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ARTICLE INFO ABSTRACT 

 Machine learning is a branch of artificial intelligence that enables algorithms 
to uncover hidden patterns within datasets, allowing them to make 
predictions on new, similar data without explicit programming for each task. 
Traditional machine learning combines data with statistical tools to predict 
outputs, yielding actionable insights. This technology finds applications in 
diverse fields such as image and speech recognition, natural language 
processing, recommendation systems, fraud detection, portfolio optimization, 
and automating tasks. For instance, recommender systems use historical data 
to personalize suggestions. Netflix, for example, employs collaborative and 
content-based filtering to recommend movies and TV shows based on user 
viewing history, ratings, and genre preferences. Reinforcement learning 
further enhances these systems by enabling agents to make decisions based 
on environmental feedback, continually refining recommendations. Machine 
learning’s impact extends to autonomous vehicles, drones, and robots, 
enhancing their adaptability in dynamic environments. This approach marks 
a breakthrough where machines learn from data examples to generate 
accurate outcomes, closely intertwined with data mining and data science. 

 
Introduction 

 
In his US senate hearing in April 2018, Mark Zuckerberg stressed the necessary capabilities of Facebook’s “AI 
tools (…) to (…) identify hate speech (…)” or “ (…) terrorist propaganda”. Researchers would typically describe 
such tasks of identifying specific instances within social media platforms as classification tasks within the 
field of (supervised) machine learning. However, with rising popularity of artificial intelligence (AI), the term 
AI is often used interchangeably with machine learning–not only by Facebook’s CEO in the example above or 
in other interviews, but also across various theoretical and application-oriented contributions in recent 
literature. Carner (2017) even states that he still uses AI as a synonym for machine learning although 
knowing this is not correct. Such ambiguity, though, may lead to multiple imprecisions both in research and 
practice when conversing about methods, concepts, and results. 
It seems surprising that despite of the frequent use of the terms, there is hardly any helpful scientific 
delineation. Thus, this paper aims to shed light on the relation of the two terms machine learning and 
artificial intelligence. We elaborate on the role of machine learning within instantiations of artificial 
intelligence, precisely within intelligent agents. To do so, we take a machine learning perspective on the 
capabilities of intelligent agents as well as the corresponding implementation. 
The contribution of our paper is threefold. First, we expand the theoretical framework of Russel & Norvig 
(2015) by further detailing the “thinking” layer of any intelligent agent by splitting it into separate “learning” 
and “executing” sublayers. Second, we show how this differentiation enables us to distinguish different 
contributions of machine learning for intelli gent agents. Third, we draw on the implementations of the 
execution and learning sublayers (“backend”) to define a continuum between human involvement and agent 
autonomy. 
In the remainder of this paper, we first review relevant literature in the fields of machine learning and artificial 
intelligence. Next, we present and elaborate our conceptual framework which highlights the contribution of 
machine learning to artificial intelligence. On that basis, we derive an agenda for future research and conclude 
with summary, current limitations, as well as an outlook. 
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Related work 
As a base for our conceptual work, we first review the different notions, concepts, or definitions of machine 
learning and artificial intelligence within extant research. In addition, we elaborate in greater detail on the 
theories which we draw upon in our framework. 
 
Terminology 
Machine learning and artificial intelligence, as well as the terms data mining, deep learning and statistical 
learning are related, often present in the same context and sometimes used interchangeably. While the terms 
are common in different communities, their particular usage and meaning varies widely. 
\ 

 

                                                        Process                        Method set Instantiation 
Figure 1. General terminology used in this paper 

 
For instance, in the field of statistics the focus is on statistical learning, which is defined as a set of methods 
and algorithms to gain knowledge, predict outcomes, and make decisions by constructing models from a data 
set. From a statistics point of view, machine learning can be regarded as an implementation of statistical 
learning. 
Within the field of computer science, machine learning has the focus of designing efficient algorithms to solve 
problems with computational resources. While machine learning utilizes approaches from statistics, it also 
includes methods which are not entirely based on previous work of statisticians—resulting in new and well-
cited contributions to the field. Especially the method of deep learning raised increased interest within the 
past years. Deep learning models are composed of multiple processing layers which are capable of learning 
representations of data with multiple levels of abstraction. Deep learning has drastically improved the 
capabilities of machine learning, e.g. in speech or image recognition. 
In demarcation to the previous terms, data mining describes the process on how to apply quantitative 
analytical methods, which help to solve real-world problems, e.g. in business settings. In the case of 
machine learning, data mining is the process of generating meaningful machine learning models. The goal 
is not to develop further knowledge about machine learning algorithms, but to apply them to data in order to 
gain insights. Machine learning can therefore be seen as a foundation for data mining.  
Figure 1 and the terms defined within this paragraph lay the foundation of the remainder of this work. 
However, the overall terminology and relationships of the concepts is discussed controversially. Therefore, the 
focus of this paper is to bring more insight to the terminology and more precisely, to clarify the role of machine 
learning within AI. To gain a broader understanding for the terms machine learning and AI, we examine both 
in further detail. 
 
Machine learning 
Machine learning describes a set of techniques that are commonly used to solve a variety of real-world 
problems with the help of computer systems which can learn to solve a problem instead of being explicitly 
programmed. In general, we can differentiate between unsupervised and supervised machine learning. For 
the course of this work, we focus on the latter, as the most-widely used methods are of supervised nature. 
With regard to supervised machine learning, learning means that a series of examples (“past experience”) is 
used to build knowledge about a given task. Although statistical methods are used during the learning 
process, a manual adjustment or programming of rules or strategies to solve a problem is not required. In more 
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detail, (supervised) machine learning techniques always aim to build a model by applying an algorithm on a 
set of known data points to gain insight on an unknown set of data. Thus, the processes of “creation” of a 
machine learning model slightly vary in their definition of phases but typically employ the three main phases 
of model initiation, performance estimation and deployment: During the model initiation phase, a human 
user defines a problem, prepares and processes a data set and chooses a suitable machine learning algorithm 
for the given task. Then, during the performance estimation, various parameter permutations describing the 
algorithm are validated and a well-performing configuration is selected with respect to its performance in 
solving a specific task. Lastly, the model is deployed and put into practice to solve the task on unseen data. 
Learning in general depicts a key facet of a human’s cognition which “refers to all processes by which the 
sensory input is transformed, reduced, elaborated, stored, recovered, and used” . Humans process a vast 
amount of information by utilizing abstract knowledge that helps us to better understand incoming input. Due 
to their adaptive nature, machine learning models are able to mimic the cognitive abilities of a human being in 
an isolated manner. However, machine learning solely represents a set of methods that enable to learn 
patterns in existing data, thus generating analytical models that can be utilized inside larger IT artifacts. 
 
Artificial intelligence 
The topic of artificial intelligence (AI) is rooted in different research disciplines, such as computer science, 
philosophy, or futures studies. In this work, we mainly focus on the field of computer science, as it is the most 
relevant one in identifying the contribution of machine learning to AI and in differentiating both terms. 
AI research can be separated into different research streams. These streams differ on the one hand as to the 
objective of AI application (thinking vs. acting), on the other hand as to the kind of decision making (targeting 
a human-like decision vs. an ideal, rational decision). This distinction leads to four research currents which 
are depicted in Table 1. 
According to the “Cognitive Modeling” (i.e. thinking humanly) stream, an AI must be a machine with a mind. 
This also includes performing human thinking, not only based on the same output as a human when given 
the same input, but also on the same reasoning steps which led to the very conclusion.  
The “Laws of Thought” stream (i.e. thinking rationally) requires an AI to arrive at the rational decision despite 
what a human might answer. 
 

Table 1. AI research streams based on Russell & Norvig 
Objective 
 
Application 
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Cognitive 
Modeling 
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Acting 

 
Turing Test 

 
Rational Agent 

 
Therefore, an AI must follow the laws of thought by using computational models which reflect logic. 
The “Turing Test” (i.e. acting humanly) stream implies that an AI must act intelligently when interacting with 
humans. To accomplish these tasks, an AI must perform human tasks at least as good as humans. These 
requirements can be tested by the Turing Test. 
Finally, the “Rational Agent” stream considers an AI as a rational or intelligent agent. This agent does not 
only act autonomously but also with the objective to achieve the rationally ideal outcome. 
An alternative way to delineate AI is defining intelligence in general and using the resulting insights to create 
intelligent machines. Legg and Hutter use intelligence tests, theories of human intelligence and psychological 
definitions to define a measurement of intelligence. Based on their definition, they use an agent-environment 
framework to describe intelligence in general and—in case the agent is a machine— artificial intelligence in 
particular. Their framework exhibits many similarities to the “acting rationally” stream. 
Besides defining AI in general, the classification of AI is another topic in the field of AI research. Searle 
suggests differentiating between weak and strong AI. Whereas a weak AI only pretends to think, a strong AI is a 
mind with mental states. Gubrud however categorizes AI by taking the type of task into account. An artificial 
general intelligence (AGI) is an AI which in general, i.e. in any domain, acts at least on the same level as a 
human brain, however without requiring consciousness. In contrast, a narrow AI is an AI that rivals or 
exceeds the human brain only in specific, limited tasks. 
In the following, we will look into the “Rational Agent” stream in some more detail as it is of importance 
when regarding implementation of machine learning within AI. We will come back to the other three research 
streams in section 3 where we show that they are compatible with our framework of an agent-based AI. 
According to the “Rational Agent” stream, the intelligence itself is manifested by the acting of agents. These 
agents are characterized by five features, namely they “operate autonomously, perceive their environment, 
persist over a prolonged time period, adapt to change, and create and pursue goals”. An agent defines its 
action not for itself but with an environment it interacts with. It recognizes the environment by its sensors, has 
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an agent program to decide what to do with the input data, and performs an action with its actuators. To 
become a rational agent, the agent must also act to achieve the highest expected outcome according to this 
performance measure— based on the current and past knowledge of the environment and the possible 
actions. 
When it comes to the general demarcation of agents, according to Russel & Norvig, the agent program can be 
segmented into four different agent types: A simple reflex agent reacts only based on its sensor data whereas a 
model-based reflex agent also considers an internal state of the agent. A goal-based agent decides for the best 
decision to achieve its goals. The fulfilment of a goal is a binary decision which means it can either be fulfilled 
or not. On the contrast, a utility-based agent has no binary goal but a whole utility function which it tries to 
maximize. An agent can become a learning agent by extending its program. Such a learning agent then 
consists of a performance element which selects an action based on the sensor data and a learning element, 
which gets feedback from the environment, generates own problems, and improves the performance element 
if possible. 
The agent-environment framework consists of three components: an agent, an environment and a goal. 
Intelligence is the measurement for the "agent’s ability to achieve goals in a wide range of environments”. The 
agent gets input by perceptions generated from the environment. One type of perceptions are observations of 
the environment, while others are reward signals that indicate how well the goals of the agent are achieved. 
Based on these input signals, the agent decides to perform actions which are sent back as signals to the 
environment. 
In order to understand the interplay of machine learning and AI, we base our concept on the framework 
of Russel & Norvig. With their differentiation between the two objectives of AI application, acting and 
thinking, they lay an important foundation. 
 
Layers of agents 
When trying to understand the role of machine learning within AI, we need to take a perspective which 
has a focus on the implementation of intelligent agents. We require this perspective, as it allows us to map the 
different tasks and components of machine learning to the capabilities of intelligent agents. If we regard the 
capabilities of thinking and acting of an intelligent agent and translate this into the terms of software design, 
we can reason that the acting capabilities can be regarded as a frontend, while the thinking part can be 
regarded as a backend. Software engineers typically strictly separate form and function to allow for more 
flexibility and independence as well as to enable parallel development. The frontend is the interface the 
environment interacts with. It can take many forms. In the case of intelligent agents it can be a very abstract, 
machine-readable web interface, a human-readable application or even a humanoid template with elaborated 
expression capabilities. For the frontend to interact with the environment, it requires two technical 
components; sensors and actuators. Sensors detect events or changes in the environment and forward the 
information via the frontend to the backend. For instance, they can read the temperature within an industrial 
production machine or read visuals of an interaction with a human. Actuators on the other hand are 
components that are responsible for moving and controlling a mechanism. While sensors just process 
information, actuators act, for instance by automatically buying stocks or changing the facial expressions of a 
humanoid. One could argue that the Turing test takes place at the interaction of the environment with the 
frontend, more precisely the combination of sensors and actuators if one wants to test the agent’s AI of acting 
humanly. Despite every frontend having sensors and actuators, it is not of importance for our work what the 
precise frontend looks like; it is only relevant to note that a backend-independent, encapsulated frontend 
exists. 
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Figure 2. Conceptual framework 
 
The backend provides the necessary functionalities, which depict the thinking capabilities of an intelligent 
agent. Therefore, the agent needs to learn and apply learned knowledge. 
In consequence, machine learning is relevant in this implementation layer. When regarding the case of 
supervised machine learning, we need to further differentiate between the process task that is building 
(=training) adequate machine learning models and the process task that is executing the deployed models. 
Therefore, to further understand the role of machine learning within intelligent agents, we refine the thinking 
layer of agents into a learning sublayer (model building) as well as an executing sublayer (model execution)2. 
Hence, we regard the necessary implementation for the learning sublayer as the learning backend, while the 
executing sublayer is denoted by the executing backend. 
 
Types of learning 
The learning backend dictates first if the intelligent agent is able to learn, and, second, how the agent is able to 
learn, e.g., which precise algorithms it uses, what type of data processing is applied, how concept drift is 
handled, etc. Therefore, we pick up on the terminology from Russel & Norvig by regarding two different types 
of intelligent agents: simple-reflex agents as well as learning agents. This differentiation especially holds for a 
machine learning perspective on AI, as it considers whether the underlying models in the thinking layer are 
once trained and never touched again (simple-reflex)—or continuously updated and adaptive (learning). In 
recent literature, suitable examples for both can be found. As an example for simple-reflex agents, Oroszi and 
Ruhland build and deploy an early warning system of pneumonia in hospitals: While building and testing the 
model for the agent shows convincing results, the adaptive learning of the system after deployment might be 
critical. Other examples of agents with single-trained models are common in different areas, for instance for 
anaphora resolutions, prediction of pedestrians or object annotation. On the other hand, recent literature 
also gives examples for learning agents. Mitchell et al. present the concept of “never- ending learning” agents 
which have a strong focus on continuously building and updating models within agents. An example for such 
an agent is shown by Liebman et al., who build a self-learning agent for music playlist recommendations. 
Other cases are for instance the regulation of heat pump thermostats, an agent to acquire collective knowledge 
over different tasks or learning word meanings. 
The choice on this feature in general (simple-reflex vs. learning agent) influences the overall design of the agent 
as well as the contribution of machine learning. The overview of our resulting framework is depicted in figure 
2. In conclusion, in the case of a simple-reflex agent, machine learning takes places as a once-trained model in 
the execution sublayer. In contrast, it plays a role in the learning sublayer of a learning agent to continuously 
improve the model in the execution sublayer. This improvement is based on knowledge and feedback, which 
is derived from the environment via the execution layer. 
 
Continuum between human involvement and machine involvement 
When it comes to the executing backend and the learning backend, it is not only of importance if and how 
underlying machine learning models are updated—but how much automated the necessary processes are. 
Every machine learning task involves various process steps, including data source selection, data collection, 
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preprocessing, model building, evaluating, deploying, executing and improving. While a discussion of the 
individual steps is beyond the scope of this paper, the autonomy and the automation of these tasks as an 
implementation within the agent is of particular interest in each necessary task of the machine learning 
lifecycle. 
 

 
 

Figure 3. Degree of agent autonomy and human involvement 
 
For instance, while the execution of a once-built model can be fairly easily automated, the automated 
identification of an adequate data source for a new problem or retraining as well as a self-induced model 
building are more difficult. Therefore, we need to view the human involvement in the necessary machine 
learning tasks of an intelligent agent, as depicted in figure 3. While it is hard to draw a clear line between all 
possible forms of human involvement in the machine learning-relevant tasks of an intelligent agent, we see this 
phenomenon rather as a continuum. The continuum ranges between none or little agent autonomy with full 
human involvement on the one extreme as well as the full agent autonomy and no or little human 
involvement for the delivered task on the other. For example, an intelligent agent with the task to 
autonomously drive a car considering the traffic signs already proves a high degree of agent autonomy. 
However, if the agent is confronted with a new traffic sign, the learning of this new circumstance might still 
need human involvement as the agent might not be able to “completely learn by itself”. Therefore, the 
necessary involvement of humans, especially in the thinking layer (= executing backend and learning 
backend), is of major interest when describing AI and the underlying machine learning models. The degree of 
autonomy for each step of machine learning can be investigated and may help to characterize the autonomy of 
an agent in terms of the related machine learning tasks. 
 
Research priorities for machine- learning-enabled artificial intelligence 
The presented framework of machine learning and its role within intelligent agents is still on a conceptual level. 
However, given the misunderstandings and ambiguity of the two terms [6–9], we see potential for further 
research with the aim both to clarify the terminology and to map uncharted territory for machine-learning 
enabled artificial intelligence. 
First, empiric validation as well as continuous, iterative development of the framework is necessary. We need 
to identify various cases of intelligent agents across different disciplines and to evaluate how well the 
framework fits. It would be interesting to see how practical and academic machine-learning-enabled artificial 
intelligence projects map to the framework, and, furthermore even quantify which share of such projects 
works with learning agents and which with non-learning agents. Additionally, such cases would help us to 
gain a better understanding of the necessary human involvement in state-of-the art intelligent agents—and, 
therefore, determine the “degree” of autonomy when regarding all aspects (acting, executing, learning) of 
such agents. 
Second, one aspect of interest would be to reduce the necessary involvement of humans. As stated before, we 
see this spectrum as a continuum between human involvement and agent autonomy. Two possibilities come 
immediately to mind. The methods of transfer machine learning deal with possibilities on how to transfer 
knowledge (i.e., models) from one source environment to a target environment. This could indeed help to 
minimize human involvement, as further research in this field could show possibilities and application-
oriented techniques to utilize transfer machine learning for automated adaption of novel or modified tasks. 



2407                                                    7127        ), / Kuey, 29(4 et.al Jeevan Kumar K.                                                          

   

 

 
Additionally, regarding already deployed models as part of the backend-layer, it is of interest not only how the 
models are built initially, but how to deal with changes in the environment. The so-called subfield of concept 
drift holds many possibilities on how to detect changes and adapt models—however, fields of successful 
application remain rare. 
 

Conclusion 
 
In a nutshell, machine learning models can be implemented as once-trained models within an intelligent 
agent—without the possibility to learn additional insights from the environment (simple reflex agent). 
Implementation-wise, we call this sublayer of executing knowledge the executing backend. In this case, the 
agent is able to utilize (previously built) machine learning models—but not build and update its own ones. If 
the agent, however, is able to learn from its environment and is, therefore, able to update the machine 
learning models within the execution sublayer, it is a learning agent. Learning agents have an additional 
sublayer, the learning backend, which allows them to utilize machine learning in terms of model 
building/training. 
When it comes to the implementation of these two sublayers, it is of importance to capture the degree of 
autonomy that the machine learning within the agent requires. This aspect focusses on the human 
involvement in the necessary machine learning tasks, e.g. the data collection or the choice of an algorithm.  
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