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ARTICLE INFO ABSTRACT 

 

 

This paper compares several You Only Look Once (YOLO) models for object 
detection in parking lot images. Surveillance, independent vehicles, and 
intelligent cities are some of the applications that demand object 
recognition. The YOLO algorithm has undergone various iterations to 
improve real-time performance and increase accuracy. Effective parking 
space management is one of the major players in reducing traffic congestion 
in cities. Computer vision-based systems show us a way forward by 
automatically identifying free parking slots. The present paper compares 
using the YOLOv3, YOLOv5, YOLOv7, and YOLOv8 models to test images 
taken from car parks in different periods of the year and under various 
meteorological conditions. The results of the conducted tests show all the 
strengths and weaknesses of each YOLO model type, considering statistical 
elements such as precision, recall, evaluation time, and ease of use. 
 
Keywords: Car Detection · Object Detection · Parking · YOLO (You Only 
Look Once) 

 
Introduction 

 

Object detection is one of the most critical components in many domains, such as surveillance and security, 
autonomous vehicles, and smart cities. The You Only Look Once algorithm (YOLO) is one of the most famous 
used in the object detection niche. YOLO has been selected because of its real-time solution and accuracy. The 
YOLO algorithm has undergone several versions during its existence, and each of them has made many 
changes and optimizations throughout this experience, as object detection is a continually evolving task. 
 
Efficient parking space management is critical for reducing congestion in urban areas and maximizing space 
use. A computer vision-based methodology, which enables the automatic determination of unoccupied 
parking areas is one potential approach to achieving such tasks. YOLO is one of the object detection algorithms 
that helps to quickly consider the location of everything through photographs or videos. Hence, it can be used 
to detect parking place occupancy. 
 
Overall, the paper features a comparative analysis of multiple YOLO algorithm versions using performance 
metrics in terms of detecting empty parking spots on parking lot images. The versions in question include 
YOLOv3, YOLOv5, YOLOv7, and YOLOv8, and the performance is evaluated using the detection of whether 
the parking lot space is free. Therefore, the goal of the research is to investigate and evaluate all tested YOLO 
versions to identify the most appropriate one for the object detection. 
 
The study uses two extensive datasets [11] [12] containing pictures of parking lots taken under different 
conditions such as varied lighting, weather types, and parking lot layouts. Because of these reasons, it’s 
possible to have multiple YOLO algorithm versions that yield different performance results on this project. 
It is necessary to utilize many versions of YOLO algorithms while implementing them alongside these datasets 
so as to investigate how they compare with each other during real-time detection of parking lots. The findings 
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obtained from the above procedure might find application within computer vision communities especially 
those dealing with surveillance systems among other fields. 

Literature Review 
 

The paper [1] provides an extensive review of the YOLO algorithm and its extensions, representing the 
conceptual foundation, topic, and object of study of the entire paper. YOLO was later significantly improved 
and modified, resulting in the YOLOv2, YOLOv3, YOLOv4, YOLOv5 models along with YOLO-LITE. The key 
objective is to compare the main types of YOLO implementations in terms of design reasons, feature 
development, limitations, connections, and importance. 
 
It provides a technical comparison and analysis based on public data and valuable YOLO trends and related 
queries. The paper concludes reflections on the insights from the YOLO versions review. There are several 
major differences In the found YOLO versions, which are listed above. However, the commonalities also exist, 
which proves the similarity and relevance of the YOLO versions identified in the examined data. The major 
implication of the commonalities and found YOLO versions is the potential for different research and other 
numerous improvements, especially in scenarios. 
 
The paper [2] introduces the ACPDS dataset for image-based parking space occupancy classification, 
addressing the growing need for efficient parking management systems to reduce congestion and emissions. 
Unlike prior datasets, ACPDS provides systematically annotated images from unique views, ensuring diversity 
and realism in parking lot scenarios across train, validation, and test sets. The paper identifies the limitations 
of existing models trained on generic object-detection datasets or limited application-specific datasets and 
introduces ACPDS as a challenging benchmark for evaluating model generalization. The conclusion 
summarizes the significance of ACPDS in facilitating research and development of practical models for parking 
space occupancy classification, achieving over 98% accuracy on unseen parking lots and paving the way for 
future improvements in parking management systems. 
 
The paper [3] contributes to the field of digital image processing by exploring the efficacy of YOLOv2 and 
YOLOv3 algorithms in object detection from aerial photographs. With the increasing popularity of deep 
learning algorithms in various disciplines, object detection from aerial or terrestrial images has gained 
significant attention. Leveraging the DOTA dataset, the study evaluates the performance of YOLOv2 and 
YOLOv3 in detecting nine class objects, including large vehicles, small vehicles, planes, and more. Through 
precision, recall, and F1-score analyses, the study reveals that YOLOv2 outperforms YOLOv3 in five out of 
nine classes, while the latter excels in recognizing small objects. Notably, YOLOv3 demonstrates superior time 
performance, detecting objects in an average of 2.5 seconds compared to YOLOv2’s 43 seconds. By shedding 
light on the strengths and weaknesses of both algorithms, the study provides valuable insights for future 
research in object detection from aerial images, emphasizing the importance of expanding training datasets 
and incorporating images of varying scales to enhance detection accuracy. 
 
A study in the paper [4] has thoroughly summarized the entire YOLO family of algorithms. This specifically 
targets the investigation of the latest model for real-time object detection, YOLOv7. The research aims to 
compare the resolution performance of YOLOv7 in object detection with other YOLO models and state-of-the-
art models like YOLOv5, YOLO-X, and YOLO-R.The results indicate that YOLOv7 has high accuracy but low 
frames per second (FPS) when compared to other models in the YOLO family. In spite of its limited FPS, 
YOLOv7’s accuracy makes it suitable for business applications, and therefore could lead to wider use cases for 
real-time object detection across different domains. 
 
The paper [5] addresses the challenge of real-time object detection on Unmanned Aerial Vehicles (UAVs) with 
limited computing resources. Their efficacy in terms of mean Average Precision (mAP) and Frames Per Second 
(FPS), crucial metrics for real-time applications, were evaluated by studying various YOLO series models on 
the Pascal VOC dataset. YOLOv3, YOLOv3-tiny, YOLOv3SPP3, YOLOv4 and YOLOv4-tiny were among the 
models evaluated. It was found out that YOLOv4 outperformed the rest by achieving an mAP of 87.48% and 
an FPS of 72. Nevertheless, despite having lower accuracy, YOLOv3-tiny was considered suitable for real-time 
UAV applications if speed in processing is of high essence. 

 
Methodology 

 

The primary motivation for conducting this comparative analysis of YOLOv3, YOLOv5, YOLOv7, and YOLOv8 
is to systematically evaluate and benchmark their performance in the context of object detection. Each 
iteration of the YOLO model introduces advancements and optimizations, making it essential to understand 
their respective strengths and weaknesses. By comparing these models, the study aims to identify which 
version offers the best balance of accuracy, efficiency, and computational resource requirements. 
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This analysis not only provides valuable insights into the evolution of YOLO models but also guides 
practitioners and researchers in selecting the most suitable model for their specific application needs. It helps 
in determining whether newer versions offer significant improvements over their predecessors and if those 
improvements justify the potential increase in computational demands. Ultimately, the comparative study 
serves as a comprehensive resource for informed decision-making in the deployment of object detection 
systems. Figure 1 represent the system architecture of our Exposure Therapy AR application. 
 
3.1 Data Used 
Two datasets were use for this investigation. It was sourced from Kaggle under the title “Parking Lot Database, 
for YOLO" [11] created by Duy Thanh Nguyen referred as “Dataset 1" and “Aerial View Car Detection for 
YOLOv5" [12] by BraunGe referred as “Dataset 2". 
 
Dataset 1 encompasses images taken in parking lots which exhibit various possible scenarios as well as 
configurations necessary for object detection models’ training and testing. This data is categorized into two - 
NoXML and HasXML based on availability of annotation files. A variety of conditions in parking lot scenes 
under different weather and day-time settings are depicted in the dataset. The captured images include scenes 
of days, cloudy and rainy weather. For real world deployment scenarios, it is important that the models trained 
can effectively adapt to different surroundings. This diversity ensures that trained models can adapt effectively 
to settings, which is crucial, for real world deployment scenarios.The images, in the dataset are arranged in 
order making it easier to analyze them over time. This organization allows for the identification of trends or 
patterns in detection performance. Sample images from Dataset 1 are shown in Figure 1. 
 

 
Fig.1. Samples from Parking Lot Dataset 

 
Dataset 2 includes a richly-annotated high-resolution aerial images dataset marking the location of cars, 
created for training and testing YOLOv5 car detection models. We varied the dataset by using images taken 
from different altitudes and angles in different environments (urban areas, highways, and parking lots). This 
dataset and annotations are given in YOLO format,and each image has a text file with bounding box mentioned 
as normalised cordinates. The dataset consists of several thousand images, each with multiple bounding boxes 
around cars and a field of view from the top, proving to be a useful tool for the development of aerial car 
detection technology. Sample image from Dataset 2 is shown in Figure 2. 
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Fig.2. Samples from Aerial View Car Detection Dataset 
 
 
3.2 YOLO 

 
Fig.3. Architecture of YOLO algorithm (Redmon et al., 2017) [3] 

 
You Only Look Once was developed and released by Joseph Redmon and Santosh Divvala in 2016 and is a 
leap forward concept in object detection. The application enables marking and detection across the frame in a 
single network pass, which means it both runs very quickly while remaining highly accurate. 
 
YOLO is divided into a grid where each grid cell predicts a bounding box and its confidence score for some 
class. This is compared to other methods that need several distributed proposals before classifying an image. 
In order to greatly simplify object detection, YOLO predicts both bounding boxes which define object locations 
and object classes within the grid structure itself. YOLO predicts locations by regressing from spatial 
dimensions using convolutional neural networks (CNNs) while also predicting classes with logistic regression 
over categories. 
Figure 3 illustrates the architecture of the YOLO algorithm. [3] The diagram highlights YOLO’s single-stage 
object detection process, which divides the input image into a grid. Each grid cell predicts bounding boxes and 
their corresponding confidence scores for objects within that cell. This structure simplifies object detection by 
integrating both localization and classification tasks within a single convolutional neural network (CNN) pass, 
unlike other methods that require multiple proposal stages. The architecture also features anchor boxes to 
handle objects of different scales and aspect ratios, optimizing the model for both speed and accuracy in 
detecting various objects in an image. 
A series of subsequent variations were produced, all with the same goal of improving its efficiency and 
functionality. The YOLO technique is based on the use of a personalized loss function as part of a Convolutional 
Neural Network structure that was created specifically to perform two tasks at once. The single-stage approach 
streamlines the process by removing the need for an object proposal step. To localize objects, standard size 
boxes (called anchors) that have been modified according to scales and aspect ratios of objects present in the 
training set are used to predict bounding boxes within grid cells. 

 
3.3 Implementation 
YOLOv3, YOLOv5, YOLOv7, and YOLOv8 algorithms are trained on parking Lot dataset. To train the model 
for Dataset 1, 186 parking lot images were used. A further 26 parking lot images were used for validation, while 
20 were used for testing. Objects such as vehicles parked at different spaces defined by lines on both sides 
among other things are part of the dataset. Finally, the weather conditions in the picture library includes 
cloudy, rainy and sunny weather. Dataset 2 was segregated as 254 images used for training the model, 36 for 
validation and 18 for testing the model. The position of each object in the dataset is denoted by boxes which 
have been represented as "x1, y1, x2, y2, x3, y3, x4, y4" in the dataset.The implementation of YOLOv3, YOLOv5, 
YOLOv7 and YOLOv8 algorithms has been carried out on the Google Colaboratory platform with free high 
GPU (Graphics Processing Unit) support [6]. All models have been trained for 25 epochs, completing 25 full 
passes through the training dataset to adjust their parameters. 
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Fig.4. Sample Output using YOLOv8 Model on Dataset 1 

Implementing YOLOv3, YOLOv5, and YOLOv8, which were directly released by Ultralytics, was facilitated by 
the availability of pre-trained models, training scripts, and comprehensive documentation provided by the 
Ultralytics. The implementation process began with the setup and installation of required dependencies such 
as PyTorch and NumPy. The dataset for object detection was then prepared, organized into training, 
validation, and testing sets, ensuring a balanced distribution of object classes and diverse scenarios. In the 
case of YOLOv7, which was not directly released by Ultralytics but implemented from online GitHub sources, 
a similar implementation process was followed with some differences. GitHub repositories containing the 
YOLOv7 implementation were identified based on community contributions and popularity within the 
computer vision community. 
 
Once phases of control had been successfully concluded, twenty images were converted into output files from 
each of the four models, so that algorithms could be compared and evaluated. The output consisted of images 
processed using YOLOv3, YOLOv5, YOLOv7 and YOLOv8 for evaluation, and each algorithm was assessed 
individually against the twenty pictures mentioned earlier. Figure 4 shows output of an image from Dataset 1 
where YOLOv8 model is used for object detection. 
 

Results and Discussion 
4.1 Evaluation Metrics 
During the evaluation of the results, four metrics were determined; evaluation time, precision (Eq. 1), recall 
(Eq. 2) and mAP. These metrics were calculated on the basis of the confusion matrix. The distribution of object 
detection is shown by the confusion matrix. [7] The confusion matrix has 4 parameters: true positive (TP), 
true negative (TN), false positive (FP) and false negative (FN). TP: Model accurately predicts a positive data 
point. TN: model accurately predicts a negative data point. FP: model predicts a positive data point incorrectly. 
FN: Model wrongly predicts a negative data point. [8] Precision talks about the number of the correct 
detections made by the method; recall is the metric for correctly detected objects that actually exist. 
 

Precision = TP/(TP + FP) (1) 

Recall = TP/(TP + FN) (2) 

 
Along with that, mean Average Precision (mAP) computed at an Intersection over Union (IoU) [9] threshold 
of 0.5, and across a range of IoU thresholds from 0.5 to 0.95, providing a broader evaluation of object detection 
performance by considering varying degrees of overlap between predicted and ground truth bounding boxes 
are calculated. Box Loss, Classification Loss (CLS) and Distribution Focal Loss (DFL) [10] both at Training 
and Validation phase are also used for evaluation. 
The reason why we use precision, recall, and evaluation times as metrics to evaluate YOLO models is because 
they play a crucial role in assessing how well object detection algorithms perform. Precision tells us the ratio 
of true positive detections to all the positive detections made by the model, showing us the model’s accuracy. 
On the other hand, recall measures the ratio of true positive detections to all the actual positive instances, 
indicating the model’s ability to capture all the relevant objects. 
The evaluation time shows how fast the models are in terms of performing calculations. A shorter time of 
model evaluation makes it possible for the model to carry out accurate object detection in real time crucial in 
the real life situations. Comparing the evaluation times of different models, we can assess the trade-offs 
between performance and computational efficiency. 
 
4.2 Results 
Recall and precision were utilized to assess the performance of YOLOv3, YOLOv5, 
YOLOv7, and YOLOv8 in parking spot detection. Additionally, mean Average Precision (mAP) at a threshold 
of 0.5 and mAP across a threshold range from 0.5 to 0.95 provided insights into detection performance under 
different confidence thresholds. Evaluation also included analysis of Box Loss, Classification (CLS) Loss, and 
Distributed Focal (DFL) Loss, both during training and validation of the model. 

 



10406                                                                                 Yash Doshi ,et al / Kuey, 30(4) 7025 

 

 

Figure 5 shows performance results of YOLOv3 model on Dataset 1. The precision and recall rates gradually 
increase, indicating better results with higher epochs. The mAP increases, while both box loss and 
classification loss go down, signifying improved model optimization and accuracy. 
 

 
Fig.5. Results of YOLOv3 Model on Dataset 1 

 
Figure 6 shows the evaluation metrics of the YOLOv5 model on Dataset 1. Compared to YOLOv3, this model 
has a much steeper and more stable curve of precision and recall, which is representative of stronger initial 
performance and better consistency. Higher mAP throughout training and decreasing box loss and 
classification loss during training are indicative of better convergence and object detection performance. 
 

 
Fig.6. Results of YOLOv5 Model on Dataset 1 

 
Figure 7 shows evaluation metrics on Dataset 1 for the YOLOv7 model. Initially, the precision and recall are 
low but they improve drastically. The mAP increases while box and classification loss decreases as number of 
epochs increase. 
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Fig.7. Results of YOLOv7 Model on Dataset 1 

 
Figure 8 shows evaluation metrics for YOLOv8 model on Dataset 1. The rate of precision and recall are high 
across epochs, indicating superior performance and accuracy. Even when the number of epochs is less, better 
performance and accuracy is observed. mAP is significantly high compared with other models. Box loss and 
classification loss are at the lowest, which signifies its efficiency. 
 

 
Fig.8. Results of YOLOv8 Model on Dataset 1 

 
Figure 9 represents evaluation metrics of YOLOv3 on Dataset 2. The precision and recall curves get better with 
each epoch the same way it was with the case of Dataset 1. Meanwhile, mAP increases gradually, and box loss 
and classification loss are decreasing over epochs. 
 

 
Fig.9. Results of YOLOv3 Model on Dataset 2 

 
Figure 10 shows the evaluation metrics of YOLOv5 on Dataset 2. It shows higher and more stable precision 
and recall rates. Higher mAP across all epochs and low box loss and classification loss show consistency in its 
performance and model efficiency 
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Fig.10. Results of YOLOv5 Model on Dataset 2 

Figure 11 shows the evaluation metrics for the YOLOv7 model on Dataset 2. Precision and recall are both lower 
initially, but show significant improvement over the epochs. The mAP curve rises steadily, and the losses 
decrease over time. 
 

 
Fig.11. Results of YOLOv7 Model on Dataset 2 

 
Figure 12 presents the results for the YOLOv8 model on Dataset 2. The precision and recall rates stay 
consistently high, similar to the performance on Dataset 1. The mAP remains significantly high, and the losses 
are minimal, proving the model’s reliability and accuracy. 
 

 
Fig.12. Results of YOLOv8 Model on Dataset 2 

 
4.3 Discussion 
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Table 1. Evaluation Times of YOLO Models for 25 epochs in hours. 
YOLO Version Dataset 1 Dataset 2 
YOLOv3 0.190 0.231 
YOLOv5 0.109 0.111 
YOLOv7 0.273 0.408 
YOLOv8 0.111 0.108 

 
The evaluation times for various YOLO models (YOLOv3, YOLOv5, YOLOv7, YOLOv8) across two datasets for 
25 epochs are presented in Table 1. These times provides a measure of the computational efficiency of each 
model. YOLOv3 provided decent evaluation time, being outperfromed by YOLOv8 and YOLOv5 but 
considering it was one of the earliest version produced still performance being fairly decent. YOLOv5 and 
YOLOv8 are the most time-efficient models, with YOLOv5 outperforming YOLOv8 on Dataset 1, while 
YOLOv8 having and an edge over YOLOv5 on Dataset 2. In contrast, YOLOv7 had the longest evaluation times, 
requiring 0.273 hours for Dataset 1 and 0.408 hours for Dataset 2. Major reason behind this would be the lack 
of official version release of YOLOv7 making updates and tuning extremeley less frequent as compared to 
YOLOv5 and YOLOv8 which were launched and maintained by Ultralytics and are used more widely. 

Table 2. Precision of YOLO Models. 
YOLO Version Dataset Epoch 1 Epoch 5 Epoch 10 Epoch 15 Epoch 20 Epoch 25 
YOLOv3 1 0.02455 0.56311 0.97876 0.98412 0.99619 0.99735 
 2 0 0.01115 0.98287 0.97888 0.9852 0.98403 
YOLOv5 1 0.3579 0.85111 0.98074 0.98511 0.99708 1 
 2 0.8711 0.95594 0.99233 0.98948 0.99231 0.99497 
YOLOv7 1 0 0.03559 0.1675 0.2592 0.3267 0.3389 
 2 0.005127 0.08807 0.5546 0.7029 0.7952 0.9144 
YOLOv8 1 0.59679 0.77009 0.98871 0.99793 0.99926 0.99933 
 2 0.91278 0.88293 0.9807 0.99039 0.99101 0.98955 

 
The precision and recall metrics for each model over 25 epochs are shown in Table 2 and Table 3 respectively, 
providing insights into their performance in object detection tasks. YOLOv8 consistently achieves the highest 
precision and recall across both datasets, particularly in the later epochs. For instance, by epoch 25 on Dataset 
1, YOLOv8 achieves a precision of 0.99933 and a recall of 1.00000. Similarly, on Dataset 2, YOLOv8 attains a 
precision of 0.98955 and a recall of 0.99385. 
 

Table 3. Recall of YOLO Models. 
YOLO Version Dataset Epoch 1 Epoch 5 Epoch 10 Epoch 15 Epoch 20 Epoch 25 
YOLOv3 1 0.07542 0.76681 0.97725 0.99777 0.9974 0.99937 
 2 0 0.19802 0.9769 0.98845 0.9888 0.99175 

YOLOv5 1 0.75456 0.9946 0.99358 0.99488 0.99698 0.99782 
 2 0.99503 0.96779 0.99233 0.98773 0.98989 0.98773 

YOLOv7 1 0 0.09235 0.3349 0.5091 0.6544 0.7127 
 2 0.03093 0.3041 0.7268 0.8918 0.8807 0.9381 

YOLOv8 1 0.9016 0.91437 0.97161 0.99863 0.99982 1 
 2 0.98951 0.85457 0.98651 0.98651 0.99191 0.99385 

 
YOLOv5 also performs exceptionally well, with precision and recall values closely matching those of YOLOv8. 
By epoch 25, YOLOv5 achieves a precision of 1.00000 and a recall of 0.99782 on Dataset 1, and a precision of 
0.99497 and a recall of 0.98773 on Dataset 2. 
 
YOLOv3 shows significant improvement over the epochs, especially in precision. Starting from a low precision 
of 0.02455 at epoch 1, YOLOv3 improves to 0.99735 by epoch 25 on Dataset 1. However, its initial precision 
and recall values are considerably lower compared to YOLOv5 and YOLOv8. For Dataset 2, YOLOv3 improves 
from a precision of 0.00000 at epoch 1 to 0.98403 by epoch 25, and from a recall of 0.00000 to 0.99175 over 
the same period. 
 
YOLOv7 has the lowest initial precision and recall values. However, it shows significant improvement by epoch 
25. For instance, in Dataset 1, the precision increases from 0.00000 at epoch 1 to 0.33890 at epoch 25, and 
the recall from0.00000 to 0.71270 during the same period. On the other hand, in Dataset 2, YOLOv7’s 
precision rises from 0.005127 at epoch 1 to 0.91440 at epoch 25 while its recall goes up from 0.030930 to 
0.93810. 
 
This comparative study’s findings demonstrate the strengths and weaknesses of each YOLO model. YOLOv8, 
introduced by Ultralytics in 2023 is the most efficient and effective model. It attained the highest precision 
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and recall across both datasets while requiring minimal evaluation time. This shows YOLOv8, the latest 
version of the software, has been tailored for optimal performance as well as computational efficiency. 
 
YOLOv5 is also a strong performer, with metrics almost at par to those of YOLOv8. Its slightly longer 
evaluation times compared to YOLOv8 on Dataset 2 are offset by its high accuracy, making it a reliable model 
for applications where both speed and accuracy are critical. Interestingly, Ultralytics actively maintains 
YOLOv5 as an open-source project with over 250 contributors and frequent improvements [13]. It is user-
friendly for training, deployment, and implementation, but might soon be replaced by YOLOv8 over better 
optimisation and faster processing. 
 
YOLOv3, released back in 2018, although starting with lower initial precision and recall, shows significant 
improvement over time. Therefore YOLOv3 may require more epochs to reach optimal performance levels. 
However, its lower starting values indicate that it might not be the best choice for tasks requiring immediate 
high accuracy. 
 
YOLOv7, while showing the most significant improvement in precision and recall over the epochs, still lags 
the other models in terms of initial performance and overall evaluation times. Infrequent updates, relying 
mainly on community support makes it less suitable for applications where both speed and high accuracy are 
required from the start. 
 

Conclusion 
 

YOLOv3, YOLOv5, YOLOv7, and YOLOv8 methods were used to detect objects in the parking lot images used 
in this study. Parking Lot dataset which contains numerous classes of parking spot images was used. This 
study has revealed valuable insights about the strengths and weaknesses of each YOLO model variation when 
it comes to recognizing parking spots under different circumstances through thorough analysis and 
experimentation. 
 
Our findings demonstrate that YOLO models provide effective and efficient solutions for parking space 
detection tasks. YOLOv3, one of the pioneers of YOLO models, has been outperformed by its successors and 
remains inaccurate and inefficient over fewer epochs. YOLOv5, despite breaking away from the traditional 
YOLO lineage, achieves remarkable performance thanks to its single-stage detector architecture and 
simplified design, making it one of the quickest and most accurate techniques available, backed by substantial 
community support. YOLOv7, driven by the community, underscores the collective contributions made by the 
computer vision field in expanding object detection capabilities, though it’s not as fast as YOLOv5 and lacks 
proper documentation and ease of use. It still boasts decent precision and recall rates. YOLOv8, the newest 
release, features advanced mechanisms, including attention mechanisms and data augmentation strategies, 
increasing detection speed and maintaining high accuracy and robustness levels. 
 
Identifying through comparison, this research evaluated different iterations of the YOLO model, finding 
strengths as well as areas needing improvement, among other things velocity, accuracy, and resource 
efficiency were assessed to install object detecting systems suited for parking lots. 
 
Based on our findings we can conclude that, YOLOv8 stands out as the most efficient and effective model, 
combining high computational efficiency with superior performance metrics, making it the best choice for 
most object detection tasks. YOLOv5, while slightly less efficient in terms of evaluation times, is also highly 
accurate and a close second to YOLOv8. YOLOv3 and YOLOv7, despite improvements, are less competitive 
due to lower initial performance and longer evaluation times. Thus, for applications demanding both speed 
and accuracy, YOLOv8 is recommended as the top-performing model. 
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