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ARTICLE INFO ABSTRACT 
  Control charts are frequently employed in the field of statistical process 

monitoring (SPM) to track both the average and variability of a process. In 
this study, a novel nonparametric control chart is introduced, which utilizes 
modified Lepage-type test.  
This proposed chart serves the purpose of concurrently monitoring both location 
and scale parameters for any continuous distribution related to a 
specific process. The charting statistic combines two well-known nonparametric 
test statistics: Baumgartner's test for location and Ansari-Bradley's test for 
scale estimation.  
The performance of the proposed chart is evaluated in simulation studies, 
focusing on statistical metrics such as mean, standard deviation, median and 
various percentiles that characterize the distribution of run lengths. The 
behaviour of the chart under both in-control and out-of-control conditions 
is examined through simulation studies using two sampling methods: simple 
random sampling (SRS) and ranked set sampling (RSS). 
 
Keywords: Statistical process monitoring; Average run length; Ansari-Bradley 
statistic; Baumgartner statistic; Ranked set sampling. 

 
I. Introduction 

 
In recent years, there has been a growing interest in the advancement of nonparametric control charts. These 
charts are particularly valuable when it is not possible to justify assuming a specific process distribution or 
when accurately estimating the parameters of a parametric model becomes challenging. Numerous studies 
have focused on developing nonparametric control charts for effectively monitoring either the location 
parameter or scale parameter separately. Accurate monitoring of the location parameter holds significant 
importance across various applications as it pertains to statistics such as mean, median or specific 
percentiles within a distribution.  
Several authors have proposed various nonparametric control charts specifically designed for monitoring the 
location parameter of a given process. The literature on this subject incorporates various authors 
such as Bakir (2004-2006), Chakraborti and Eryilmaz (2007), Khilare and Shirke (2010), and Human et al 
(2010). These studies apply sign or rank statistics as the foundation of their charts.  
The topic has been examined comprehensively by Chakraborti et al. (2001), while Chakraborti and 
Graham (2007) extensively discuss the advantages gained from using nonparametric control charts.  
Monitoring the scale parameter of a process is a crucial consideration in numerous applications, 
and the literature offers only a limited number of nonparametric methods for this purpose. Amin et al. 
(1995) proposed a control chart that employs quartiles to monitor variations in the process, while Das 
(2008a) proposed an alternative nonparametric method that utilizes squared rank test results to regulate 
variability. Previous research has focused on the development of nonparametric control charts for managing 
process variability. For instance, Das (2008b) introduced a control chart based on rank test that does not rely 
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on distribution assumption. Similarly, Das and Bhattacharya (2008) proposed a nonparametric control 
chart utilizing nonparametric tests to manage variability. Another alternative was suggested by Murakami 
and Matsuki (2010), who developed a nonparametric control chart using Mood statistic as its basis without 
assuming any specific data distribution. Additional contributions in this area include the synthetic control 
chart based on the sign statistic proposed by Khilare and Shirke (2012).  Zombade and Ghute (2014) also 
explored Sukhatme and Mood tests as foundations for their introduced control charts. Furthermore, Shirke 
and Barale (2018) presented a cumulative sum chart which monitors process dispersion through in-control 
deciles while maintaining a nonparametric approach. 
Nonparametric control charts often use two separate charts to monitor location and scale parameters. 
However, this approach can be challenging as changes in one parameter can affect the other and make it 
difficult to interpret signals. Recently, there has been a shift towards a unified monitoring scheme that uses a 
single control chart. This simplified approach is easier to understand and implement. This control chart 
utilizes a statistical measure that combines separate measures for the mean and variance. It is crucial to 
monitor both parameters simultaneously in a process, which is why an effective statistic is commonly used to 
independently monitor each parameter. However, there is limited research on nonparametric joint 
monitoring techniques in current literature. Only a few nonparametric methods for jointly monitoring 
processes are found in existing academic sources. Mukherjee and Chakraborti (2012) created the SL chart, a 
control chart that doesn't depend on distribution assumptions. This chart monitors both location and scale 
parameters at the same time by using the Wilcoxon rank sum statistic for location and the Ansari-Bradley 
scale statistic. Additionally, Chowdhury et al. (2013) proposed the SC chart, another nonparametric control 
chart that uses the Cucconi statistic to monitor both location and scale parameters of a continuous 
distribution. Chowdhury et al. (2015) also introduced the phase-II CUSUM control chart, which doesn't rely 
on distributional assumptions and enables simultaneous monitoring of both location and scale parameters. 
Zhang et al. (2017) presented another nonparametric control chart based on the Cramer-von Mises test 
statistic to achieve this goal. Ghadage and Ghute (2023) developed another nonparametric control chart 
utilizing a modified Lepage test for simultaneous monitoring of location and scale parameters. Even though 
there has been some progress in this particular research area, there is still a necessity to improve the 
efficiency of non-parametric control charts for monitoring jointly. 
Various sampling methods have been thoroughly investigated in SPM studies to enhance the efficiency of pro
cess monitoring charts. RSS is a  notable  approach  advocated by McIntyre (1952) due  to  its  numerous 
 benefits  and  perceived  superiority  over SRS. Many authors have suggested different control charts for 
tracking the average of a process, utilizing techniques like RSS or modified schemes. Salazar and Sinha 
(1997) study introduced a monitoring chart for the process mean using an RSS scheme, noting its superiority 
over an SRS-based approach. Muttlak and Al-Sabah (2003) built upon this work and proposed several 
improved Shewhart-type control charts that use various RSS schemes to more effectively monitor changes in 
the process mean. The effectiveness of the traditional SRS control charts for means was found to be 
surpassed by these charts. According to Abujiya and Muttlak (2004), implementing the double ranked set 
sampling (DRSS) method in Shewhart-type mean charts proves to be more efficient compared to 
conventional SRS or RSS charts. The study suggests that incorporating DRSS-based control charts leads to 
enhanced monitoring capabilities for continuous processes. Al-Omari and Haq (2012) introduced a novel 
approach of utilizing DRSS in a control chart specifically designed for tracking process mean values. 
Mehmood et al. (2012) suggested various control charts to monitor the location of a process using different 
sampling techniques. On the other hand, Haq and Al-Omari (2015) introduced a new Shewhart control chart 
that uses partially ordered judgement subset sampling (POJSS) to keep an eye on the process mean. Their 
approach proved to be more effective in detecting random shifts in the process mean compared to other 
methods. 
There are various nonparametric control charts available for monitoring the location parameter of a process, 
which utilize different RSS sampling methods. Tapang et al. (2016) have developed three nonparametric 
control charts based on RSS to detect even minor shifts in the process mean. Similarly, Abid et al. (2016) 
have proposed a nonparametric EWMA control chart that includes sign test and RSS techniques. Another 
version of this chart was created by Abid et al. (2017a), which utilizes Wilcoxon signed-rank statistic along 
with an RSS scheme for monitoring purposes. Please note that sources have been excluded intentionally. 
Several authors have suggested using nonparametric control charts to monitor process center and location, 
utilizing different statistical methods. For instance, Abid et al. (2017b) proposed a CUSUM chart based on 
the sign statistic and implemented the RSS technique. Similarly, Asghari et al. (2018) developed a 
nonparametric sign chart that uses RSS technique to monitor the process center. In another study, Abbas et 
al. (2020) introduced the DEWMA chart, which combines SRS and RSS techniques with the Wilcoxon signed 
rank test to effectively track changes in the process location parameter during quality control operations. By 
using the RSS technique in control charts, significant improvements have been observed compared to the 
traditional SRS-based control charts. This paper aims to provide valuable insights into nonparametric joint 
monitoring schemes by analyzing both the SRS and RSS methods. 
In this paper, we introduce a new technique for simultaneously monitoring of the location and scale 
parameters of a continuous process distribution. Our approach involves using a single nonparametric 
Shewhart-type control chart. We base our chart on Neuhäuser (2000) nonparametric two-sample modified 
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Lepage-type test, which combines the Baumgartner statistic and Ansari-Bradley statistic to detect changes in 
both location and scale at the same time. To determine how well our method works, we assess the behaviour 
of the control chart when the process is in control and out of control. We do this by calculating the average 
run length (ARL) for both normal and double exponential distributions. In Section 2, the modified Lepage-
type nonparametric test based on Baumgartner and Ansari-Bradley statistic for estimating both location and 
scale under SRS and RSS schemes is given. Section 3 discusses a single nonparametric control chart that 
monitors the location parameter and scale parameter of a process using the modified Lepage-type test 
statistic. In Section 4, the performance of this control chart is analyzed in both in-control and out-of-control 
scenarios under SRS and RSS sampling schemes. The findings are summarized in Section 5. 
 

2.  Nonparametric Tests for Location and Scale 
 
In this section, we briefly discuss the nonparametric tests for location parameter, scale parameter and jointly 
location scale parameters. 
 
2.1 Baumgartner Two Sample Test for Location 
Baumgartner test is a two-sample test can be applied for location and scale parameters. Let 

),...,,( 21 nXXX and ),...,,( 21 mYYY  denote two random samples. The observations with in each sample are 

independent and identically distributed, and we assume independence between two samples. Let F and 
G be continuous distribution functions corresponding two population 1 and 2 respectively. In location shift, 

model considered first the distribution functions are same except perhaps for change in their location; that is, 

)()( −= xFxG . The null hypothesis is 0:0 =H , whereas alternative is 0:1 H . Baumgartner et al. 

(1998) proposed a distribution-free two-sample rank test for general alternative. For combined samples, let 

nRRR  ...21  and mHHH  ...21 denote the ranks of the values−X  and values−Y  in increasing 

order of magnitude, respectively. Baumgartner et al. (1998) defined a nonparametric two-sample rank 

statistic B as follows: 
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The larger value of statistic B gives evidence to reject the null hypothesis. Baumgartner et al. (1998) also 

provided asymptotic distribution of test statistic B . 
 
2.2 Ansari-Bradley Test for Scale 
The Ansari-Bradley test is a two-sample rank test applied for scale parameter. The test statistic is defined as 
follows: In the combined samples, the observations less than or equal to the median are replaced by their 
ranks in the increasing order and those larger than the median are replaced by their ranks in descending 
order. The statistic is the sum of these ranks for the Y sample. The corresponding test statistic is defined as 
(Gibbons and Chakraborti (2003)), 
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2.3 Modified Lepage-type Test for Location and Scale 
After Lepage statistic was proposed, various Lepage-type statistics have been proposed and discussed by 
many authors in the literature. One of the most famous and powerful modified Lepage-type statistic 
proposed by Neuhäuser (2000) is a combination of the Baumgartner and Ansari-Bradley statistic given as: 
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where B Baumgartner statistic for location shift and AB is Ansari-Bradley statistic for scale shift. In this 

paper, we use ML  test statistic as a charting statistic for detecting simultaneous location and scale shifts in a 

continuous process distribution.  
 

3.  Control chart based on modified Lepage-type statistic 
 
In this Section, we develop a nonparametric control chart based on modified Lepage-type test statistic 
proposed by Neuhäuser (2000) for simultaneously monitoring the location and the scale parameters of a 

continuous process. The single plotting statistic for the joint monitoring of location and scale is given ML  in 

Eq. (3) and chart is called LM chart. To adopt the idea of two sample test for control chart implementation, m 

independent observations ),...,,( 21 mXXXX = from an in-control process are used as reference sample 

and compared to future sample subgroups of n independent observations ),...,,( 21 nYYYY =  an arbitrary test 

sample. 
Proposed charting procedure under SRS scheme 

Step1: Collect Phase-I reference sample ),...,,( 21 mXXXX = of size m  using SRS from an in-control 

process. 

Step2: Let ),...,,( 21 nYYYY = be 
thj Phase-II (test) sample of size ,n using RSS ,...3,2,1=j  

Step 3: Calculate 
jB and

jAB)(  using (1) and (2) for
thj  test sample. 

Step 4: Compute means and standard deviations of B  and AB  statistics respectively 

Step 5: Calculate the standardized B  and AB statistics as 
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Step 6: Calculate the control chart statistic LM chart as ...,3,2,1,2

2

2
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Step 7: Plot 
jT  against an upper control limit (UCL), .0H  

Step 8: If 
jT exceed H , the process is out-of-control at the

thj  test sample. If not, the process is thought to be 

in-control and testing continues to the next sample. 
 
Proposed charting procedure under RSS scheme 
Ranked Set Sampling 
McIntyre (1952) introduced the concept of Ranked Set Sampling, which involves ranking samples based on a 
related variable, instead of directly measuring the variable being investigated. We will now explain the steps 
involved in selecting a sample using RSS techniques. 

1. Select 
2n units with SRS scheme from the target population. 

2. Randomly allocate these 
2n units in n groups each of size n . 

3. Rank the units in each group in ascending order of magnitude by personal judgement or visual inspection 
or by using some auxiliary variable. 
4. Select smallest value from the first group and second smallest value from the second group. 



14536                                                       Vikas Ghute  et al. / Kuey, 30(5), 6877                                                                  

 

5. This procedure will continue, and the last sample unit corresponds to the largest value from the 
thn  

group. 
This gives a ranked set sample of size n . 

The charting procedure of the proposed LM chart under RSS scheme is as follows 
Step1: Collect a reference sample of size m  using RSS from an in-control 

process ),..,,( ,2,1, mrssrssrssrss XXXX = .  

Step2: Collect a 
thj Phase-II (test) sample of size n using RSS ...,3,2,1=j

 
),..,,( ,2,1, nrssrssrssrss YYYY =  

Use Step 3 to Step 8 in the procedure of SRS scheme using RSS samples instead of SRS samples. 
 

4. Performance Evaluation and Analysis of LM Chart 
 

Implementation of the proposed LM chart requires the upper control limit H . Typically, in practice, it is 

determined for specified in-control )( 0ARL , say, 500 under SRS and RSS Scheme. The estimation of H  is 

achieved by utilizing a Monte-Carlo simulation method that involves generating a significant number of 

potential samples. For a given pair of ),( mn  values, a search is conducted with different values of H , and 

that value of H  is obtained for which 0ARL is equal to nominal (target) value. We choose 100,50,30=m   

for the reference sample size and 25,11,5=n as the test sample size and target values 5000 =ARL . The 

results are presented in Table 1. 
 

Table 1: Charting constant H for the proposed chart, for various values of m and n , and for standard 

(target) value of 5000 =ARL under SRS and RSS scheme 

Reference sample size Test Sample size Charting constant (upper control limit): H  

m  n  SRS RSS 

30 5 37.960 5.4212 

30 11 37.312 3.2361 

30 25 24.820 2.2498 

50 5 23.390 5.7895 

50 11 20.752 3.3452 

50 25 20910 2.3584 

100 5 32.800 6.8695 

100 11 31.305 3.9292 

100 25 28.023 2.3110 

 
To evaluate the efficiency of a control chart, it is common to analyse its run length distribution. In case this 
distribution shows an asymmetrical shape towards the right side, it becomes necessary to explore different 
statistics like ARL, standard deviation of run length (SDRL), and specific percentiles including first and third 
quartiles in order to describe such distribution. We study the performance of the proposed LM chart both 
under in-control and out-of- control setup under SRS an RSS scheme. For the in-control setup, we simulate 

both the reference and the test sample from standard normal distribution. We choose 100,50,30=m
 

and 25,11,5=n . For a given pair of ),( nm
 
values, we obtain upper control limits H  for nominal (target) 

0ARL  of 500 and simulate different characteristics of the in-control run-length distribution. 

 
 The results of simulation are shown in Table 2 under SRS scheme and in Table 3 under RSS scheme. It 

indicates that the target 5000 =ARL  is much larger than the median )( 2Q  for all ),( nm combinations. 

Hence, in-control run-length distribution of the LM chart is highly skewed to the right.  
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To examine how the proposed LM chart performs in out-of-control scenarios, we analyse its effectiveness 
using both SRS and RSS schemes with normal and double exponential process distributions. Specifically, we 
employ the double exponential distribution to evaluate its performance under heavy-tailed conditions. In our 
analysis, we assume that observations from the process follow a mean of zero and variance of one for both 
types of distributions being studied. 
 

Table 2: In-control performance characteristics of the LM chart for 5000 =ARL  under SRS scheme 

simulated values 

m  n  H  0ARL  0SDRL  5P  
1Q  2Q  3Q  95P  

30 5 37.960 501.0 500.5 26 146 350 694 1484 
30 11 37.312 499.7 499.2 27 145 346 692 1493 
30 25 24.820 500.4 499.9 26 144 347 695 1481 
50 5 23.390 499.5 499.0 27 143 344 691 1508 
50 11 20.752 501.4 500.9 26 144 351 698 1499 
50 25 20910 501.3 500.8 26 143 348 692 1502 
100 5 32.800 500.6 500.1 26 144 348 696 1506 
100 11 31.305 500.1 499.6 26 145 345 694 1499 
100 25 28.023 502.9 502.4 26 147 349 695 1508 

 

Table 3: In-control performance characteristics of the LM chart for 5000 =ARL  under RSS scheme 

simulated values 

m  n  H  0ARL  0SDRL  5P  
1Q  2Q  3Q  95P  

30 5 5.4212 501.4 500.9 26 144 348 695 1498 
30 11 3.2361 501.5 501.0 26 147 350 691 1497 
30 25 2.2498 501.0 500.5 26 144 348 697 1495 
50 5 5.7895 500.2 499.7 27 144 350 697 1483 
50 11 3.3452 501.2 500.7 27 145 347 691 1498 
50 25 2.3584 499.6 499.1 26 144 346 692 1499 
100 5 6.8695 504.5 504.0 27 144 349 698 1513 
100 11 3.9292 497.5 497.2 26 144 348 687 1473 
100 25 2.3110 503.8 503.3 25 145 351 697 1503 

 
4.1 Performance Comparison of LM chart under SRS and RSS scheme for Normal 
Distribution. 
In order to investigate the out-of-control performance comparison of the proposed LM chart under SRS and 

RSS scheme, we consider the underlying process distribution as normal; samples are taken from ),( N  

distribution, with in-control samples coming from )1,0(N distribution. To examine the effects of shifts in 

process mean and process variance, 25 combinations of ),(  values are considered with 

0.2,5.1,0.1,5.0,0=  and 0.2,75.1,5.125.1,0.1= .  

 
Tables 4 and 5 present the performance characteristics of the LM chart when underlying process distribution 

is normal with combinations of the reference and test sample sizes 100,50=m and 5=n . 

 

Table 4: Performance comparisons of LM chart under SRS and RSS Scheme for the ),( N distribution 

with 5000 =ARL  

5,50 == nm  

    
SRS RSS 

ARL  SDRL  5P  1Q  2Q  3Q  95P  ARL  SDRL  5P  1Q  2Q  3Q  95P  

0.00 1.00 499.5 499.0 27 143 344 691 1508 499.8 499.3 27 145 349 691 1492 
0.50 1.00 42.4 41.9 3 13 30 59 126 119.5 119.0 6 35 83 165 354 
1.00 1.00 5.9 5.4 1 2 4 8 16 4.0 3.5 1 2 3 5 11 
1.50 1.00 1.9 1.3 1 1 1 2 5 1.2 0.5 1 1 1 1 2 
2.00 1.00 1.2 0.5 1 1 1 1 2 1.0 0.1 1 1 1 1 1 
0.00 1.25 108.1 107.6 6 31 76 150 322 201.5 201.0 11 58 139 277 603 
0.50 1.25 24.1 23.6 2 7 17 33 72 60.1 59.6 3 17 42 83 181 
1.00 1.25 5.7 5.1 1 2 4 8 16 4.0 3.5 1 1 3 5 11 
1.50 1.25 2.2 1.7 1 1 2 3 6 1.3 0.6 1 1 1 1 2 
2.00 1.25 1.3 0.7 1 1 1 2 3 1.0 0.1 1 1 1 1 1 
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0.00 1.50 43.0 42.5 3 13 30 60 127 84.5 84.0 5 25 59 117 253 
0.50 1.50 16.6 16.1 1 5 12 23 48 34.0 33.5 2 10 24 47 100 
1.00 1.50 5.5 4.9 1 2 4 7 15 3.9 3.3 1 1 3 5 11 
1.50 1.50 2.5 1.9 1 1 2 3 6 1.3 0.6 1 1 1 1 3 
2.00 1.50 1.5 0.9 1 1 1 2 3 1.0 0.1 1 1 1 1 1 
0.00 1.75 22.8 22.3 2 7 16 31 68 43.3 42.8 3 13 30 60 129 
0.50 1.75 12.7 12.2 1 4 9 17 37 21.8 21.3 2 7 15 30 64 
1.00 1.75 5.3 4.8 1 2 4 7 15 3.7 3.2 1 1 3 5 10 
1.50 1.75 2.7 2.2 1 1 2 4 7 1.4 0.7 1 1 1 2 3 
2.00 1.75 1.7 1.1 1 1 1 2 4 1.0 0.2 1 1 1 1 1 
0.00 2.00 14.5 14.0 1 5 10 20 42 26.0 25.5 2 8 18 36 77 
0.50 2.00 9.9 9.4 1 3 7 13 29 15.2 14.7 1 5 11 21 45 
1.00 2.00 5.1 4.6 1 2 4 7 14 3.5 3.0 1 1 3 5 9 
1.50 2.00 2.9 2.3 1 1 2 4 8 1.4 0.8 1 1 1 2 3 
2.00 2.00 1.9 1.3 1 1 1 2 4 1.1 0.2 1 1 1 1 1 

 

Table 5: Performance comparisons of LM chart under SRS and RSS Scheme for the ),( N   distribution 

with 5000 =ARL  

5,100 == nm  

    

SRS RSS 

ARL  SDRL  5P

 
1Q  2Q

 

3Q

 
95P  ARL  SDRL  5P

 
1Q  2Q

 

3Q

 
95P  

0.00 1.00 500.6 500.1 26 144 348 696 1506 502.3 501.8 26 144 347 697 1510 
0.50 1.00 66.4 65.9 4 20 46 91 199 202.7 202.2 11 59 140 283 606 
1.00 1.00 7.5 7.0 1 3 5 10 21 5.3 4.8 1 2 4 7 15 
1.50 1.00 2.1 1.5 1 1 2 3 5 1.3 0.6 1 1 1 1 2 
2.00 1.00 1.2 0.5 1 1 1 1 2 1.0 0.1 1 1 1 1 1 
0.00 1.25 119.9 119.4 7 35 83 166 355 91.5 91.0 5 27 63 126 274 

0.50 1.25 33.3 32.8 2 10 23 46 98 46.0 45.5 3 14 32 64 138 

1.00 1.25 6.8 6.3 1 2 5 9 19 4.9 4.4 1 2 4 7 14 
1.50 1.25 2.4 1.9 1 1 2 3 6 1.4 0.8 1 1 1 2 3 
2.00 1.25 1.4 0.7 1 1 1 2 3 1.0 0.2 1 1 1 1 1 
0.00 1.50 48.6 48.1 3 14 34 67 145 21.6 21.1 2 7 15 30 64 
0.50 1.50 21.5 21.0 2 7 15 30 63 15.6 15.1 1 5 11 21 46 
1.00 1.50 6.4 5.9 1 2 5 9 18 4.1 3.5 1 2 3 5 11 
1.50 1.50 2.7 2.2 1 1 2 4 7 1.6 0.9 1 1 1 2 3 
2.00 1.50 1.6 1.0 1 1 1 2 4 1.1 0.3 1 1 1 1 2 
0.00 1.75 26.3 25.8 2 8 18 36 78 8.9 8.4 1 3 6 12 26 
0.50 1.75 15.5 15.0 1 5 11 21 45 7.6 7.1 1 3 5 10 22 
1.00 1.75 6.1 5.6 1 2 4 8 17 3.3 2.8 1 1 2 4 9 
1.50 1.75 2.9 2.4 1 1 2 4 8 1.6 1.0 1 1 1 2 4 
2.00 1.75 1.8 1.2 1 1 1 2 4 1.1 0.4 1 1 1 1 2 
0.00 2.00 16.5 16.0 1 5 12 23 49 5.1 4.6 1 2 4 7 14 
0.50 2.00 11.8 11.3 1 4 8 16 35 4.7 4.2 1 2 3 6 13 
1.00 2.00 5.8 5.2 1 2 4 8 16 2.8 2.2 1 1 2 4 7 
1.50 2.00 3.1 2.5 1 1 2 4 8 1.6 1.0 1 1 1 2 4 
2.00 2.00 2.0 1.4 1 1 1 2 5 1.2 0.5 1 1 1 1 2 
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Figure 1 ARL performance of SML chart for normal distribution under SRS and RSS scheme 

 
The results in Table 4, 5 and Figure 1 indicate that the out-of-control run-length distributions are also 

skewed to right. It is observed that, for a fixed nm,  and a given 0ARL , the out-of-control ARL values as well 

as the percentiles all decrease sharply with increasing shift in the  location and also with the increasing shift 
in the scale. It indicates that the proposed LM chart  
is effective in detecting shifts in location and/or in the scale. The proposed LM chart under SRS and RSS 
scheme detect shift in the scale more quickly than that in the location. For example, from Table 4, we observe 
that for 50% increase in location when scale is in-control, the ARL decreases by 91% under SRS scheme and 
decreases by 76% under RSS scheme, whereas for a 25% increase in a scale when the location is in-control, 
ARL decreases by 78% under SRS scheme and decreases by 60% under RSS scheme. Finally, when location 
and scale increases by 50% the ARL decreased by 97% under SRS scheme and decreases 93% under RSS 
scheme. The pattern is same for SDRL; it decreases for an increase in the shift in both parameters, but 
decreases more for a shift in scale. For example, from Table 4, for 50% increase in location, the SDRL 
decreases by 87% under SRS scheme and 76% under RSS scheme but for 25% increase in scale, the SDRL 
decreases by 78% under SRS scheme and decreases 60% under RSS scheme. 
In Table 4, it is evident that the LM chart employing the RSS scheme outperforms the one using the SRS 
scheme when the distribution is normal and there is a shift in both the location and scale parameter. The LM 
chart based on RSS scheme displays better performance as the location parameter increases, compared to the 
one based on SRS scheme. Moreover, the LM chart using RSS scheme shows superior performance even with 
a minor shift in location and scale parameter, as compared to the one based on SRS scheme. 
 
4.2 Performance Comparison of LM chart under SRS and RSS scheme for double exponential 
Distribution. 
To study the effect of heavy tailed distribution on the performance of the proposed LM chart under SRS and 
RSS scheme, double exponential distribution is included in the study as heavy ailed process distribution. We 
conduct simulation study with data from double exponential distribution. The performance characteristics of 

the run-length were evaluated when the in-control sample is from a )1,0(Laplace distribution that has a 

mean 0 and a variance 2. And test samples are generated from the double exponential distribution with mean 

 and standard deviation . 
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Table 6: Performance comparisons of LM chart under SRS and RSS Scheme for the ),( Laplace  

distribution with 5000 =ARL  

5,50 == nm  

θ λ 

SRS RSS 

ARL  SDRL

 
5P  1Q  2Q  3Q

 
95P  ARL  SDRL

 
5P  1Q  2Q  3Q

 
95P  

0.00 1.00 499.6 499.1 25 143 345 693 1505 501.7 501.2 27 145 349 695 1489 
0.50 1.00 18.2 17.7 1 6 13 25 53 100.4 99.9 6 29 70 139 301 
1.00 1.00 3.0 2.4 1 1 2 4 8 6.1 5.6 1 2 4 8 17 
1.50 1.00 1.5 0.8 1 1 1 2 3 1.7 1.1 1 1 1 2 4 
2.00 1.00 1.1 0.4 1 1 1 1 2 1.1 0.3 1 1 1 1 2 
0.00 1.25 222.2 221.7 12 64 155 307 663 148.2 147.7 8 43 102 205 444 
0.50 1.25 17.0 16.5 1 5 12 23 50 56.0 55.5 3 16 39 77 167 
1.00 1.25 3.6 3.0 1 1 3 5 10 6.5 6.0 1 2 5 9 18 
1.50 1.25 1.7 1.1 1 1 1 2 4 1.9 1.3 1 1 1 2 4 
2.00 1.25 1.3 0.6 1 1 1 1 2 1.2 0.4 1 1 1 1 2 
0.00 1.50 128.6 128.1 7 38 90 177 381 44.6 44.1 3 13 31 62 133 
0.50 1.50 16.1 15.6 1 5 11 22 47 26.0 25.5 2 8 18 36 76 
1.00 1.50 4.2 3.6 1 2 3 6 11 5.8 5.3 1 2 4 8 16 
1.50 1.50 2.0 1.5 1 1 2 3 5 2.0 1.4 1 1 1 2 5 
2.00 1.50 1.4 0.8 1 1 1 2 3 1.2 0.5 1 1 1 1 2 
0.00 1.75 87.1 86.6 5 26 61 121 261 19.3 18.8 2 6 14 27 56 
0.50 1.75 15.8 15.3 1 5 11 22 46 13.9 13.4 1 4 10 19 41 
1.00 1.75 4.7 4.2 1 2 3 6 13 4.9 4.3 1 2 4 7 14 
1.50 1.75 2.3 1.8 1 1 2 3 6 2.0 1.5 1 1 2 3 5 
2.00 1.75 1.6 1.0 1 1 1 2 4 1.3 0.6 1 1 1 1 3 
0.00 2.0 65.0 64.5 4 19 45 90 193 10.7 10.2 1 3 7 15 31 
0.50 2.00 15.4 14.9 1 5 11 21 45 8.5 8.0 1 3 6 12 25 
1.00 2.00 5.2 4.7 1 2 4 7 14 4.1 3.5 1 1 3 5 11 
1.50 2.00 2.6 2.1 1 1 2 3 7 2.0 1.4 1 1 2 3 5 
2.00 2.00 1.8 1.2 1 1 1 2 4 1.3 0.7 1 1 1 2 3 

 

Table 7: Performance comparisons of LM chart under SRS and RSS Scheme for the ),( Laplace  

distribution with 5000 =ARL  

5,100 == nm  

θ 

λ SRS RSS 

 
ARL  SDRL

 
5P  1Q  2Q  3Q

 
95P  ARL  SDRL

 
5P  1Q  2Q  3Q

 
95P  

0.00 1.00 497.9 497.4 25 142 344 691 1502 498.6 497.9 26 143 344 690 1505 
0.50 1.00 194.6 194.1 10 56 134 269 583 281.4 280.9 15 81 196 390 837 
1.00 1.00 10.5 10.0 1 3 7 14 30 8.0 7.5 1 3 6 11 23 
1.50 1.00 2.2 1.6 1 1 2 3 5 1.7 1.1 1 1 1 2 4 
2.00 1.00 1.2 0.5 1 1 1 1 2 1.1 0.4 1 1 1 1 2 
0.00 1.25 179.6 179.1 10 52 125 249 536 152.1 151.6 8 44 106 211 452 
0.50 1.25 91.5 91.0 5 27 64 126 272 84.5 84.0 5 25 59 116 252 
1.00 1.25 9.6 9.1 1 3 7 13 27 7.8 7.3 1 3 6 11 22 
1.50 1.25 2.5 2.0 1 1 2 3 6 2.0 1.4 1 1 1 2 5 
2.00 1.25 1.4 0.7 1 1 1 2 3 1.2 0.5 1 1 1 1 2 
0.00 1.50 91.1 90.6 5 26 64 127 272 45.7 45.2 3 14 32 63 136 
0.50 1.50 55.5 55.0 3 16 38 77 164 32.0 31.5 2 10 22 44 96 
1.00 1.50 9.3 8.7 1 3 7 13 27 6.6 6.1 1 2 5 9 18 
1.50 1.50 2.8 2.3 1 1 2 4 7 2.1 1.5 1 1 2 3 5 
2.00 1.50 1.5 0.9 1 1 1 2 3 1.3 0.6 1 1 1 1 2 
0.00 1.75 54.4 53.9 3 16 38 75 162 19.4 18.9 1 6 14 27 57 
0.50 1.75 37.8 37.3 2 11 26 52 112 15.5 15.0 1 5 11 21 46 
1.00 1.75 8.7 8.2 1 3 6 12 25 5.4 4.8 1 2 4 7 15 
1.50 1.75 3.1 2.5 1 1 2 4 8 2.1 1.6 1 1 2 3 5 
2.00 1.75 1.7 1.1 1 1 1 2 4 1.4 0.7 1 1 1 2 3 
0.00 2.00 36.7 36.2 2 11 26 51 109 10.6 10.0 1 3 7 15 31 
0.50 2.00 27.9 27.4 2 8 20 39 83 9.2 8.7 1 3 6 12 26 
1.00 2.00 8.3 7.8 1 3 6 11 24 4.3 3.8 1 2 3 6 12 
1.50 2.00 3.3 2.7 1 1 2 4 9 2.1 1.5 1 1 2 3 5 
2.00 2.00 1.8 1.2 1 1 1 2 4 1.4 0.7 1 1 1 2 3 
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Figure 2 ARL performance of SML chart for double exponential distribution under SRS and RSS scheme 
 
To examine the effect of shifts in location and scale, as in normal case, we studied 25 combinations of 

),(  values. Table 6 and Table 7 presents the performance characteristics of proposed LM chart under SRS 

and RSS scheme when underlying process distribution is double exponential with combinations of reference 

and test samples of size 100,50=m   and 5=n . 

Tables 6, 7 and Figure 2 demonstrate that for a doubling exponential distribution, the overall pattern of the 
process remains similar to that of a normal distribution. Nevertheless, when utilizing an SRS scheme to 
detect shifts in mean and/or variance, the out-of-control ARL values are greater compared to those obtained 
under normal process distribution. Conversely, with RSS schemes in place, detecting such changes under 
double exponential distribution is more efficient than using traditional methods as indicated by smaller out-
of-control ARL values relative to normal ones. An example of this can be seen in Table 6, where a mean shift 

and dispersion shift of equal proportions (50%) that is )5.1,50.0( ==    are implemented under the SRS 

scheme. The resulting ARL is 16.1, which is slightly smaller than the ARL of 16.6 observed in the normal case 
presented in Table 4. On the other hand, when applying these shifts under RSS scheme, the resulting ARL is 
smaller at 26.0 compared to an ARL of 34.0 for a normal case recorded in previous studies. Furthermore, in 
the case of double exponential distribution, both percentiles and SDRL exhibit an increase when compared to 
a normal distribution using SRS scheme. However, these values decrease under RSS scheme. 
 

5. Conclusions 
 
In this article, a non-parametric control chart is introduced. It uses the modified Lepage-type test statistic to 
monitor both the location and scale parameters of an ongoing continuous process distribution 
simultaneously. The LM charts performance for both in-control and out-of-control states is examined using 
SRS and RSS scheme. These tests are conducted on normal distribution, as well as those with heavy tails or 
double exponential distribution. Various characteristics like mean, median, and percentile run-length 
distributions are analyzed. The results show that the proposed LM chart maintains its expected ARL under 
different process distributions when utilizing either SRS or RSS methods. Furthermore, it was observed that 
the RSS scheme is more efficient than the SRS method for normal and double exponential distributions. 
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