3, ..., v_n$, the label 3 to the $\frac{n+2}{2}$ vertices $u_1, u_2, u_3, u_4, \dots, u_{\frac{n-2}{4}}$ and $u_n, u_{\frac{n+2}{2}}, u_{\frac{n+4}{2}}, \dots, u_{\frac{3n-6}{4}}$ and u_{n-1}, u_n and the label 4 to the $\frac{n^2-2}{2}$ vertices $u_{\frac{n+2}{4}}, u_{\frac{n+6}{4}}, u_{\frac{n+10}{4}}, \dots, u_{\frac{n-2}{2}}$ and $u_{\frac{5n-2}{4}}, u_{\frac{5n+2}{4}}, u_{\frac{5n+6}{4}}, \dots, u_{n-2}$. Subcase (ii) $n \equiv 4 \pmod{4}$ If $n \ge 8$. Assign the label 1 to the $\frac{n+2}{2}$ vertices $u_1, u_2, u_3, u_4, \dots, u_{\frac{n}{4}}$ and $v_1, v_2, v_3, \dots, v_{\frac{n+4}{4}}$, the label 4 to the $\frac{n}{2}$ vertices $u_{\frac{n+4}{4}}, u_{\frac{n+8}{4}}, u_{\frac{n+12}{4}}, \dots, u_{\frac{n+2}{2}}$ and $v_{\frac{n+8}{4}}, v_{\frac{n+12}{4}}, v_{\frac{n+16}{4}}, \dots, v_{\frac{n}{2}}$, the label 3 to the $\frac{n}{2}$ vertices $v_{\frac{n+2}{2}}, v_{\frac{n+4}{4}}, \dots, v_n$ and the label 2 to the $\frac{n-2}{2}$ vertices $u_{\frac{n+4}{2}}, u_{\frac{n+8}{2}}, \dots, u_n$. Clearly $t_{mf}(1) = t_{mf}(2) = t_{mf}(3) = t_{mf}(4) = n$. Hence $C_n \odot K_1$ is a 4-total geometric mean cordial graph.

References:

- I.Cahit, Cordial graphs: A weaker version of Graceful and Harmonious graphs, Ars 1. Combin. 23(1987),201-207
- F.Harary, Graph Theory, Addition Wesley, New Delhi, 1969 2.
- K. Chitra Lakshmi and K.Nagarajan, Geometric mean cordial labeling of graphs, International journal of 3. mathematics and soft computing vol.7,no.1(2017),75-87.
- k-Total R.Ponraj,S.Subbulakshmi and S.Somasundaram, mean cordial graphs, 4. J.math.comput.sci.10(2020),no 5,1697-1711.issn:1927-5307.
- Ponraj, S. Subbulakshmi and S.Somasundaram, Some 4-Total mean cordial graphs derived from H 5. graph and Star, international J.math.combin. vol 3(2022), 99-106
- R.Ponraj, S. Subbulakshmi and S.Somasundaram, Some 4-Total mean cordial graphs derived from path 6. and cycle, AIP conference proceedings 2516,210031(2022)
- L.Vennila and P.Vidhyarani, k-total geometric mean cordial labeling of some graphs, communicated in 7. journal.