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ARTICLE INFO ABSTRACT

The aim of this study is to explore the distances between Intuitionistic
Fuzzy Sets with two terms and three terms. We to investigate and analyze
the relationships between these sets using the methodology of distances
between two sets. We utilized the methodology of distances between two
sets to analyze the Intuitionistic Fuzzy Sets with two terms and three terms.
The focused on calculating the distances between different sets to
understand the relationships and similarities between them.
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1.Operations and Relations over IFSs

1.1 Some basic Relations and Operations over IFSs
In the realm of Intuitionistic Fuzzy Sets (IFS), several relations and operations can be defined to compare
and combine sets. Let A and B be any two IFS. Here are the defined relations and operations:

1. Subset Relation (2) : 4 2 B if and only if for all elements x € E:
pa(x) = pp(x) and va(x) < vp(x)

2. Subset Relation (S) : A € B if and only if for all elements x € E:
pa(x) < pp(x) and va(x) = vp(x)

3. Equality Relation (=): A = B if and only if for all elements € E:
ta(x) = pp(x) and va(x) = vp(x)

4. Intersection Operation (N):
A n B ={{x, min(ua(x), up(x)), max (va(x), va(x))) |x € E}

5. Union Operation (U):
AU B = {(x, max(u4(x), up(x)), min (v4(x), v(x))) |x € E}

6. Addition Operation (+):
A+ B ={{x, ua(x) + pup(x) = pa(x) - up(x),v4 (x), vp(x)) |x € E}

7. Multiplication Operation (-):
A+ B ={(x,ua(x) - up(x) ,va(x) + vp(x) — va(x) - vp(x)) |x € E}

8. Average Operation (@):

A@B = {(x’uA(x)-iz—ug(x)’zA(x)-;vg(x)> |x € E}

9. Aggregation Operation (x):

ANB = {(x 2 ua(x) . up(x) 2 vax) . vp(x) |x € E}
"7 a0 + up0)”’ -UA(X)‘*'VB(X?
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10. Complement Operation ()
A ={(x,v4(x), ua(x)) |x € E}

11. Implication Operation (=)
A= B = {{x, max(v(x), up(x)), min (ua(x), v5())) |x € E}

These relations and operations provide a comprehensive frame work for comparing and combining
Intuitionistic Fuzzy Sets, facilitating various analysis and decision-making processes.
We can easily check the correctness of above results.

2.Some results :

We know that
0 < vu(x) - vp(x)
< pa(x) + pp(x) —pa(x) - pp(x) + va(x) - vp(x)
< ua(x) + up(x) —pa(x) - pp(x) + (1 — pa(x)) - (1 — pp(x))
< pa(x) + up(x) —pa(x) - pup(x) +1
— pua(x) — up(x) + pa(x) - pp(x) =1
= 0 < 1 Which is true.

Thenrem 2.1. For every two sets A and B and in IFSs, prove that
((ANB)+(AUB) @ ((ANB)- (AUB)).
Proof. For the convenience, we take two real numbers a and b sach that max(a, b) = a and min(a, b) = b.

Also, max(a, b) + min(a, b) =a + b.
Take L.H.S.
(ANB)+(AUB) @ ((ANB)- (AU B))
= ({(x, min(ua(x), up(x)) , max(va(x), va(x))) Ix € E} + {{x, max(ua(x), up(x)), min(va(x), vg(x))) |x € E3})
@ ({{x, min(ua(x), up(x)) , max(v4 (x), vp(x))) |x € E}
- {{x, max(ua(x), up(x)) , min(va(x), vp(x)))  |x € E})
= {{x, min(us(x), up(x)) + max(ua(x), up(x))
— min(ua(x), up(x)) - max(ua(x), up(x)),
max (v, (x), vp(x)) - min(v4(x), vp(x))) |x € E}
@ {(x, min(ua(x), up(x)) - max(ua(x), up(x)),
max(v(x), vp(x)) + min(va(x), va(x))
—max(v4(x), vp(x)) - min(va(x),va(x))) |x € E}
= {{o, ua(x) + pp(x) — pa(x) - pp(x), va(x) - vp(x)) |x € E}

 1a00) - (), —v(x) - E
@ (0l 150, vaC0 +ll]:1%%)+ 1l/ﬁse(()gc)) —]/Bz(ij%;)lx- euggx) + pua(x) - pup(x)

2

va(x) - vp(x) + va(x) + vp(x) — va(x) - vp(x)
2

X, ’
)lx € E}

= {(x, bl vty |y e py

’

=A @B =RHS

Let us defined one max operator known as "Power - set" defined as
PX)={Y|Y cX}
Consider three special IFSs
0% ={(x,0,1) |x € E}.
E* ={(x,1,0) |x € E}.
U* ={(x,0,0) |x € E}.

Theorem 2.2. Show that
(ANB)@ (AUB) =(A+B)@ (A B)

Proof.L.H.S.
(AnB) @ (AU B)
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= {{x, min(ua(x), up(x)), max(va(x), vp(x))) |x € E}
@ {{x, max(ua(x), up(x)) , min(va(x), vg(x))) |x € E}

min(ua(x).up(x)+ max (ua(x), up(x))
_— < x, N , }

max (v4(x) wp(x)) + min (va(x),vp(x)) x €E

2
_ {(x' ua(x) -;ug(x) ) va(x) +2v5(x) ) |x € E}
R.H.S
(A+B)@(A-B)
= {6 pa(x) + up(x) — pa()pp(x), va(x)vp(x)) |x € E}
@ {(x, uaQpp(x), pa(x) + pp(x) — ua(x)up(x)) |x € E}

{( ualx) + pup(x)— uA(x) () +palx) up(x)

b

wa(x) ve(x) + va(x)+ vp(x) — VA(x) VR(x)) | € E}
2
{{X, ua(x) ;ug(x) '_A(x) +2v5(x) |x € E}

Theorem 2.3. Provethat (ANB)+ (AUB) =A+B

Proof.
(AnB)+ (AUB)
{(x, min(ua(x), up(x)) , max(va(x), vp(x)) |x € E}
{(x, max(ua(x), pp(x)) , min(va(x), vp(x))) |x € E}
{{x, min(ua(x), up(x)) + max(ua(x), up(x))
— min(ua(x), up(x)) max(ua(x), up(x)),
max (v (x), vp(x)) , min(v4(x), vp(x))) |x € E}

= {(x, pa()+ pp(x) — pa(up(x), va(x)ve(x)) |x € E}
=A+ B

I+ 1

Theorem 2.4. Prove that
(AnB)-(AUB) =A-B

Proof.
(AnB)- (AUB)
= {(x, min(ua(x), pp(x)) max(va(x), ve(x))) |x € E}
* {{x, max(ua(x), up(x)) , min(va(x), vp(x))) |x € E}
= {(x, min(ua(x), up(x)) max(ua(x), up(x)),
max(v4(x), vp(x)) + min(va(x), vp(x))
— max(v4(x), vp(x)) min(vp (x), vp(x))

= {{x, na(x) pp(x), va()+ vp(x) — va()vs(x)) |x € E}
—A'B

Theorem 2.5. Prove that
(AnNB) @ (AUB) = A@®B

Proof:- (AN B)(A) (AU B)

(ANB) (AU (AUB)
= {{x, min(pa(x), up(x)) max(fa(x), fp(x))) Ix € E}

(@) {(x, max(pa(x), up(x)) min(va(x), va(x))) |x € E}
_ {( min(ua(x), up(x)) + max (uA(_l.JAB(_lL max (va(x) ,vp(x)) + min (vA(Q,yBL)L> |X € E}
2

{( HA(_)_IU + up(x) ’J(_L +VB£_L>| € E}
= A@B.

Theorem 2.6. Prove that
(A+B)@(A"B) =A@B
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Proof.
(A+B)@ (A-B)
= {{x, ua(x) + pup(x) — pa(up(x), va(x)vp(x)) [x € E}
@ {{x, ua()up(x),va(x) + vp(x) — va(x)vp(x)) |x € E}
- {( ua(x) + pp(x) — uA(x) uB() +ua(x)up(x) vA(x) vp(x) +va(x)+vp(x)— valx) rR(x)) ) |x € E}

2
{( MAL_)_IAX + up(x) JLL +VB(_L>| € E}

= A@B.

’

Theorem 2.7. Prove that
(A+B)Nn(A-B)@((A+ BD)U(A-B)=A@B
Proof. ((A+B)N(A*B))@ ((A+ B)U(A4-B))
= ({{x, ua(x) + pp(x) — pa()up(x), va(x), vp(x)) |x € E}
N {x, ua(up(x), va(x) + vp(x) — va(x)vp(x)) |x € E})
@ ({{x, pa()+ pp(x) —pa(up(x), va(x)vp(x)) |x € E}
U {{x, maCx) up(x),va(x)+ vp(x) — va(x)vp(x)) |x € E})
= {{x, min (ua(x)+ pp(x) — pa(pp(x), pa(x)up(x)),
max (V4(x) vp(x), va(x) + vp(x) — va(x)vp(x))) |x € E})
@ {{x, max (ua(x)+ up(x) — ua()pp(x), pa(x)up(x)),
min (v<;(x1) vp(x), vﬂéxf + vlt(ns) — UA% 31@%(%)) |x €E})
{x,s(min (ua x +pp x — pa x pp x°)

T(ﬁiﬁ% G 850 D) 4w e

mm (va(x) VB(X) VA(X) + UB(x) - VA(x)VB(X)))) lx € E})
_ {( ’gA(x) -IZ— up(x) ‘_A(x) +217R(_)_>}

=A@B
3. More Operations Over IFSs

Fuzzy set theory is expanded upon by intuitionistic fuzzy sets (IFS), which include more dimensions to
account for hesitancy and ambiguity in decision-making. These sets, which differ from conventional fuzzy
sets in that they have membership degrees, non-membership degrees, and a hesitation degree, provide a
more complex depiction of uncertainty. In order to successfully operate and analyse intuitionistic fuzzy sets,
a number of essential operations can be defined:

A — B = {{(x,us-p(x),va-p(x)) |x € E},

where /
uo (%)= 2AG) = pp(x) ify = p)andv (x) <v (x)
ar 1- up(®) 1 Ha B A B
and vp(x) >0
and vA(x)mp(x)< ma(x)mp(x)
{ 0, otherwise
and /
v x) = vA() ; x) = x)andv (x) <v (x
e ata i, 2k andy (v ()
and vp(x) >0
and va(x)mp(x)< ma(x)mp(x)
{ 1, otherwise
Also
A: B = ={(x,ua:p0x),va:p(x)) |x € E},
where
[€9)] :
pa(x) = ﬁ?(’;) ,if pa(x) < pp (x) and v4(x) = v ()
and up(x) >0
{ 0, and pa()mp(x)<mA(x)up(x)

and
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v ()= vA(0)— vp(x) if p =<p (andv (x)=v (x)
A B 1— va(x RN B A B
B(x)
and up(x) >0
{ 1, and pa(X)mp(x)< max)up(x)
Here

0 < pp-p(x) + va_p(x)

pa()— up(x) + va(x)

1—up(x) vp(x)
< ual) = up(x) " 1—pa(x)

1-up(x) 1—-pup(x)
ua()— up(x) + 1—pa(x)

1—-pp(x)

IA

IA

Also

1—vp(x) 1-vp(x)
1-va(x) + va(x) — vp(x)

1-vp(x)

Theorem 3.1. If A and B are two IFSs, then prove the following :

(@)A- A =0
(b)A: A = E*
(c)A-0"=4A
(dA: E-=A
(e)A- U = 0O

(HA: U = 0

Proof. (a)
A-A= {{x, 1aG)—pa(x) "A(")H € E}
1—pua(x)  vpx)
={(x,0,1) |x € E}
= O*
(b) A A {( #A(x) valx —UA(_) ) Ix € E}

paCx) ’
={(x,1,0) |x € E}
E*

(©) A= 0" ={{x, ua(x), va(x))|x € E}
—{(x, 0, 12 lx oEung)
— {( Hna(x . A )l c E}

={(x, uA(x), vA(x))Ix € E}
=A
() A: E* ={{x,ua(x),va(x))x € E}
s {(x, 1, OZ |x €E
— {( pna(x) ’”A(x) )lx EE}
1 1-0

4. Another Operation on two IFSs 4 and B

These operations allow intuitionistic fuzzy sets to be rigorously mathematically treated in a variety of
applications where reluctance and uncertainty are crucial, like expert systems, pattern recognition, and
decision-making. Compared to conventional crisp sets or standard fuzzy sets, they offer a stronger
foundation for managing ambiguous and imprecise information.

A | B ={{x, min (ua(x), vp(x)), max (up(x), va(x))) |x € E}
This new operation in mathematics is called "set-theoretical subtraction".
To discuss set-theoretical subtraction, we need following assumptions.
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CaselI If up(x) < vy(x), then

min (ua(x), vp(x)) = pa(x) and max (up(x), va(x)) = va(x).

Case II If up(x) > v4(x), then

min (ua(x), vp(x)) = vp(x) and max (up(x), va(x)) = up(x).
Its easy to check the basic conditions that set-theoretical subtraction is IFS.

For Casel

min (ua(x), vp(x)) + max (up(x), va(x)) < pa(x) + va(x) < 1.

For Case I1
min (ua(x), vp(x)) + max (up(x), va(x)) < vp(x) + pp(x) < 1.

Definition 4.1. Implication realtion on IFS A is defined as
A » B ={(x, max (va(x), up(x)), min (us(x), vg(x))) Ix € E}

Now we prove the following results :
Exercise 4.2. Provethat A » B=A4AUB.

Proof.
A ={({x, ua(x), va(x)) |x € E}
B ={(x, up(x), vp(x)) |x € E}
so A » B = {{x, max v(x),up(x)),
min (u4(x), vp(x))) |x € E}
also as A = {{x, va(x), ua(x)) |x € E}
therefore AU B = {{x, max(v,(x),up(x)),

min (pa(x), vp(x))) x € E}
Thus,

A > B=AUB.

Exercise 4.3. Prove that A |E*= 0-.

Proof.
Here A = {(x, ua(x), v4(x))|x € E}
and E*={(x,1,0)|x € E}
so A |E* = {{x, min(us(x), 0) ,max(1,v4(x))) |x € E}
={(x,0,1)|x € E}
= 0"

Exercise 4.4. Prove that A |0*= A.

Proof.
A |0* = {{x, min(u,(x), 1), max(0, v4(x))) |x € E}
= {{x, pa(x), v4(x)) |x € E}

Exercise 4.5. Prove that E*|A = A.

Proof.
E* ={(x,1,0)|x € E}
A ={(x, pa(x), va(x)) |x € E}
A ={(x,v4(x), ua(x)) |x € E}
So E*|A = {{x,min(1, v4(x)), max(us(x),0)) |x € E}
= {(x, 'UA(X),IIA(.X)) |x € E}
Hence, E*|A = A.
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Exercise 4.6. Prove that 0*|A = 0~.

Proof.
0 ={(x,0,1) |x € E}
A ={{x, ua(x), va(x)) |x € E}
So 0% |A = {{x,min(0, v4(x)), max(us(x), 1)) |x € E}
={(x,0,1)|x € E}
= 0~

Exercise 4.7. Prove that (A|B)nC =(ANnC)|B=n (C|B).
Proof.
A = {{x, pa(x), va(x)) |x € E}
B ={{x, up(x), vg(x)) |x € E}
C ={{x, uc(x), v(x)) |x € E}
Thus; A | B = {{x, min(u4(x), v5(x)) , max(up(x),v4(x))) |x € E}
(A1 B)nC = {{x, min(min(ua(x), vp(x)), uc(x)),
max(max(up(x), va(x)),v.(x)))) |x € E}
= {{x, min p4(x), vp(x) , u(x)),
max(up(x), va(x),vc(x))) |x € E} )

Now
(AN C) B = {{x, min(min (ua(x), uc(x)) , vp(x)),
max(pp(x), max (v4(x),vc(x)))) |x € E}
= {{(x, min(ua(x), pc(x) , vp(x)),
max(up(x), va(x),ve(x))) |x € E} (In
From (I) and (II)
(AIB)nCc=(ANnC)|B
Similary, we can prove that
(AIB)nC=An (C|B)

Exercise 4.8. Prove that
B=AUB.

Proof.

A = {{x, ua(x), va(x)) |x € E}

B = {(x, up(x), vp(x)) |x € E}

A | B ={(x,min (ua(x), vp(x)),
. max (ug(x), v4(x))) |x € E}
So ATB = {{(x,max (up(x), va(x)),
min (ua(x), vg(x))) |x € E} )

Now A = {{x, va(x), pa(x)) |x €E}
Hence; AU B = {(max (v4(x), uz(x)),

min (u4(x), vp(x))) |x € E} (an
From (I) and _(II), we have

AB=AUB.

Exercise 4.9. Prove that
AB=AB

Proof.
A = {{x, ua(x), v4(x)) |x € E}
B ={{x, up(x), vp(x)) |x € E}
A | B = {{x,min (us(x), vp(x)),
. max (up(x), va(x))) |x € E}
So AB = {{(x,;max (up(x), va(x)),
min (u4(x), vp(x))) |x € E} 0
B = {{x, vg(x), up(x)) |x € E}
So AN B = {{x,min (us(x), vp(x)),
o max (v4(x), up(x))) |x € E} un
AB= {(x,max (va(x), up(x)),
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min (u4(x), vp(x))) |x € E}
From (I) and (II), we have

AB=4B
5 Intuitionistic Fuzzy Tautological Sets
Definition 5.1 An [FS 'A' is called Intuitionistic Fuzzy Tautological Set (IFTS) if for every x € ualx) =
va(x).

Exercise 5.2 Prove that for IFS A,
A - A.
is IFTS

Proof.
A ={(x, pa(x), va(x)) |x € E}

So, A~ A= {(x, max(v4(x), ua(x)),
min(us(x), va(x))) |x € E}

Now as
max(v4(x), ua(x)) = min(us(x), va(x))
Therefore,
A» A
is IFTS.

Exercise 5.3. Prove that for IFS, A,B;
A» (B» A)
is IFTS

Proof.

A ={{x, us(x),v4(x)) |x € E}
B ={{x, up(x), vg(x)) |x € E}
B » A = {{x, max(vp(x), ua(x)), min(uz(x), va(x))}
A (A » B) = {{(x,max(v4(x), max(vp(x), ua(x))),
min(u,(x), min(up(x), va(x)))) |x € E}
= {{x,max (v, (x), vg(x), ua(x)),
min(us(x), up(x), v4(x))) |x € E}
Note that
max(vy (x), vp(x), ua(x)) = max (v4(x), ua(x))
= max (v4(x), ua(x))
> min (v4(x), ua(x))
> min (v4(x), pa(x), up(x))
=min (ua(x), pp(x), va(x))
Thus;
A» (B~ A)
is IFTS.

Exercise 5.4. Prove that for IFS,A,B; AnB B isIFTS.
Proof.

A ={{x, ua(x),va(x)) |x € E}
B ={{x, up(x), vg(x)) |x € E}
AN B = {{x,min(us(x), up(x)), max(vs(x), vp(x))}
AN B » B ={{(x;max(v4(x), vs(x), us(x)),
min(us(x), up(x), ve(x))) |x € E}

Now as
max(v, (x), vp(x), up(x)) = max (vp(x), up(x))
> min (vg(x), up(x))
> min (vp(x), up(x), pa(x))
=min (ua(x), pp(x), ve(x))
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So,
ANB~>B

Exercise 5.5. Prove that for IFS, A,B;
ANB»> A isIFTS.
Proof: A ={(x, ua(x), va(x)) |x € E}
B ={(x, up(x), vg(x)) |x € E}
AN B ={{x;min(ua(x), up(x)), max(va(x), vp(x))}
AN B » A={(xmin(wa(x), vp(x), pa(x)),
min(u,(x), up(x), va(x))) |x € E}

Now as
max(va(x), vp(x), ua(x)) = max (v4(x), ua(x))
= min (v, pa(x))
= min (ua(x), up(x), va(x))
Therefore,
ANnB-B
is IFTS.

Exercise 5.6. Prove that for IFS, A,B;
A>»AUB

is IFTS.
Proof.

A = {{x, ua(x), v4(x)) |x € E}

B = {{x, up(x), vp(x)) |x € E}

AU B = {{(x,max(us(x), up(x)),
min(v4(x), vp(x)))} [x € E}
A» AU B = {(xmax(vs(x), pa(x), up(x)),
min(us(x), va(x), vp(x))) |x € E}

Note that
max(va(x), pa(x), up(x))
= max (pua(x), va(x))
= min (ua(x), va(x))

> min (‘UA(X), UA(.X'), UB('X))
Hence;

A—-»AUB isIFTS.

Exercise 5.7. Prove that for IFS, A,B, C;
A»C)» (B »C)»((AU B)» C()) is IFTS.
Proof.
(A~ C)» (B »C)»((AuB)» 0)
{{x;max(va(x), uc(x)), min(us(x), ve(x))) |x € E}
= ({{x;max(vp (x), pc(x)), min(up(x), v(x))) |x € E}
= ({{rmax(ua(x), pp(x)), min(va(x), vp(x))) |x € E}
= (xuc(x), v(x))) [x € EY))
{{xmax(v(x), uc(x)), min(ua(x), ve(x))) |x € E}
- ({(x;max (vp(x), pu(x)), min(ugp(x), v.(x))) |x € E}
= ({({x, max (uc(x), min(va(x), vp(x)),
min(vc(x), max (ua(x), up(x)))) |x € E})
= {{(xmax(va(x), u(x)), min(us(x), v.(x))) |x € E}
= {(x,max (min(up (x), v.(x)), pc(x),
min(v4(x), vp(x))), min (max (vz(x), pc(x)),
ve(x), max(ua(x), up(x)))) |x € E}
= {(x;max (min(p4(x), vc(x)), min(up(x), vc(x)), u(x)
min(vs(x), vp(x))), min (max(v4(x), uc(x)),
max (vp(x), uc(X)), ve(x), max(ua(x), up(x)))) |x € E}

From
max (min(us(x), ve(x)), min(up (x), ve(x)), pc(x),
min(v4(x), vg(x)))
> max (min(u(x), vc(x)), min(up(x), v.(x)))
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=

min(v.(x), max (ua(x), pup(x)))
min (max(v4(x), p(x)), max(vp(x), uc(x)),

ve(x), max (pa(x), pp(x)))

it follows that

A—=B—=0) = (A= B) — @A — 0)

isan IFTS.

Exercise 5.8 Prove that for IFS, A,B,;

(A=B) » (4 = B)» A)

is IFTS.

Proof.

(A—B) — (A +—B)—4)

= (ova(), () Ix € E} — {{x,vp(x), us(x)) |x € E})

— ({{x, max (us(x), up(x)), min (v4(x), vp(x))) |x € E}
— {(xl ﬂA(X), UA(X)) |x € E})

{{x;max (ua(x), vg(x)), min(va(x), up(x))) Ix € E}

—  {{x;max (ua(x), min(v,(x), vp(x))),

min (v4(x), max (ua(x), up(x)))) |x € E}

= {{(x,;max (min(v4(x), up(x)), ua(x), min(v,(x), vz(x))),

min(va(x), max(ua(x), up(x)), max(ua(x), vp(x)))) Ix € E}

From

max (min(v4(x), up(x)), ua (x), min(v,(x), vp(x)))

> max (ua(x), min(v,(x), up(x)))

=

min(v4(x), max (us(x), ug(x)))

> min (v4(x), max pc(x), pp(x)), max(ua(x), vp(x)))
We get

A= B) » ((4 = B)» A)

The results obtained from the study provide valuable insights into the relationships and similarities

between Intuitionistic Fuzzy Sets with two terms and three terms.

By analyzing the distances between the sets, we were able to understand the nuances and differences that

exist within each set.

6. Conclusions

In conclusion, the study on distances between Intuitionistic Fuzzy Sets with two terms and three terms has
shed light on the complexities of these sets and their relationships. Further research in this area could lead to
a deeper understanding of Intuitionistic Fuzzy Sets and their applications in various fields. Overall, the study
has contributed to the existing body of knowledge on Intuitionistic Fuzzy Sets and their distances, providing
a foundation for future research in this area.
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