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ARTICLE INFO ABSTRACT 
 

The aim of this study is to explore the distances between Intuitionistic 
Fuzzy Sets with two terms and three terms. We to investigate and analyze 
the relationships between these sets using the methodology of distances 
between two sets. We utilized the methodology of distances between two 
sets to analyze the Intuitionistic Fuzzy Sets with two terms and three terms. 
The focused on calculating the distances between different sets to 
understand the relationships and similarities between them. 
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1. Operations and Relations over IFSs 
 

1.1 Some basic Relations and Operations over IFSs 
In the realm of Intuitionistic Fuzzy Sets (IFS), several relations and operations can be defined to compare 
and combine sets. Let 𝐴 and 𝐵 be any two IFS. Here are the defined relations and operations: 

1. Subset Relation (⊇) : 𝐴 ⊇ 𝐵 if and only if for all elements 𝑥 ∈ 𝐸: 
𝜇𝐴(𝑥) ≥ 𝜇𝐵(𝑥) and 𝜈𝐴(𝑥) ≤ 𝜈𝐵(𝑥) 

2. Subset Relation (⊆) : 𝐴 ⊆ 𝐵 if and only if for all elements 𝑥 ∈ 𝐸: 
𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥) and 𝜈𝐴(𝑥) ≥ 𝜈𝐵(𝑥) 

3. Equality Relation (=): 𝐴 = 𝐵 if and only if for all elements ∈ 𝐸: 
𝜇𝐴(𝑥) = 𝜇𝐵(𝑥) and 𝜈𝐴(𝑥) = 𝜈𝐵(𝑥) 

4. Intersection Operation (∩): 

𝐴 ∩ 𝐵 ={〈𝑥, min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), max (𝑣𝐴(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 

5. Union Operation (∪): 

𝐴 ∪ 𝐵 = {〈𝑥, max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), min (𝑣𝐴(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 

6. Addition Operation (+): 

𝐴 + 𝐵 = {〈𝑥, 𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) – 𝜇𝐴(𝑥) ⋅ 𝜇𝐵(𝑥) , 𝑣𝐴 (𝑥), 𝑣𝐵(𝑥)〉 |𝑥 ∈ 𝐸} 

7. Multiplication Operation (∙): 

𝐴 ∙ 𝐵 = {〈𝑥, 𝜇𝐴(𝑥) ∙ 𝜇𝐵(𝑥) , 𝑣𝐴(𝑥) + 𝑣𝐵(𝑥) − 𝑣𝐴(𝑥) ∙ 𝑣𝐵(𝑥)〉 |𝑥 ∈ 𝐸} 

8. Average Operation (@): 

𝐴@𝐵 = {〈𝑥, 
𝜇𝐴(𝑥)+ 𝜇𝐵(𝑥) 

, 
𝑣𝐴(𝑥) + 𝑣𝐵(𝑥)

〉 |𝑥 ∈ 𝐸}
 

2 2 

9. Aggregation Operation (⋈): 

𝐴 ⋈ 𝐵 = {〈𝑥, 2. 
 𝜇𝐴(𝑥) . 𝜇𝐵(𝑥) 

, 2. 
 𝑣𝐴(𝑥) . 𝑣𝐵(𝑥) 

〉 |𝑥 ∈ 𝐸}
 

𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) 𝑣𝐴(𝑥) + 𝑣𝐵(𝑥) 
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10. Complement Operation ( 𝑨̅)  

𝐴̅ = {〈𝑥, 𝑣𝐴(𝑥), 𝜇𝐴(𝑥)〉 |𝑥 ∈ 𝐸} 

11. Implication Operation (⇒) 

𝐴 ⇒ 𝐵 = {〈𝑥, max(𝑣𝐴(𝑥), 𝜇𝐵(𝑥)), min (𝜇𝐴(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 

These relations and operations provide a comprehensive frame work for comparing and combining 
Intuitionistic Fuzzy Sets, facilitating various analysis and decision-making processes. 

We can easily check the correctness of above results. 
 

2. Some results : 

We know that 

0 ≤ 𝑣𝐴(𝑥) ∙ 𝑣𝐵(𝑥) 
≤ 𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) −𝜇𝐴(𝑥) ∙ 𝜇𝐵(𝑥) + 𝑣𝐴(𝑥) ∙ 𝑣𝐵(𝑥) 

≤ 𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) −𝜇𝐴(𝑥) ∙ 𝜇𝐵(𝑥) + (1 − 𝜇𝐴(𝑥)) ∙ (1 − 𝜇𝐵(𝑥)) 
≤ 𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) −𝜇𝐴(𝑥) ∙ 𝜇𝐵(𝑥) + 1 
− 𝜇𝐴(𝑥) − 𝜇𝐵(𝑥) + 𝜇𝐴(𝑥) ∙ 𝜇𝐵(𝑥) = 1 

⇒ 0 ≤ 1 Which is true. 
 
 

Thenrem 2.1. For every two sets 𝐴 and 𝐵 and in 𝐼𝐹𝑆𝑠, prove that 
 

((𝐴 ∩ 𝐵) + (𝐴 ∪ 𝐵) @ ((𝐴 ∩ 𝐵) ∙ (𝐴 ∪ 𝐵)) . 

𝑃𝑟𝑜𝑜𝑓. For the convenience, we take two real numbers 𝑎 and 𝑏 sach that max(𝑎, 𝑏) = 𝑎 and min(𝑎, 𝑏) = 𝑏. 

Also, max(𝑎, 𝑏) + min(𝑎, 𝑏) = 𝑎 + 𝑏. 
Take L.H.S. 

((𝐴 ∩ 𝐵) + (𝐴 ∪ 𝐵) @ ((𝐴 ∩ 𝐵) ∙ (𝐴 ∪ 𝐵)) 

= ({〈𝑥, min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) , max(𝑣𝐴(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} + {〈𝑥, max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) , min(𝑣𝐴(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸}) 

@ ({〈𝑥, min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) , max(𝑣𝐴 (𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 

∙ {〈𝑥, max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) , min(𝑣𝐴(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸}) 

= {〈𝑥, min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) + max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) 

− min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) ∙ max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), 

max(𝑣𝐴 (𝑥), 𝑣𝐵(𝑥)) ∙ min(𝑣𝐴(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 

@ {〈𝑥, min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) ∙ max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), 

max(𝑣𝐴(𝑥), 𝑣𝐵(𝑥)) + min(𝜈𝐴(𝑥), 𝜈𝐵(𝑥)) 

− max(𝜈𝐴 (𝑥), 𝜈𝐵(𝑥)) ∙ 𝑚𝑖𝑛(𝜈𝐴(𝑥), 𝜈𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 
= {〈𝑥, 𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) − 𝜇𝐴(𝑥) ∙ 𝜇𝐵(𝑥), 𝜈𝐴(𝑥) ∙ 𝜈𝐵(𝑥)〉 |𝑥 ∈ 𝐸} 
@ {〈𝑥, 𝜇𝐴(𝑥) ∙ 𝜇𝐵(𝑥), 𝜈𝐴(𝑥) + 𝜈𝐵(𝑥) − 𝜈𝐴(𝑥) ∙ 𝜈𝐵(𝑥)〉 |𝑥 ∈ 𝐸} 

𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) − 𝜇𝐴(𝑥) ∙ 𝜇𝐵(𝑥) + 𝜇𝐴(𝑥) ∙ 𝜇𝐵(𝑥) 
𝑥, 

{〈 
2 

𝜈𝐴(𝑥) ∙ 𝑣𝐵(𝑥) + 𝜈𝐴(𝑥) + 𝜈𝐵(𝑥) − 𝑣𝐴(𝑥) ∙ 𝑣𝐵(𝑥) 
2 

, 
〉 |𝑥 ∈ 𝐸} 

= {〈𝑥, 
𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) 

, 
𝑣𝐴(𝑥) + 𝑣𝐵(𝑥) 

〉 |𝑥 ∈ 𝐸}
 

2 2 

= 𝐴 @ 𝐵 = RHS 
 

Let us defined one max operator known as "Power - set" defined as 
𝑃(𝑋) = {𝑌 | 𝑌 ⊆ 𝑋} 

Consider three special IFSs 
𝑂* = {〈𝑥, 0,1〉 |𝑥 ∈ 𝐸}. 
𝐸* = {〈𝑥, 1,0〉 |𝑥 ∈ 𝐸}. 
𝑈* = {〈𝑥, 0,0〉 |𝑥 ∈ 𝐸} . 

 
Theorem 2.2. Show that 
(𝐴 ∩ 𝐵) @ (𝐴 ∪ 𝐵) = (𝐴 + 𝐵) @ (𝐴 ⋅ 𝐵) 

𝑃𝑟𝑜𝑜𝑓. L.H.S. 
(𝐴 ∩ 𝐵) @ (𝐴 ∪ 𝐵) 



Suman Thakur, et al / Kuey, 29(4) 7365 2704 
 

 

 
=  {〈𝑥, min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) , 𝑚𝑎𝑥(𝑣𝐴(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 

@ {〈𝑥, max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) , 𝑚𝑖𝑛(𝑣𝐴(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 

< 𝑥, 
min(𝜇𝐴(𝑥),𝜇𝐵(𝑥))+ max (𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) 

,
 

= { 2 } 
𝑚𝑎𝑥 (𝑣𝐴(𝑥) ,𝑣𝐵(𝑥)) + min (𝑣𝐴(𝑥),𝑣𝐵(𝑥))  

|𝑥 ∈ 𝐸
 

2 

= {〈𝑥, 
𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) 

, 
𝑣𝐴(𝑥) + 𝑣𝐵(𝑥) 

〉 |𝑥 ∈ 𝐸}
 

2 2 

R.H.S 
(𝐴 + 𝐵) @ (𝐴 ⋅ 𝐵) 

=  {〈𝑥, 𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) − 𝜇𝐴(𝑥)𝜇𝐵(𝑥), 𝜈𝐴(𝑥)𝜈𝐵(𝑥)〉 |𝑥 ∈ 𝐸} 

@ {〈𝑥, 𝜇𝐴(𝑥)𝜇𝐵(𝑥), 𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) − 𝜇𝐴(𝑥)𝜇𝐵(𝑥)〉 |𝑥 ∈ 𝐸} 

= {〈𝑥, 
𝜇𝐴(𝑥) + 𝜇𝐵(𝑥)−𝜇𝐴(𝑥) 𝜇𝐵(𝑥)+𝜇𝐴(𝑥) 𝜇𝐵(𝑥) 

,
 

2 
 𝑣𝐴(𝑥) 𝑣𝐵(𝑥) + 𝑣𝐴(𝑥)+ 𝑣𝐵(𝑥) − 𝑣𝐴(𝑥) 𝑣𝐵(𝑥) 

〉 |𝑥 ∈ 𝐸}
 

2 

=  {{𝑥, 
𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) 

, 
𝑣𝐴(𝑥) + 𝑣𝐵(𝑥) 

|𝑥 ∈ 𝐸}
 

2 2 

 
Theorem 2.3. Prove that (𝐴 ∩ 𝐵) + (𝐴 ∪ 𝐵) = 𝐴 + 𝐵 

𝑃𝑟𝑜𝑜𝑓. 
(𝐴 ∩ 𝐵) + (𝐴 ∪ 𝐵) 

=  {〈𝑥, min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) , max(𝑣𝐴(𝑥), 𝑣𝐵(𝑥)) |𝑥 ∈ 𝐸} 

+ {〈𝑥, max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) , min(𝑣𝐴 (𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 

= {〈𝑥, min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) + max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) 

− min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), 

max(𝑣𝐴(𝑥), 𝑣𝐵(𝑥)) , min(𝑣𝐴(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 

= {〈𝑥, 𝜇𝐴(𝑥)+ 𝜇𝐵(𝑥) − 𝜇𝐴(𝑥)𝜇𝐵(𝑥), 𝜈𝐴(𝑥)𝜈𝐵(𝑥)〉 |𝑥 ∈ 𝐸} 
= 𝐴 + 𝐵 

Theorem 2.4. Prove that 
(𝐴 ∩ 𝐵) ∙ (𝐴 ∪ 𝐵) = 𝐴 ∙ 𝐵 

𝑃𝑟𝑜𝑜𝑓. 
(𝐴 ∩ 𝐵) ∙ (𝐴 ∪ 𝐵) 

=  {〈𝑥, min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) ,max(𝑣𝐴(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 

∙ {〈𝑥, max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) , min(𝑣𝐴(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 

= {〈𝑥, min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), 

max(𝑣𝐴(𝑥), 𝑣𝐵(𝑥)) + min(𝑣𝐴(𝑥), 𝑣𝐵(𝑥)) 

− max(𝑣𝐴(𝑥), 𝑣𝐵(𝑥)) min(𝑣𝐵 (𝑥), 𝑣𝐵(𝑥)) 

= {〈𝑥, 𝜇𝐴(𝑥) 𝜇𝐵(𝑥), 𝑣𝐴(𝑥)+ 𝑣𝐵(𝑥) − 𝜈𝐴(𝑥)𝜈𝐵(𝑥)〉 |𝑥 ∈ 𝐸} 
= 𝐴 ∙ 𝐵 

Theorem 2.5. Prove that 
(𝐴 ∩ 𝐵) @ (𝐴 ∪ 𝐵) = 𝐴@𝐵 

𝑃𝑟𝑜𝑜𝑓:-  (𝐴 ∩ 𝐵)(𝐴) (𝐴 ∪ 𝐵) 

(𝐴 ∩ 𝐵) (𝐴 ∪ (𝐴 ∪ 𝐵) 

= {〈𝑥, min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) ,max(𝑓𝐴(𝑥), 𝑓𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 

(a) {〈𝑥, max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) ,min(𝑣𝐴(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 

= {〈𝑥, 
min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) + 𝑚𝑎𝑥 (𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) 

, 
𝑚𝑎𝑥 (𝑣𝐴(𝑥) ,𝑣𝐵(𝑥)) + min (𝑣𝐴(𝑥),𝑣𝐵(𝑥)) 

〉 |𝑥 ∈ 𝐸}
 

2 2 

= {〈𝑥, 
𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) 

, 
𝑣𝐴(𝑥) + 𝑣𝐵(𝑥) 

〉 |𝑥 ∈ 𝐸}
 

2 2 

= 𝐴@𝐵. 

Theorem 2.6. Prove that 
(𝐴 + 𝐵) @ (𝐴 ∙ 𝐵) = 𝐴 @ 𝐵 
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𝐵 

𝑃𝑟𝑜𝑜𝑓. 
(𝐴 + 𝐵) @ (𝐴 ∙ 𝐵) 

= {〈𝑥, 𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) − 𝜇𝐴(𝑥)𝜇𝐵(𝑥), 𝑣𝐴(𝑥)𝑣𝐵(𝑥)〉 |𝑥 ∈ 𝐸} 
@ {〈𝑥, 𝜇𝐴(𝑥)𝜇𝐵(𝑥),𝑣𝐴(𝑥) + 𝑣𝐵(𝑥) − 𝑣𝐴(𝑥)𝑣𝐵(𝑥)〉 |𝑥 ∈ 𝐸} 

= {〈𝑥, 
𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) − 𝜇𝐴(𝑥) 𝜇𝐵(𝑥)+𝜇𝐴(𝑥)𝜇𝐵(𝑥) 

,
 

2 

𝑣𝐴(𝑥) 𝑣𝐵(𝑥) +𝑣𝐴(𝑥)+𝑣𝐵(𝑥)− 𝑣𝐴(𝑥) 𝑟′ (𝑥)) 

2 
〉 |𝑥 ∈ 𝐸} 

=  {〈𝑥, 
𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) 

, 
𝑣𝐴(𝑥) + 𝑣𝐵(𝑥) 

〉 |𝑥 ∈ 𝐸}
 

2 2 

= 𝐴@𝐵. 

Theorem 2.7. Prove that 
((𝐴 + 𝐵) ∩ (𝐴 ∙ 𝐵)) @ ((𝐴 + 𝐵) ∪ (𝐴 ∙ 𝐵)) = 𝐴 @ 𝐵 

𝑃𝑟𝑜𝑜𝑓. ((𝐴 + 𝐵) ∩ (𝐴 ∙ 𝐵)) @ ((𝐴 + 𝐵) ∪ (𝐴 ∙ 𝐵)) 
= ({〈𝑥, 𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) − 𝜇𝐴(𝑥)𝜇𝐵(𝑥), 𝑣𝐴(𝑥), 𝑣𝐵(𝑥)〉 |𝑥 ∈ 𝐸} 

∩ {〈𝑥, 𝜇𝐴(𝑥)𝜇𝐵(𝑥), 𝑣𝐴(𝑥) + 𝑣𝐵(𝑥) − 𝑣𝐴(𝑥)𝑣𝐵(𝑥)〉 |𝑥 ∈ 𝐸}) 
@ ({〈𝑥, 𝜇𝐴(𝑥)+ 𝜇𝐵(𝑥) −𝜇𝐴(𝑥)𝜇𝐵(𝑥), 𝑣𝐴(𝑥)𝑣𝐵(𝑥)〉 |𝑥 ∈ 𝐸} 
∪  {〈𝑥, 𝜇𝐴(𝑥) 𝜇𝐵(𝑥),𝜈𝐴(𝑥)+ 𝜈𝐵(𝑥) − 𝑣𝐴(𝑥)𝑣𝐵(𝑥)〉 |𝑥 ∈ 𝐸}) 
= {〈𝑥, min (𝜇𝐴(𝑥)+ 𝜇𝐵(𝑥) − 𝜇𝐴(𝑥)𝜇𝐵(𝑥), 𝜇𝐴(𝑥)𝜇𝐵(𝑥)), 
max (𝜈𝐴(𝑥) 𝑣𝐵(𝑥), 𝑣𝐴(𝑥) + 𝑣𝐵(𝑥) − 𝑣𝐴(𝑥)𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸}) 
@ {〈𝑥, max (𝜇𝐴(𝑥)+ 𝜇𝐵(𝑥) − 𝜇𝐴(𝑥)𝜇𝐵(𝑥), 𝜇𝐴(𝑥)𝜇𝐵(𝑥)), 
min (𝜈𝐴(𝑥) 𝑣𝐵(𝑥), 𝑣𝐴(𝑥) + 𝑣𝐵(𝑥) − 𝑣𝐴(𝑥)𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸}) 

= 〈  
1

 ( ) ( ) ( ) ( ) 
{ 𝑥, 

2 
(min (𝜇𝐴 𝑥 + 𝜇𝐵 𝑥 − 𝜇𝐴 𝑥 𝜇𝐵 𝑥 ) 

+ max (𝜇𝐴(𝑥)+ 𝜇𝐵(𝑥) − 𝜇𝐴(𝑥)𝜇𝐵(𝑥))), 
1 (max (𝜈 (𝑥)𝜈 (𝑥), 𝑣 (𝑥) + 𝑣 (𝑥) − 𝑣 (𝑥) + 𝑣 (𝑥))+ 
2 𝐴 𝐵 𝐴 𝐵 𝐴 𝐵 

min (𝜈𝐴(𝑥) 𝑣𝐵(𝑥), 𝑣𝐴(𝑥) + 𝑣𝐵(𝑥) − 𝑣𝐴(𝑥)𝑣𝐵(𝑥)))〉 |𝑥 ∈ 𝐸}) 

= {〈𝑥, 
𝜇𝐴(𝑥) + 𝜇𝐵(𝑥) 

, 
𝑣𝐴(𝑥) + 𝑣𝐵(𝑥) 

〉}
 

2 2 

= 𝐴 @ 𝐵 

3. More Operations Over IFSs 

Fuzzy set theory is expanded upon by intuitionistic fuzzy sets (IFS), which include more dimensions to 
account for hesitancy and ambiguity in decision-making. These sets, which differ from conventional fuzzy 
sets in that they have membership degrees, non-membership degrees, and a hesitation degree, provide a 
more complex depiction of uncertainty. In order to successfully operate and analyse intuitionistic fuzzy sets, 
a number of essential operations can be defined: 

 

 

 
where 

⎛ 
⎪ 

𝐴 − 𝐵 = {〈𝑥, 𝜇𝐴−𝐵(𝑥), 𝜈𝐴−𝐵(𝑥)〉 |𝑥 ∈ 𝐸}, 

𝜇 (𝑥) =  𝜇𝐴(𝑥)− 𝜇𝐵(𝑥)  
, if 𝜇

 (𝑥) ≥ 𝜇 (𝑥) and 𝜈 (𝑥) ≤ 𝜈 (𝑥) 
𝐴−𝐵 

⎨ 1− 𝜇𝐵(𝑥) 𝐴 𝐵 
𝑎𝑛𝑑 𝑣𝐵(𝑥) >0 

𝐴 𝐵 

⎪ 𝑎𝑛𝑑 𝑣𝐴(𝑥)𝜋𝐵(𝑥)≤ 𝜋𝐴(𝑥)𝜋𝐵(𝑥) 

and 
 

 
𝜈 

 
 

 
(𝑥) = 

{ 0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

⎛ 
⎪ 

 𝑣𝐴(𝑥)  
, if 𝜇

 

 
 

 
(𝑥) ≥ 𝜇 

 
 

 
(𝑥) and 𝜈 (𝑥) ≤ 𝜈 

 
 

 
(𝑥) 

𝐴−𝐵 
⎨ 
⎪ 
{ 

Also 

𝑣𝐵(𝑥) 𝐴 𝐵 

𝑎𝑛𝑑 𝑣𝐵(𝑥) >0 ; 

𝑎𝑛𝑑 𝑣𝐴(𝑥)𝜋𝐵(𝑥)≤ 𝜋𝐴(𝑥)𝜋𝐵(𝑥) 
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝐴 𝐵 

 
where 

𝐴 ∶ 𝐵 = = {〈𝑥, 𝜇𝐴 ∶ 𝐵(𝑥), 𝜈𝐴∶𝐵(𝑥)〉 |𝑥 ∈ 𝐸}, 

 

𝜇𝐴:𝐵(𝑥) = 
 𝜇𝐴(𝑥)  

𝜇𝐵(𝑥) 

𝑎𝑛𝑑 𝜇𝐵(𝑥) >0 

𝐴(𝑥) ≤ 𝜇𝐵 (𝑥) and 𝜈𝐴(𝑥) ≥ 𝜈𝐵 (𝑥) 

{  0, 𝑎𝑛𝑑 𝜇𝐴(𝑥)𝜋𝐵(𝑥)≤𝜋𝐴(𝑥)𝜇𝐵(𝑥) 

 
and 

, if 𝜇 
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𝜈 (𝑥) =  𝑣𝐴(𝑥)− 𝑣𝐵(𝑥)  
, if 𝜇

 (𝑥) ≤ 𝜇 (𝑥) and 𝜈 (𝑥) ≥ 𝜈 (𝑥) 
𝐴∶ 𝐵 

 

 

Here 

1− 𝑣𝐵(𝑥) 𝐴 𝐵 

𝑎𝑛𝑑 𝜇𝐵(𝑥) >0 

{  1, 𝑎𝑛𝑑 𝜇𝐴(𝑥)𝜋𝐵(𝑥)≤ 𝜋𝐴(𝑥)𝜇𝐵(𝑥) 

𝐴 𝐵 

0 ≤ 𝜇𝐴−𝐵(𝑥) + 𝜈𝐴−𝐵(𝑥) 

≤ 
𝜇𝐴(𝑥)− 𝜇𝐵(𝑥) 

+ 
𝑣𝐴(𝑥) 

1−𝜇𝐵(𝑥) 𝑣𝐵(𝑥) 

≤ 
𝜇𝐴(𝑥)− 𝜇𝐵(𝑥) 

+ 
1−𝜇𝐴(𝑥)  

1−𝜇𝐵(𝑥) 1−𝜇𝐵(𝑥) 

≤  
𝜇𝐴(𝑥)− 𝜇𝐵(𝑥) + 1−𝜇𝐴(𝑥) 

1−𝜇𝐵(𝑥) 

≤ 
1−𝜇𝐵(𝑥) 

1−𝜇𝐵(𝑥) 

≤ 1 
Also  

0 ≤ 𝜇𝐴:𝐵(𝑥) + 𝜈𝐴:𝐵(𝑥) 

≤ 
𝜇𝐴(𝑥)  

+ 
𝑣𝐴(𝑥)− 𝑣𝐵(𝑥) 

𝜇𝐵(𝑥) 1−𝑣𝐵(𝑥) 

≤ 
1−𝑣𝐴(𝑥)  

+ 
𝑣𝐴(𝑥)− 𝑣𝐵(𝑥) 

1−𝑣𝐵(𝑥) 1−𝑣𝐵(𝑥) 

≤  
1−𝑣𝐴(𝑥) + 𝑣𝐴(𝑥) − 𝑣𝐵(𝑥)  

1−𝑣𝐵(𝑥) 

≤ 
1−𝑣𝐵(𝑥) 

1−𝑣𝐵(𝑥) 

≤ 1 

Theorem 3.1. If 𝐴 and 𝐵 are two 𝐼𝐹𝑆𝑠, then prove the following : 
(𝑎) 𝐴 – 𝐴 = 𝑂∗ 
(𝑏) 𝐴 ∶ 𝐴 = 𝐸∗ 
(𝑐) 𝐴 – 𝑂∗ = 𝐴 
(𝑑) 𝐴 ∶ 𝐸∗ = 𝐴 
(𝑒) 𝐴 – 𝑈∗ = 𝑂∗ 
(𝑓) 𝐴 ∶ 𝑈∗ = 𝑂∗ 

𝑃𝑟𝑜𝑜𝑓. (a) 
𝐴 – 𝐴 = {〈𝑥, 

𝜇𝐴(𝑥)−𝜇𝐴(𝑥) 
, 

𝑣𝐴(𝑥) 
〉 |𝑥 ∈ 𝐸} 

1−𝜇𝐴(𝑥) 

= {〈𝑥, 0, 1〉 |𝑥 ∈ 𝐸} 
= 0* 

𝑣𝐵(𝑥) 

(b) 𝐴 ∶ 𝐴 = {〈𝑥, 
𝜇𝐴(𝑥)

 
𝜇𝐴(𝑥) 

, 
𝑣𝐴(𝑥)− 𝑣𝐴(𝑥) 

〉 |𝑥 ∈ 𝐸}
 

1−𝑣𝐴(𝑥) 

= {〈𝑥, 1, 0〉 |𝑥 ∈ 𝐸} 

(𝑐) 𝐴 – 𝑂∗ = {〈𝑥, 𝜇𝐴(𝑥), 𝑣𝐴(𝑥)〉|𝑥 ∈ 𝐸} 
−{〈𝑥, 0,1〉 |𝑥 ∈ 𝐸} 
= {〈𝑥, 

𝜇𝐴(𝑥)− 0 
, 

𝑣𝐴(𝑥) 
〉 |𝑥 ∈ 𝐸} 

= 𝐸∗ 

1−0 1 

= {〈𝑥, 𝜇𝐴(𝑥), 𝑣𝐴(𝑥)〉|𝑥 ∈ 𝐸} 
= 𝐴 
(𝑑) 𝐴 ∶ 𝐸∗ = {〈𝑥, 𝜇𝐴(𝑥), 𝑣𝐴(𝑥)〉|𝑥 ∈ 𝐸} 

: {〈𝑥, 1,0〉 |𝑥 ∈ 𝐸} 
= {〈𝑥, 

𝜇𝐴(𝑥) 
, 

𝑣𝐴(𝑥)−0 
〉 |𝑥 ∈ 𝐸} 

1 1−0 

 
4. Another Operation on two IFSs 𝑨 and 𝑩 

These operations allow intuitionistic fuzzy sets to be rigorously mathematically treated in a variety of 
applications where reluctance and uncertainty are crucial, like expert systems, pattern recognition, and 
decision-making. Compared to conventional crisp sets or standard fuzzy sets, they offer a stronger 
foundation for managing ambiguous and imprecise information. 

𝐴 | 𝐵 ={〈𝑥, min (𝜇𝐴(𝑥), 𝑣𝐵(𝑥)), max (𝜇𝐵(𝑥), 𝑣𝐴(𝑥))〉 |𝑥 ∈ 𝐸} 
This new operation in mathematics is called "set-theoretical subtraction". 
To discuss set-theoretical subtraction, we need following assumptions. 
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Case I If 𝜇𝐵(𝑥) ≤ 𝑣𝐴(𝑥), then 

min (𝜇𝐴(𝑥), 𝑣𝐵(𝑥)) = 𝜇𝐴(𝑥) and max (𝜇𝐵(𝑥), 𝑣𝐴(𝑥)) = 𝑣𝐴(𝑥). 

Case II If 𝜇𝐵(𝑥) > 𝑣𝐴(𝑥), then 

min (𝜇𝐴(𝑥), 𝑣𝐵(𝑥)) = 𝑣𝐵(𝑥) and max (𝜇𝐵(𝑥), 𝑣𝐴(𝑥)) = 𝜇𝐵(𝑥). 

Its easy to check the basic conditions that set-theoretical subtraction is IFS. 
 

For Case I 

min (𝜇𝐴(𝑥), 𝑣𝐵(𝑥)) + max (𝜇𝐵(𝑥), 𝑣𝐴(𝑥)) ≤ 𝜇𝐴(𝑥) + 𝑣𝐴(𝑥) ≤ 1. 

For Case II 

min (𝜇𝐴(𝑥), 𝑣𝐵(𝑥)) + max (𝜇𝐵(𝑥), 𝑣𝐴(𝑥)) ≤ 𝑣𝐵(𝑥) + 𝜇𝐵(𝑥) ≤ 1. 

Definition 4.1. Implication realtion on 𝐼𝐹𝑆 𝐴 is defined as 

𝐴 ↣ 𝐵 = {〈𝑥, max (𝑣𝐴(𝑥), 𝜇𝐵(𝑥)), min (𝜇𝐴(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 

Now we prove the following results : 

Exercise 4.2. Prove that 𝐴 ↣ 𝐵 = 𝐴̅ ∪ 𝐵. 
 

𝑃𝑟𝑜𝑜𝑓.  
𝐴 = {〈𝑥, 𝜇𝐴(𝑥), 𝑣𝐴(𝑥)〉 |𝑥 ∈ 𝐸} 

𝐵 = {〈𝑥, 𝜇𝐵(𝑥), 𝑣𝐵(𝑥)〉 |𝑥 ∈ 𝐸} 
so 𝐴 ↣ 𝐵 = {〈𝑥, max 𝑣𝐴(𝑥),𝜇𝐵(𝑥)), 

min (𝜇𝐴(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 

also as 𝐴̅ = {〈𝑥, 𝑣𝐴(𝑥), 𝜇𝐴(𝑥)〉 |𝑥 ∈ 𝐸} 
therefore 𝐴̅ ∪ 𝐵 = {〈𝑥, max(𝑣𝐴(𝑥),𝜇𝐵(𝑥)), 

min (𝜇𝐴(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 
Thus, 

𝐴 ↣ 𝐵 = 𝐴̅ ∪ 𝐵. 

 

Exercise 4.3. Prove that 𝐴 |𝐸∗= 𝑂∗. 
 

𝑃𝑟𝑜𝑜𝑓.  
Here 𝐴 = {〈𝑥, 𝜇𝐴(𝑥), 𝑣𝐴(𝑥)〉|𝑥 ∈ 𝐸} 

and 𝐸∗ ={〈𝑥, 1, 0〉|𝑥 ∈ 𝐸} 

so 𝐴 |𝐸∗ = {〈𝑥, min(𝜇𝐴(𝑥), 0) , max(1, 𝑣𝐴(𝑥))〉 |𝑥 ∈ 𝐸} 
= {〈𝑥, 0, 1〉|𝑥 ∈ 𝐸} 
= 𝑂∗ 

 
Exercise 4.4. Prove that 𝐴 |𝑂∗= 𝐴. 

 

𝑃𝑟𝑜𝑜𝑓.  
𝐴 |𝑂∗ = {〈𝑥, min(𝜇𝐴(𝑥), 1) , max(0, 𝑣𝐴(𝑥))〉 |𝑥 ∈ 𝐸} 

= {〈𝑥, 𝜇𝐴(𝑥), 𝑣𝐴(𝑥)〉 |𝑥 ∈ 𝐸} 

Exercise 4.5. Prove that 𝐸∗|𝐴 = 𝐴̅. 
 

𝑃𝑟𝑜𝑜𝑓.  
𝐸∗ ={〈𝑥, 1, 0〉|𝑥 ∈ 𝐸} 

𝐴 = {〈𝑥, 𝜇𝐴(𝑥), 𝑣𝐴(𝑥)〉 |𝑥 ∈ 𝐸} 

𝐴 ̅= {〈𝑥, 𝑣𝐴(𝑥), 𝜇𝐴(𝑥)〉 |𝑥 ∈ 𝐸} 

So  𝐸∗ |𝐴 = {〈𝑥, min(1, 𝑣𝐴(𝑥)) , max(𝜇𝐴(𝑥), 0)〉 |𝑥 ∈ 𝐸} 
= {〈𝑥, 𝑣𝐴(𝑥), 𝜇𝐴(𝑥)〉 |𝑥 ∈ 𝐸} 

Hence, 𝐸∗|𝐴 = 𝐴̅. 
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Exercise 4.6. Prove that 𝑂∗|𝐴 = 𝑂∗. 
 

𝑃𝑟𝑜𝑜𝑓.  
𝑂∗ ={〈𝑥, 0, 1〉 |𝑥 ∈ 𝐸} 

𝐴 = {〈𝑥, 𝜇𝐴(𝑥), 𝑣𝐴(𝑥)〉 |𝑥 ∈ 𝐸} 
So  𝑂∗ |𝐴 = {〈𝑥, min(0, 𝑣𝐴(𝑥)) , max(𝜇𝐴(𝑥), 1)〉 |𝑥 ∈ 𝐸} 

= {〈𝑥, 0, 1〉|𝑥 ∈ 𝐸} 
= 𝑂∗. 

Exercise 4.7. Prove that (𝐴|𝐵) ∩ 𝐶 = (𝐴 ∩ 𝐶) |𝐵 = ∩ (𝐶|𝐵). 
𝑃𝑟𝑜𝑜𝑓. 

𝐴 = {〈𝑥, 𝜇𝐴(𝑥), 𝑣𝐴(𝑥)〉 |𝑥 ∈ 𝐸} 
𝐵 = {〈𝑥, 𝜇𝐵(𝑥), 𝑣𝐵(𝑥)〉 |𝑥 ∈ 𝐸} 

𝐶 = {〈𝑥, 𝜇𝑐(𝑥), 𝑣𝑐(𝑥)〉 |𝑥 ∈ 𝐸} 
Thus; 𝐴 | 𝐵 = {〈𝑥, min(𝜇𝐴(𝑥), 𝑣𝐵(𝑥)) , max(𝜇𝐵(𝑥),𝑣𝐴(𝑥))〉 |𝑥 ∈ 𝐸} 

(𝐴 | 𝐵) ∩ 𝐶 = {〈𝑥, min(min(𝜇𝐴(𝑥), 𝑣𝐵(𝑥)), 𝜇𝑐(𝑥)), 
max(max(𝜇𝐵(𝑥), 𝑣𝐴(𝑥)) , 𝜈𝑐(𝑥)))〉  |𝑥 ∈ 𝐸} 

= {〈𝑥, min 𝜇𝐴(𝑥), 𝑣𝐵(𝑥) , 𝜇𝑐(𝑥)), 
max(𝜇𝐵(𝑥), 𝑣𝐴(𝑥) , 𝜈𝑐(𝑥))〉  |𝑥 ∈ 𝐸} (𝐼) 

 

Now  
(𝐴 ∩ 𝐶) 𝐵 = {〈𝑥, min(min (𝜇𝐴(𝑥), 𝜇𝑐(𝑥)) , 𝑣𝐵(𝑥)), 

max(𝜇𝐵(𝑥), max (𝑣𝐴(𝑥) , 𝜈𝑐(𝑥)))〉 |𝑥 ∈ 𝐸} 
= {〈𝑥, min(𝜇𝐴(𝑥), 𝜇𝑐(𝑥) , 𝑣𝐵(𝑥)), 

max(𝜇𝐵(𝑥), 𝑣𝐴(𝑥) , 𝜈𝑐(𝑥))〉  |𝑥 ∈ 𝐸} (𝐼𝐼) 
From (𝐼) and (𝐼𝐼) 

(𝐴|𝐵) ∩ 𝐶 = (𝐴 ∩ 𝐶) |𝐵 
Similary, we can prove that 

(𝐴|𝐵) ∩ 𝐶 = 𝐴 ∩ (𝐶 |𝐵) 

 
Exercise 4.8. Prove that 

̅𝐴̅̅|̅𝐵̅ = 𝐴̅ ∪ 𝐵. 

𝑃𝑟𝑜𝑜𝑓. 

𝐴 = {〈𝑥, 𝜇𝐴(𝑥), 𝑣𝐴(𝑥)〉 |𝑥 ∈ 𝐸} 
𝐵 = {〈𝑥, 𝜇𝐵(𝑥), 𝑣𝐵(𝑥)〉 |𝑥 ∈ 𝐸} 

𝐴 | 𝐵 = {〈𝑥,min (𝜇𝐴(𝑥), 𝑣𝐵(𝑥)), 
max (𝜇𝐵(𝑥), 𝑣𝐴(𝑥))〉 |𝑥 ∈ 𝐸} 

So ̅𝐴̅̅|̅̅𝐵̅ = {〈𝑥,max (𝜇𝐵(𝑥), 𝑣𝐴(𝑥)), 
min (𝜇𝐴(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} (𝐼) 

Now 𝐴̅ = {〈𝑥, 𝑣𝐴(𝑥), 𝜇𝐴(𝑥)〉 |𝑥 ∈ 𝐸} 

Hence; 𝐴 ̅∪ 𝐵 = {〈max (𝜈𝐴(𝑥), 𝜇𝐵(𝑥)), 
min (𝜇𝐴(𝑥), 𝑣𝐵(𝑥))〉  |𝑥 ∈ 𝐸} (𝐼𝐼) 

From (𝐼) and (𝐼𝐼), we have 
̅𝐴̅̅|̅̅𝐵̅ = 𝐴̅ ∪ 𝐵. 

Exercise 4.9. Prove that 

̅𝐴̅̅|̅̅𝐵̅ = ̅𝐴̅̅∩̅̅̅𝐵̅. 

𝑃𝑟𝑜𝑜𝑓. 
𝐴 = {〈𝑥, 𝜇𝐴(𝑥), 𝑣𝐴(𝑥)〉 |𝑥 ∈ 𝐸} 

𝐵 = {〈𝑥, 𝜇𝐵(𝑥), 𝑣𝐵(𝑥)〉 |𝑥 ∈ 𝐸} 
𝐴 | 𝐵 = {〈𝑥,min (𝜇𝐴(𝑥), 𝑣𝐵(𝑥)), 

max (𝜇𝐵(𝑥), 𝑣𝐴(𝑥))〉 |𝑥 ∈ 𝐸} 

So ̅𝐴̅̅|̅̅𝐵̅ = {〈𝑥,max (𝜇𝐵(𝑥), 𝑣𝐴(𝑥)), 
min (𝜇𝐴(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} (𝐼) 

𝐵̅ = {〈𝑥, 𝑣𝐵(𝑥), 𝜇𝐵(𝑥)〉 |𝑥 ∈ 𝐸} 

So 𝐴 ∩ 𝐵̅ = {〈𝑥,min (𝜇𝐴(𝑥), 𝑣𝐵(𝑥)), 
max (𝜈𝐴(𝑥), 𝜇𝐵(𝑥))〉  |𝑥 ∈ 𝐸} (𝐼𝐼) 

̅𝐴̅̅∩̅̅̅𝐵̅ = {〈𝑥,max (𝜈𝐴(𝑥), 𝜇𝐵(𝑥)), 
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min (𝜇𝐴(𝑥), 𝜈𝐵(𝑥))〉  |𝑥 ∈ 𝐸} 
From (𝐼) and (𝐼𝐼), we have 

̅𝐴̅̅|̅̅𝐵̅ = ̅𝐴̅̅∩̅̅̅𝐵̅. 

5 Intuitionistic Fuzzy Tautological Sets 

Definition 5.1 An 𝐼𝐹𝑆 '𝐴' is called Intuitionistic Fuzzy Tautological Set (𝐼𝐹𝑇𝑆) if for every 𝑥 ∈ 𝜇𝐴(𝑥) ≥ 

𝜈𝐴(𝑥). 

Exercise 5.2 Prove that for 𝐼𝐹𝑆 𝐴, 
𝐴 ↣ 𝐴. 

is 𝐼𝐹𝑇𝑆 
 

𝑃𝑟𝑜𝑜𝑓.  

 
𝐴 = {〈𝑥, 𝜇𝐴(𝑥), 𝑣𝐴(𝑥)〉 |𝑥 ∈ 𝐸} 

So, 𝐴 ↣ 𝐴 = {〈𝑥, max(𝑣𝐴(𝑥), 𝜇𝐴(𝑥)), 
min(𝜇𝐴(𝑥), 𝑣𝐴(𝑥))〉 |𝑥 ∈ 𝐸} 

Now as 
max(𝑣𝐴(𝑥), 𝜇𝐴(𝑥)) ≥ min(𝜇𝐴(𝑥), 𝑣𝐴(𝑥)) 

Therefore, 
𝐴 ↣ 𝐴. 

is 𝐼𝐹𝑇𝑆. 

Exercise 5.3. Prove that for 𝐼𝐹𝑆, 𝐴,𝐵; 
𝐴 ↣ (𝐵 ↣ 𝐴) 

is 𝐼𝐹𝑇𝑆 
 

𝑃𝑟𝑜𝑜𝑓.  

 
𝐴 = {〈𝑥, 𝜇𝐴(𝑥), 𝑣𝐴(𝑥)〉 |𝑥 ∈ 𝐸} 

𝐵 = {〈𝑥, 𝜇𝐵(𝑥), 𝑣𝐵(𝑥)〉 |𝑥 ∈ 𝐸} 
𝐵 ↣ 𝐴 = {〈𝑥, max(𝑣𝐵 (𝑥), 𝜇𝐴(𝑥)), min(𝜇𝐵(𝑥), 𝑣𝐴(𝑥))} 

𝐴 ↣ (𝐴 ↣ 𝐵) = {〈𝑥,max(𝑣𝐴(𝑥), max(𝜈𝐵(𝑥), 𝜇𝐴(𝑥))), 
min(𝜇𝐴(𝑥), min(𝜇𝐵(𝑥), 𝑣𝐴(𝑥)))〉 |𝑥 ∈ 𝐸} 

= {〈𝑥,max(𝑣𝐴(𝑥), 𝜈𝐵(𝑥), 𝜇𝐴(𝑥)), 
min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥), 𝑣𝐴(𝑥))〉 |𝑥 ∈ 𝐸} 

Note that 

max(𝑣𝐴 (𝑥), 𝜈𝐵(𝑥), 𝜇𝐴(𝑥)) ≥ max (𝜈𝐴(𝑥), 𝜇𝐴(𝑥)) 
≥ max (𝜈𝐴(𝑥), 𝜇𝐴(𝑥)) 
≥ min (𝜈𝐴(𝑥), 𝜇𝐴(𝑥)) 

≥ min (𝜈𝐴(𝑥), 𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) 
= min (𝜇𝐴(𝑥), 𝜇𝐵(𝑥), 𝜈𝐴(𝑥)) 

Thus; 
𝐴 ↣ (𝐵 ↣ 𝐴) 

is 𝐼𝐹𝑇𝑆. 

Exercise 5.4. Prove that for 𝐼𝐹𝑆, 𝐴,𝐵; 𝐴 ∩ 𝐵 ↣ 𝐵  is 𝐼𝐹𝑇𝑆. 
 

𝑃𝑟𝑜𝑜𝑓.  

 
𝐴 = {〈𝑥, 𝜇𝐴(𝑥), 𝑣𝐴(𝑥)〉 |𝑥 ∈ 𝐸} 

𝐵 = {〈𝑥, 𝜇𝐵(𝑥), 𝑣𝐵(𝑥)〉 |𝑥 ∈ 𝐸} 
𝐴 ∩ 𝐵 = {〈𝑥,min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), max(𝑣𝐴(𝑥), 𝑣𝐵(𝑥))} 

𝐴 ∩ 𝐵 ↣ 𝐵 = {〈𝑥,max(𝑣𝐴 (𝑥), 𝜈𝐵(𝑥), 𝜇𝐵(𝑥)), 

min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 
 

Now as  

max(𝑣𝐴 (𝑥), 𝜈𝐵(𝑥), 𝜇𝐵(𝑥)) ≥ max (𝜈𝐵(𝑥), 𝜇𝐵(𝑥)) 
≥ min (𝜈𝐵(𝑥), 𝜇𝐵(𝑥)) 
≥ min (𝜈𝐵(𝑥), 𝜇𝐵(𝑥), 𝜇𝐴(𝑥)) 

= min (𝜇𝐴(𝑥), 𝜇𝐵(𝑥), 𝜈𝐵(𝑥)) 
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So,  
𝐴 ∩ 𝐵 ↣ 𝐵 

Exercise 5.5. Prove that for 𝐼𝐹𝑆, 𝐴,𝐵; 
𝐴 ∩ 𝐵 ↣ 𝐴 is 𝐼𝐹𝑇𝑆. 

Proof: 𝐴 = {〈𝑥, 𝜇𝐴(𝑥), 𝑣𝐴(𝑥)〉 |𝑥 ∈ 𝐸} 
𝐵 = {〈𝑥, 𝜇𝐵(𝑥), 𝑣𝐵(𝑥)〉 |𝑥 ∈ 𝐸} 

𝐴 ∩ 𝐵 = {〈𝑥,min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), max(𝑣𝐴(𝑥), 𝑣𝐵(𝑥))} 
𝐴 ∩ 𝐵 ↣ 𝐴 = {〈𝑥,min(𝑣𝐴(𝑥), 𝜈𝐵(𝑥), 𝜇𝐴(𝑥)), 

min(𝜇𝐴(𝑥), 𝜇𝐵(𝑥), 𝑣𝐴(𝑥))〉 |𝑥 ∈ 𝐸} 
 

Now as  

max(𝑣𝐴 (𝑥), 𝜈𝐵(𝑥), 𝜇𝐴(𝑥)) ≥ max (𝜈𝐴(𝑥), 𝜇𝐴(𝑥)) 
≥ min (𝜈, 𝜇𝐴(𝑥)) 
≥ min (𝜇𝐴(𝑥), 𝜇𝐵(𝑥), 𝜈𝐴(𝑥)) 

Therefore, 

is 𝐼𝐹𝑇𝑆. 
𝐴 ∩ 𝐵 ↣ 𝐵 

Exercise 5.6. Prove that for 𝐼𝐹𝑆, 𝐴,𝐵; 
𝐴 ↣ 𝐴 ∪ 𝐵 

is 𝐼𝐹𝑇𝑆. 
𝑃𝑟𝑜𝑜𝑓.  

𝐴 = {〈𝑥, 𝜇𝐴(𝑥), 𝑣𝐴(𝑥)〉 |𝑥 ∈ 𝐸} 
𝐵 = {〈𝑥, 𝜇𝐵(𝑥), 𝑣𝐵(𝑥)〉 |𝑥 ∈ 𝐸} 

𝐴 ∪ 𝐵 = {〈𝑥,max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), 
min(𝑣𝐴 (𝑥), 𝑣𝐵(𝑥))〉} |𝑥 ∈ 𝐸} 

𝐴 ↣ 𝐴 ∪ 𝐵 = {〈𝑥,max(𝑣𝐴 (𝑥), 𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), 

min(𝜇𝐴(𝑥), 𝑣𝐴(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 
 

Note that 
 
 
 

 
Hence; 

 

max(𝑣𝐴(𝑥), 𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) 
≥ max (𝜇𝐴(𝑥), 𝑣𝐴(𝑥)) 
≥ min (𝜇𝐴(𝑥), 𝑣𝐴(𝑥)) 

≥ min (𝜇𝐴(𝑥), 𝑣𝐴(𝑥), 𝑣𝐵(𝑥)) 

𝐴 ↣ 𝐴 ∪ 𝐵  is 𝐼𝐹𝑇𝑆. 

Exercise 5.7. Prove that for 𝐼𝐹𝑆, 𝐴,𝐵, 𝐶; 
(𝐴 ↣ 𝐶) ↣ ((𝐵 ↣ 𝐶) ↣ ((𝐴 ∪ 𝐵) ↣ 𝐶)) is 𝐼𝐹𝑇𝑆. 

𝑃𝑟𝑜𝑜𝑓. 
(𝐴 ↣ 𝐶) ↣ ((𝐵 ↣ 𝐶) ↣ ((𝐴 ∪ 𝐵) ↣ 𝐶)) 

= {〈𝑥,max(𝑣𝐴(𝑥), 𝜇𝑐(𝑥)), min(𝜇𝐴(𝑥), 𝑣𝑐(𝑥))〉 |𝑥 ∈ 𝐸} 
↦  ({〈𝑥,max(𝑣𝐵 (𝑥), 𝜇𝑐(𝑥)), min(𝜇𝐵(𝑥), 𝑣𝑐(𝑥))〉 |𝑥 ∈ 𝐸} 
↦  ({〈𝑥,max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), min(𝜈𝐴(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 
↦  〈𝑥,𝜇𝑐(𝑥), 𝑣𝑐(𝑥))〉 |𝑥 ∈ 𝐸})) 

= {〈𝑥,max(𝑣𝐴(𝑥), 𝜇𝑐(𝑥)), min(𝜇𝐴(𝑥), 𝑣𝑐(𝑥))〉 |𝑥 ∈ 𝐸} 
↦  ({〈𝑥,max (𝑣𝐵(𝑥), 𝜇𝑐(𝑥)), min(𝜇𝐵 (𝑥), 𝑣𝑐(𝑥))〉 |𝑥 ∈ 𝐸} 
↦  ({〈〈𝑥, max (𝜇𝑐(𝑥), min(𝜈𝐴(𝑥), 𝑣𝐵(𝑥)), 

min(𝑣𝑐(𝑥), max (𝜇𝐴(𝑥), 𝜇𝐵(𝑥)))〉 |𝑥 ∈ 𝐸}) 
= {〈𝑥,max(𝑣𝐴(𝑥), 𝜇𝑐(𝑥)), min(𝜇𝐴(𝑥), 𝑣𝑐(𝑥))〉 |𝑥 ∈ 𝐸} 

↦ {〈𝑥,max (min(𝜇𝐵 (𝑥), 𝑣𝑐(𝑥)), 𝜇𝑐(𝑥), 
min(𝑣𝐴(𝑥), 𝜈𝐵(𝑥))), min (max (𝜈𝐵(𝑥), 𝜇𝐶(𝑥)), 

𝑣𝑐(𝑥), max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)))〉 |𝑥 ∈ 𝐸} 
= {〈𝑥,max (min(𝜇𝐴(𝑥), 𝑣𝑐(𝑥)), min(𝜇𝐵(𝑥), 𝑣𝑐(𝑥)), 𝜇𝑐(𝑥) 

min(𝜈𝐴(𝑥), 𝑣𝐵(𝑥))), min (max(𝜈𝐴(𝑥), 𝜇𝐶(𝑥)), 

max (𝜈𝐵(𝑥), 𝜇𝐶(𝑋)), 𝑣𝐶(𝑥), max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)))〉 |𝑥 ∈ 𝐸} 

From 
max (min(𝜇𝐴(𝑥), 𝑣𝑐(𝑥)), min(𝜇𝐵 (𝑥), 𝑣𝑐(𝑥)), 𝜇𝑐(𝑥), 

min(𝑣𝐴(𝑥), 𝜈𝐵(𝑥))) 
≥ max (min(𝜇𝐴(𝑥), 𝑣𝑐(𝑥)), min(𝜇𝐵(𝑥), 𝑣𝑐(𝑥))) 



2711 Suman Thakur ,et al / Kuey, 29(4) 7365 
 

= min(𝑣𝑐(𝑥), max (𝜇𝐴(𝑥), 𝜇𝐵(𝑥))) 
≥ min (max(𝑣𝐴(𝑥), 𝜇𝑐(𝑥)), max(𝜈𝐵(𝑥), 𝜇𝑐(𝑥)), 

𝑣𝑐(𝑥), max (𝜇𝐴(𝑥), 𝜇𝐵(𝑥))) 

it follows that 
(𝐴 ⟼ (𝐵 ⟼ 𝐶)) ⟼ ((𝐴 ⟼ 𝐵) ⟼ (𝐴 ⟼ 𝐶)) 

is an IFTS. 

Exercise 5.8 Prove that for 𝐼𝐹𝑆, 𝐴,𝐵,; 

(𝐴̅ ↣ 𝐵̅)  ↣ ((𝐴̅ ↣ 𝐵) ↣ 𝐴) 
is 𝐼𝐹𝑇𝑆. 

𝑃𝑟𝑜𝑜𝑓. 

(𝐴̅ ⟼ 𝐵̅)  ⟼ (𝐴̅ ⟼ 𝐵) ⟼ 𝐴) 

= ({〈𝑥,𝑣𝐴(𝑥), 𝜇𝐴(𝑥)〉 |𝑥 ∈ 𝐸} ⟼ {〈𝑥,𝑣𝐵(𝑥), 𝜇𝐵(𝑥)〉 |𝑥 ∈ 𝐸}) 
⟼ ({〈𝑥, max (𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), min (𝑣𝐴(𝑥), 𝑣𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 

⟼ {〈𝑥, 𝜇𝐴(𝑥), 𝑣𝐴(𝑥)〉 |𝑥 ∈ 𝐸}) 
= {〈𝑥,max (𝜇𝐴(𝑥), 𝜈𝐵(𝑥)), min(𝑣𝐴(𝑥), 𝜇𝐵(𝑥))〉 |𝑥 ∈ 𝐸} 

⟼  {〈𝑥,max (𝜇𝐴(𝑥), min(𝑣𝐴(𝑥), 𝑣𝐵(𝑥))), 
min (𝑣𝐴(𝑥), max (𝜇𝐴(𝑥), 𝜇𝐵(𝑥)))〉 |𝑥 ∈ 𝐸} 

= {〈𝑥,max (min(𝑣𝐴(𝑥), 𝜇𝐵(𝑥)), 𝜇𝐴(𝑥), min(𝑣𝐴(𝑥), 𝑣𝐵(𝑥))), 

min(𝜈𝐴(𝑥), max(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)), max(𝜇𝐴(𝑥), 𝑣𝐵(𝑥)))〉 |𝑥 ∈ 𝐸} 

From 

max (min(𝑣𝐴(𝑥), 𝜇𝐵(𝑥)), 𝜇𝐴 (𝑥), min(𝑣𝐴(𝑥), 𝑣𝐵(𝑥))) 
≥ max (𝜇𝐴(𝑥), min(𝜈𝐴(𝑥), 𝜇𝐵(𝑥))) 
≥  min(𝜈𝐴(𝑥), max (𝜇𝐴(𝑥), 𝜇𝐵(𝑥))) 
≥ min (𝑣𝐴(𝑥), max 𝜇𝑐(𝑥), 𝜇𝐵(𝑥)), max(𝜇𝐴(𝑥), 𝑣𝐵(𝑥))) 
We get 

𝐴̅ ↣ 𝐵̅)  ↣ ((𝐴̅ ↣ 𝐵) ↣ 𝐴) 

 The results obtained from the study provide valuable insights into the relationships and similarities 
between Intuitionistic Fuzzy Sets with two terms and three terms. 

 By analyzing the distances between the sets, we were able to understand the nuances and differences that 
exist within each set. 

6. Conclusions 

In conclusion, the study on distances between Intuitionistic Fuzzy Sets with two terms and three terms has 
shed light on the complexities of these sets and their relationships. Further research in this area could lead to 
a deeper understanding of Intuitionistic Fuzzy Sets and their applications in various fields. Overall, the study 
has contributed to the existing body of knowledge on Intuitionistic Fuzzy Sets and their distances, providing 
a foundation for future research in this area. 
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