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ARTICLE INFO ABSTRACT 
 A multi-point robot path planning system has been presented to improve path 

length, safety, and smoothness. Path representation techniques that begin coding 
from the start point and progress one grid at a time to the destination point are 
presented. The purpose of multi-goal path planning is to establish a collision-free 
path between a set of goal poses while minimising travelled distance, maximising 
path safety, and maximising path smoothness. Our algorithm guarantees that 
planned trajectories remain safe distances from barriers, lowering the likelihood 
of collisions. Dijkstra's method is one of the most basic shortest-finding 
algorithms. A star (A*) method is a variant of Dijkstra's shortest path first 
algorithm that is often utilised in heuristic-based games. The idea behind A* is to 
assign weight to each open node and then use a heuristic to compute the total cost 
from beginning to end. In robotics, A* finds the most optimal path using heuristics 
and cost functions. Bidirectional A* reduces computation by determining the 
shortest path from both the source and the destination. Bidirectional search is a 
search approach that uses both starting and target locations to find an initial 
solution. Smoothing increases path robustness. 

 
I. Introduction 

 
In recent years, there has been significant progress in the field of industrial robotics, although mobile intelligent 
robots have primarily been limited to research labs. To be deployed in real-world applications, an autonomous 
vehicle must be capable of self-navigating and making intelligent decisions. Vehicle path planning entails not 
only creating collision-free routes from a given place to a target point, but also determining the best path that 
minimises or maximises specific essential objectives. The majority of research on path planning has focused on 
determining a viable shortest path by creating a single-objective optimisation problem. However, choosing the 
best path is never a one-objective problem because many other characteristics, such as path safety (or 
vulnerability) and path smoothness, are also desirable for a navigation vehicle. The path vulnerability objective 
is related to how closely the vehicle travels past an impediment. To achieve this goal, we used Dijkstra's 
algorithms and the A* algorithm. Path smoothness is proportional to the number of turns a vehicle must make 
along the path from beginning to finish of its motion. Aside from the single vs many competing objectives 
connected with the path planning problem, a number of other concerns must be addressed during the 
optimisation process. The scheme used to represent a path within the optimisation method is a crucial 
consideration, as the efficiency [1] of an optimisation algorithm is heavily influenced by the chosen 
representation scheme.  
The A* algorithm is one of the most common pathfinding methods. A* is one of the most important algorithms 
for various pathfinding methods. A* enables us to perform pathfinding by determining the location of the 
source and destination nodes and calculating the heuristic function. Then the node with the highest value of 
the heuristic function known as the f-cost is chosen, and its neighbours are extended. We detect each node's 
neighbouring nodes and put them in an open array. Once the f-cost heuristic has been calculated for all of these 
nodes, we identify the node with the lowest value, which is the node closest to the target. This node is now 
stored in a separate list so that we can return to it while determining the necessary path. The process described 
above is repeated for each selected node until we reach the destination node's neighbouring node. Once such a 
node is discovered, the algorithm stops computing the heuristic function and returns to all nodes on the path, 
resulting in the shortest path from the source to the destination. The proposed system just implements 
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Dijkstra's method through parallel processing, and the Bidirectional A* Search is more faster and more efficient 
in a range of cases than the simple Dijkstra's method [2]. The main difference between the proposed and 
existing systems is that in particular cases, the suggested Bi-directional A* search may not be enough due to 
unnecessary calculations. 
The fundamental purpose of Multi-Goal Path Planning is to find a collision-free path. The problem of robot 
path planning has been studied for several decades, with several significant contributions [3]. Point-to-Point 
(PTP) Path planning techniques, which can discover a collision-free path from one start configuration (point) 
to a destination configuration (point), are highly theoretically interesting but rarely employed in practice due 
to their computational difficulty [4]. The Multi-Goal Path Planning (MTP) problem, which computes both a 
collision-free path and the optimal sequence, has not yet been addressed. In our opinion, resolving the MTP 
issue can improve off-line created programmes [5] and thus reduce overall programming time. 
This study demonstrates an effective form of the bidirectional search strategy. It uses the Dijkstra algorithm 
and the A* evaluation function to boost the method's information, which accelerates convergence during the 
search and improves path smoothness. A security camera-assisted obstacle identifier approach might be used 
to the planner surface. The surveillance system's function is to monitor and detect fixed and moving 
impediments. In this study, we analyse the proposed algorithm technique's effectiveness in terms of 
calculations, memory utility, and area coverage. The remaining sections of the paper are organised as follows: 
Section II provides a review of the literature on previous works in this topic. Section III discusses bidirectional 
path search algorithms in both static and dynamic situations. The next section, IV, discusses the multi-point 
path planning method employed in this study, and section V examines experimental outcomes. The conclusion 
and future scope are covered in Section VI. 
 

II. Related Work 
 
Pathfinding algorithms can be used to do a variety of jobs with ease. Path-finding algorithms, on the other 
hand, are widely employed in the gaming industry to discover the shortest path between two points. Currently, 
independent game creators employ serial implementations of pathfinding algorithms. Researchers made 
significant advances in modern pathfinding by implementing Dijkstra's algorithm in the GPU, which reduced 
the time required to discover the shortest route between the source and the destination. The proposed system 
just implements Dijkstra's method through parallel processing, and the Bidirectional A* Search is more faster 
and more efficient in a range of cases than the simple Dijkstra's method. Dijkstra searches for all feasible nodes 
from the source to the destination, showing a path if one is available. Bidirectional A*, on the other hand, begins 
at the source and ends at the destination, and it can be divided into smaller threads that can be executed 
simultaneously from both sides to discover the shortest path. Many conventional approaches for two-
dimensional path planning have been developed using classical optimisation methods, including the artificial 
potential field method [6], visibility graph [7], Voronoi road map [8], and so on. Many artificial intelligence 
techniques [9], such as neural networks [10], fuzzy logic methods [11], genetic algorithms [12], and ant colony 
optimisation [13], have lately gained traction in path planning.  
The proposed classification considers the behaviour of path-planning algorithms. Many prior studies divided 
between two types of path planners: online and offline, based on whether the environment is dynamic or static. 
A mobile robot's path planning is used to create a collision-free path from a starting point to a destination while 
optimising a performance criterion such as distance, time, or energy, with distance being the most commonly 
utilised criterion. Global path planning refers to offline route planning for robots in situations where extensive 
knowledge about stationary impediments and the trajectory of moving items is known ahead of time. When 
complete information about the surroundings is not available ahead of time, the mobile robot collects data as 
it moves through the environment utilising sensors. This is known as online or local path planning [14]. 
Essentially, online path planning begins its original path offline and then switches to online mode when it 
detects new changes in obstacle conditions. 
 

 
Figure 1: The principle of mobile robot global/local path planning [15] 

 
Because of its high computing speed, a non-replanning approach might be used online. The opposite may also 
occur. For example, the Dynamic Window technique (DWA) is a Reactive Computing technique that is widely 
used for local planning [15] but may also be used for global planning. A novel evaluation function is developed 
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by using the result of global path planning as a reference trajectory to ensure the optimal trajectory [16]. 
Furthermore, the study suggests three assessment sub-functions: direction, smoothing speed, and acceleration, 
which ensure the direction, smoothness, and speed of movement, respectively. Figure 1 illustrates the principle 
of mobile robot global/local route planning, while Figure 2 depicts the broad classification of mobile path 
planning. 
Autonomous surface vehicles are gaining popularity worldwide due to the promise for greater safety and 
efficiency. This has generated interest in developing path-planning techniques that can lessen the likelihood of 
collisions, groundings, and strandings at sea, as well as associated costs and time spent. There is an interesting 
contrast between algorithms that require a preliminary map representation (Classic) and those that do not 
(Advanced). Classic includes Graph Search methods, whereas Advanced focuses on Soft Computing and 
Sampling-Based algorithms. Figure 3 depicts the distinction between path planning terminologies in the 
literature [17]. Path planning classifications are clear and reasonable [18]: according to the robot model 
(holonomic, non-holonomic, kinodynamic); according to the map model requirement (needed or not 
beforehand); according to the replanning capability (offline or online); and according to whether the algorithm 
always calculates the same solution based on preliminary configuration parameters (deterministic or 
probabilistic). 
 

 
Figure 2: Classification of path planning [15] 

 
Robot autonomous navigation is an appealing study topic due to its vast range of applications. Navigation 
requires four major components: perception, location, cognition, path planning, and motion control, with path 
planning being the most important and exciting. The classical methods are cell decomposition, potential field 
method, subgoal network, and road map. The techniques are straightforward, but they typically need expensive 
computation and may fail if the robot faces uncertainty. In contrast, heuristic-based robot path planning 
algorithms include neural networks, fuzzy logic, nature-inspired algorithms, and hybrid algorithms. The 
present mobile robot research focuses on path-planning algorithms and optimisation in both static and 
dynamic environments. Mobile robot path-planning tactics can be classified into two types: classical 
approaches and heuristic methods. There are four subcategories: analytical approaches, enumerative methods, 
evolutionary methods, and meta-heuristic methods [19]. 
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Figure 3: Visual representation of the distinction of path planning terms used in the literature 

[17] 
 
Each of the above tactics has advantages and cons. However, the main difficulty is that analytical procedures 
are too complex for intangible applications, whereas enumerative methods are concerned with the size of the 
search space. When a path-planning technique's search space is too large, many evolutionary techniques fail. 
To address these drawbacks, meta-heuristic methods have inspired a lot of interest in this broad field of study. 
Path planning for mobile robots has resulted in the development of several systems worldwide. The navigation 
of static and dynamic circumstances is explored (for single and multiple robot systems), and reactive 
approaches are found to be more robust and perform well in all terrains than classical approaches. Reactive 
techniques, such as hybrid algorithms, have also been seen to improve the performance of classical approaches. 
As a result, reactive strategies for mobile robot path planning are gaining popularity and widespread use [20]. 
The term "heuristic" has been used to describe evolutionary and artificial intelligence systems, as well as Graph 
Search-based planners. Table 1 displays the nature-inspired methods developed in chronological sequence. 
 

Table 1: Nature-inspired methods in chronological order [21] 
Year Nature inspired methods Year Nature inspired methods 
1965 Evolution Strategies 2005 Honey Bee Algorithm 
1966 Evolutionary Programming 2005 Harmony Search Algorithm 
1975 Genetic Algorithms 2007 Intelligent Water Drop 
1979 Cultural Algorithm 2007 Firefly Algorithm 
1983 Simulated Annealing 2009 Gravitational Search Algorithm 
1989 Tabu Search 2009 Cuckoo Search Algorithm 
1992 Ant Colony Optimization 2010 Artificial Bee Algorithm 
1995 Particle Swarm Optimization 2010 Bath Algorithm 
2002 Estimation of Distribution Algorithm 2012 Keill Herd 
2002 Bacterial Foraging Algorithm   

 
The smoothness of a path is determined by adding the angles of each turn the vehicle must make while 
traversing the path. The smoothness of a trajectory is a desirable feature in vehicle path planning [22]. Smooth 
pathways reduce unnecessary curvature discontinuities and possible stops, lowering the likelihood of slippage. 
It reduces power usage and travel time. Though smoothness is desirable in a path, it should not be utilised as 
an objective function in most path planning optimisation assignments, because the truly optimal smooth path, 
which ignores path vulnerability and other manoeuvring difficulties, may not be what a path planner is seeking. 
In this work, we look at smoothness as a secondary goal of the path-planning assignment. Path smoothness can 
be utilised as a tie-breaker or decision-making aid in a bi-objective optimisation framework that aims to 
minimise both path length and path vulnerability. 
 

III. Bidirectional path search 
 
The primary principle behind bidirectional search is that two distinct searches are initiated from both the start 
and the goal, i.e., search forward from the initial state and backward from the goal state until the two search 
frontiers intersect. The path from the initial state is then concatenated with the inverse path from the 
destination state to create the complete solution path. In principle, these planners can minimise the number of 
expanded states dramatically, making them a promising family of algorithms. It is well understood that 
informative heuristics considerably improve search efficiency for unidirectional searches, thus employing them 
for both searches in a bidirectional algorithm is a natural extension. 
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A. Static environment 
For path planning in a static environment, first of all, a map is called in which there are a start point, endpoint, 
and obstacles. Initially, the path planning objects have a minimum distance avoiding the obstacles in the path 
and then added a minimum number of turns with minimum distance avoiding the obstacles. The flowchart in 
Figure 8 shows the algorithm that works in a way to achieve this. The map is seen in terms of the matrix for the 
problem simplification.  
 

 
(a)                                        (b) 

Figure 4: Static path planning problem: (a) start position in green, goal position in yellow, 
black cells are obstacles and white cells are free spaces, and (b) ‘1’ is the start point, ‘50’ is the 

goal point, ‘0’ are obstacles, and ‘100’ are free space. 
 

This is because the map is first surrounded by zero patches, the obstacles inside the maps are also numbered 
as zero. The initial cell is numbered 1, the end position is numbered 50, and the rest of the cells are numbered 
100. If the given map is of dimension 10*10 then the patches of zeros surround it means we add zero rows and 
zero columns at the start and end of row and column respectively. After adding zero patches to surround the 
map the dimension of the matrix becomes 12*12. Figure 5 shows the initial map given and the modified matrix 
to solve the problem in MATLAB.  
 

 
(a)                                             (b) 

Figure 5: Modified static path planning problem: (a) surrounding the workable areas with a 
patch of 0 and (b) making the surrounding patch obstacles. 

 
Two types of matrices have been formulated; the first matrix gives information about the adjacent cell and the 
second matrix gives information about diagonal or non-diagonal cells. As the algorithm moves to the next step, 
the first matrix identifies the adjacent cells and the condition of break. In dealing with up-front waves the 
adjacent cell numbers should be greater than 49 (49 not included) and less than 100 (100 not included), then 
only the adjacent cells will be numbered; otherwise, the condition of brake met and numbering stops. In dealing 
with a down-front wave the adjacent cell numbers should be greater than 0 (0 not included) and less than 50 
(50 not included), then only the adjacent cells will be numbered; otherwise the condition of break met and 
numbering stops.  
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(a)                            (b) 

Figure 6: Matrix formulation (a) numbering for adjacent cells in blue (b) numbering for 
identification of diagonal or non-diagonal cells in blue. 

 
The other matrix is for diagonal or non-diagonal identification. In the upfront forwarding direction if it goes to 
a non-diagonal direction then the number will not be changed and if it goes in a diagonal direction then the 
number will change by unity w.r.t. existing number. The same is the condition down front in the backward 
direction shown in Figure 7.  
 

 
Figure 7: Combining the matrix of Figure 6 after some modification. 

 
The combined matrix of Figure 6 is shown in Figure 7. For the formulation of this matrix, the first element of 
cell number indicates the matrix of Figure 6 (a) and the second element of cell number indicates the matrix of 
Figure 6 (b) with some modification. The cells which are un-calculated are left to be 100 and this is erased from 
the combined matrix. the modification for the second number is as ‘1’ is subtracted from the upfront wave and 
‘50’ is subtracted from the downfront wave. 
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Figure 8: Flow chart of static environment algorithm in MATLAB. 

 
As the wavefronts intersect, the possible ways are identified through this intersection. Calculates the distances 
of all possible paths through the intersections. We filter the ways of intersection which gives the path of 
minimum distance. The intersecting cells of minimum distance are collected the moved one by one to the next 
cells to complete the path. From the open upfront cell, move in a backward direction in the same direction of 
intersection if possible otherwise change the direction for the next cell. This way complete the path in an 
upfront wave. Then from the intersecting open downfront cell, move to the next forward cell in the direction of 
the intersecting cell if possible otherwise change the direction for the next cell and complete the path this way 
in the downfront wave. Combining the path of the upfront wave and downfront wave gives the complete path 
from the start cell to the goal cell. Here we filter the path that has a minimum number of turns and this path is 
assumed to be the best path according to this algorithm for a static environment.  
 
B. Dynamic environment 
For path planning in a dynamic environment, first of all, a map is called in which there are a start point, 
endpoint, static obstacles, dynamic obstacles, and free spaces. Initially, the path planning objects to have a 
minimum distance avoiding the obstacles in the path and then added a minimum number of turns with 
minimum distance avoiding the obstacles for each no. of steps. The flowchart in Figure 9; shows the algorithm 
that works in a way to achieve this.  
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Figure 9: Flow chart of dynamic environment algorithm in MATLAB. 

 
In a dynamic environment after calling the map, first of all, we identify the number of steps taken by the robot 
as well as the moving obstacles. The combination may be like  
(i) Balance robot: The number of forward steps taken by the robot is equal to the number of forward steps taken 
by moving obstacles in an iteration. e.g. for the five forwarded steps taken by the robot, the moving obstacles 
also move five steps in an iteration. 
(ii) Faster robot: The number of forward steps taken by the robot is greater than the number of forward steps 
taken by moving obstacles in an iteration. e.g. for the five forwarded steps taken by the robot, the moving 
obstacles also move two steps in an iteration. 
(iii) Slower robot: The number of forward steps taken by the robot is lesser than the number of forward steps 
taken by moving obstacles in an iteration. e.g. for the two forwarded steps taken by the robot, the moving 
obstacles also move five steps in an iteration. 
Here in the problem formulation, the moving obstacles can be seen in two ways. The first is that surround the 
moving obstacles by a cell and count it as an obstacle too for the iteration. This is done so that the chances of 
obstruction of the robot to moving obstacles are reduced to minimal. The second is that assume the obstacles 
exactly of cell dimensions and design the path planning. This will give a more accurate path but the chances of 
the obstruction are there a little bit. 
After deciding the number of steps to be taken by the robot and moving obstacles the algorithm of path planning 
of a static environment is applied. This will give the path for this iteration. Move the robot on the path in the 
desired number of steps and then move the moving obstacle in the desired number of steps in random order. 
The next iteration will start from the previous robot's position as a starting point, updated obstacle positions, 
goal positions, and updated free spaces. The iteration runs until the start position becomes equal to the goal 
position. 
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IV. Multi-Point path planning 
 
For multi-point path planning, first of all, a map is called in which there are a start point, endpoint, static 
obstacles, dynamic obstacles, and free spaces. Initially, the path planning objects to have a minimum distance 
avoiding the obstacles in the path and then added a minimum number of turns with minimum distance 
avoiding the obstacles for each no. of steps. The flowchart in Figure 10; shows the algorithm that works in a 
way to achieve this.  
According to requirements the multiple points may be selected through which the robot needs to go through. 
So numbering the map with multiple start and end points. Update the initial two intermediate points as start 
and goal points. Apply the algorithm of the dynamic environment to get the path for this intermediate start and 
goal points. Then for the next iteration next two selected cells are the start cell and the goal cell respectively. 
The iteration will go through until the start position reaches the final goal cell. 
 

 
Figure 10: Flow chart of multipoint path-planning algorithm in MATLAB. 

 
V. Experimental Result 

 
The multi-point path planning problem depicted in Figure 11; can be modeled as a railway platform with pre-
installed webcams for surveillance and obstacles in static and moving modes. 
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(a)                                                                               (b) 

 
(c) 

 
Figure 11: (a) Multi-point path planning problem for covering all nodes in turns (b) cell colour 

representation and (c) numbering of multi statrt and multi end cell grid. 
 

The static obstacles may be treated as the beam support area and shops, and the moving obstacles as 
passengers. The service robot will move from its starting point to its destination, equipped with a cleaning and 
sanitization manipulator. Here in the multi-point path planning the size of the robot is assumed to be the size 
of the cell. The spraying area includes the adjacent cell of the current cell. The camera coordinates are 
transformed into service robot coordinates and perform the desired work. 
 

 

 
Figure 12: Path traced by robot in multi-point path planning. 

 
The path tracing starts with the start cell number ‘1’ as start cell and ‘2’ as goal cell. As soon as the robot reached 
the cell number ‘2’, it acts like start position and cell number ‘3’ turns to be goal position. The goal  position 
simultaneously converted to start position cell until it reaches to the very first start position cell that is the cell 
number ‘1’.  
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Table 2: Positional transformation robot with intermediate start and goal positions 
No. of steps Start Position Goal Position Distance Operational Area 
(a) (10,1) 1 (10,30) 2 31.82 9 to 10 1 to 30 
(b) (10,30) 2 (8,30) 3 2 7 to 18 29 to 30 
(c) (8,30) 3 (8,3) 4 29.82 7 to 9 2 to 30 
(d) (8,3) 4 (6,3) 5 2 5 to 9 2 to 4 
(e) (6,3) 5 (6,7) 6 4 5 to 7 2 to 8 
(f) (6,7) 6 (4,7) 7 2 3 to 7 6 to 8 
(g) (4,7) 7 (4,3) 8 4 3 to 5 2 to 8 
(h) (4,3) 8 (2,3) 9 4.82 1 to 5 2 to 4 
(i) (2,3) 9 (2,13) 10 10 1 to 3 2 to 14 
(j) (2,13) 10 (6,13) 11 4 1 to 7 12 to 14 
(k) (6,13) 11 (6,20) 12 7 5 to 7 12 to 21 
(l) (6,20) 12 (4,20) 13 2 3 to 7 19 to 21 
(m) (4,20) 13 (4,15) 14 5 3 to 5 14 to 21 
(n) (4,15) 14 (2,15) 15 2 1 to 5 14 to 16 
(o) (2,15) 15 (2,26) 16 13.82 1 to 3 14 to 27 
(p) (2,26) 16 (6,26) 17 6.82 1 to 7 25 to 27 
(q) (6,26) 17 (6,28) 18 2 5 to 7 29 to 27 
(r) (6,28) 18 (4,28) 19 4.82 3 to 7 27 to 29 
(s) (4,28) 19 (4,30) 20 2 3 to 5 27 to 29 
(t) (4,30) 20 (1,30) 21 3 1 to 5 29 to 30 
(u) (1,30) 21 (1,1) 22 31.82 1 to 2 1 to 30 
(v) (1,1) 22 (5,1) 23 4 1 to 6 1 to 2 
(w) (5,1) 23 (10,1) 1 5 4 to 10 1 to 2 

 
The table represent the the distrance travelled in every steps. The total twenty three steps are needed to take 
for the complete path formation. In this case, the initial and final points are the same, and the service robot 
begins at point "1" sequentially covering all "16" nodes before returning to its initial position. The service robot 
is programmed in such a way that it will signal the moving man to move aside and wait for a while. If the 
obstacle does not move then the robot avoids the obstacle and completes the duty.  
 

VI. Conclusion and Future Scope 
 
In conclusion, there is potential for research into the use of mobile robot systems for common problems. Single 
or multiple robot mobile robotic systems can be employed for a wide range of applications under various 
operating environments. In light of the current focus on intelligent field robotics, the ability of heterogeneous 
mobile robot systems to function well in unfamiliar situations is crucial. Robot activities in an outside natural 
setting can be quite difficult, especially when compared to industrial settings that give a regulated setup, where 
the environment can be calibrated and the tasks may be monotonous. The field of mobile robot path planning 
has two branches: online and offline. As a result, many algorithms and methods are still being developed to 
offer the best answers for all the problems they encounter.  
The up-front and down-front are generated concurrently, so pre-installed webcams are required. The path with 
the fewest turns allows the robot to retain its trip continuity. Robots should choose the path with the fewest 
turns. With less turning, the robot may reduce basic motor activity, saving time and energy. In path planning 
problems, the algorithm generates a huge number of paths that cover the shortest distance. This paper selects 
the optimal ideal path from those that have the same minimum distance between the start and goal places. The 
criterion for the answer is the fewest number of bot turns. This considerably advances the bidirectional search 
algorithm in complicated maps for mobile robots, particularly in terms of shortest path length and overall fewer 
turns. 
In this study, we provide the novel Multi-Goal Path Planning (MTP) approach, which is the first powerful 
assistance tool for human programmers to address MTP challenges in offline programming assignments. In 
future study, the proposed approach could be integrated with various path-planning algorithms in a dynamic 
setting. Some possible applications include service robots, rescue robots, and industrial robots. 
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