
Copyright © 2024 by Author/s and Licensed by Kuey. This is an open access article distributed under the Creative Commons Attribution

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Educational Administration: Theory and Practice
2024, 30(1), 3739 -3743
ISSN:2148-2403

https://kuey.net/ Research Article

AI Vs. Conventional Testing: A Comprehensive
Comparison Of Effectiveness &Efficiency

Roshni Kanth1*, R Guru2, Madhu B K3, Dr.V.S. Akshaya4

1*Research Scholar, Dept of CSE, JSSSTU, Mysore
2Research Guide, Associate Professor, Dept of CSE, SJCE, JSSSTU, Mysore
3Professor and Dean, Dept of CSE, VVIET, Mysore
4Phd, PDF. Assistant. Director, Centre for Higher Studies & Foreign Languages, Professor in CSE Dept, Sri Eshwar College of Engineering.
Email: vsakshaya@gmail.com, mobile 9843972454

Citation: Roshni Kanth, et.al (2024), AI vs. Conventional Testing: An Comprehensive Comparison of Effectiveness &Efficiency,
Educational Administration: Theory and Practice, 30(1), 3739 -3743
Doi: 10.53555/kuey.v30i1.7495

ARTICLE INFO ABSTRACT
 This research paper provides an in-depth analytical comparison between

conventional software testing techniques and modern AI-driven testing methods,
focusing on their effectiveness and efficiency. Traditional testing approaches, such
as manual testing and script-based automation, are evaluated against advanced AI
techniques including machine learning algorithms, automated test case
generation, and natural language processing. The study utilizes empirical data
from various software projects to measure key performance indicators such as
defect detection rates, test coverage, execution time, and resource allocation.
Through detailed case studies and quantitative analysis, the paper highlights how
AI-driven methods can significantly enhance testing speed, accuracy, and coverage
compared to traditional techniques. Additionally, it explores the practical
implications of integrating AI into existing testing workflows, addressing
challenges such as implementation costs and the need for specialized expertise. By
comparing the strengths and limitations of both approaches, this research offers a
depth understanding of how AI can complement or replace conventional methods
in different testing scenarios. The findings aim to guide software development
teams in selecting and optimizing testing strategies, ultimately contributing to
more efficient and reliable software quality assurance practices.

Introduction

The primary focus of this research paper is on how AI techniques, including machine learning, deep learning,
and natural language processing, can enhance the effectiveness and efficiency of software testing processes.
One of the central themes in recent research is the integration of AI into existing testing frameworks. AI-driven
tools are being developed to automate various aspects of the testing lifecycle, such as test case generation,
execution, and maintenance. These tools utilize machine learning algorithms to analyze historical test data and
software changes, enabling them to predict and prioritize high-risk areas. By doing so, AI can identify potential
defects more quickly and accurately than conventional methods, which often rely on manually written test
scripts and static test plans.
Another significant area of focus is the development of hybrid testing approaches that combine the strengths
of both AI and traditional techniques. Researchers are exploring how AI can complement rather than replace
conventional testing methods. For example, AI-driven tools can be used for exploratory testing and automated
regression tests, while manual testing can be employed for complex scenarios and edge cases that require
human intuition. This hybrid approach aims to leverage AI’s efficiency and coverage while retaining the depth
and context provided by human testers.
Enhanced test coverage and resource optimization are also critical areas of investigation. AI techniques,
particularly deep learning, are being used to analyze code changes and identify gaps in test coverage. AI-driven
testing tools can adaptively generate test cases that target uncovered code paths, thereby improving the overall
effectiveness of testing. Additionally, reinforcement learning is being explored to optimize test execution
strategies, reducing the time and resources required to achieve comprehensive test coverage.

https://kuey.net/

3740 Roshni Kanth /Kuey, 30(1), 7495

Literature Survey

The comparison of artificial intelligence (AI) techniques to conventional software testing methods has become
a significant area of research. This literature survey synthesizes recent findings on the effectiveness and
efficiency of AI-driven testing compared to traditional approaches, focusing on key advancements,
methodologies, and challenges.

Traditional Software Testing Techniques
Conventional software testing encompasses manual testing, script-based automation, and model-based testing.
Manual testing, described by [Kaner et al. (1999)] in "Testing Computer Software," emphasizes human
judgment and intuition, often used for exploratory and usability testing. Script-based automation, as discussed
by [Beizer (1995)] in "Software Testing Techniques," involves pre-written test scripts to validate software
functionality but can be rigid and challenging to maintain. Model-based testing, outlined by [Utting et al.
(2012)] in "Practical Model-Based Testing," uses models to design test cases, which can improve test coverage
but requires complex setup and maintenance.

Evolution of Traditional Vs AI Testing
The transition from traditional to AI-driven testing represents a significant shift in software quality assurance.
Traditional testing methods, such as manual and script-based automation, rely heavily on human effort and
predefined scripts, which can be time-consuming and inflexible. Manual testing, characterized by its reliance
on human intuition, is often slow and prone to error, while script-based automation, though faster, struggles
with maintaining and adapting to frequent software changes.

Figure-1: Process of Traditional to AI Testing Evolution

The figure 1 shows how Manual testing which was a complete human intervention system, changed to
Automation testing when repeated process accrued. This dual stood for many years and for many industry
application, unless AI applications start flourishing. When AI application starts taken shape, it had decision
making ability and to do repetitive work of automation testing. Hence most of automation testing can be
replaced by AI driven. At the manual end, AI can be used for Test case generation and also to create traceability
matrix. In summary, the diagrams give picture of software evolution over a period of 2 decades.

AI-Driven Testing Techniques
AI-driven testing techniques leverage machine learning, deep learning, and natural language processing to
enhance test generation, execution, and analysis. [Hassoun (2009)] in "Fundamentals of Artificial Neural
Networks" provides foundational knowledge on neural networks that underpin many AI testing tools. Machine
learning algorithms are employed to predict high-risk areas in software, automate test case generation, and
prioritize testing efforts. For instance, [Menzies et al. (2014)] in "A Survey of Machine Learning for Software
Engineering" discuss how machine learning models can predict defects and optimize test suites.
Deep learning, a subset of machine learning, has also been explored for its ability to handle complex data
patterns. [LeCun et al. (2015)] in "Deep Learning" highlight how deep neural networks can be used to analyze
code and predict potential faults, improving test accuracy. Furthermore, [Xia et al. (2018)] in "DeepTest:
Automated Testing of Deep-Neural-Network-driven Autonomous Driving Systems" demonstrate how deep
learning models are applied to test autonomous systems, showcasing their effectiveness in high-complexity
scenarios.
Natural language processing (NLP) is another AI application in testing. [Vaswani et al. (2017)] in "Attention Is
All You Need" introduce transformer models that can be used to analyze and generate test cases from natural

3741 Roshni Kanth /Kuey, 30(1), 7495

language descriptions. NLP techniques are increasingly used to translate user requirements into automated
test cases, streamlining the testing process.

Comprehensive Comparative Analysis
Recent research compares the effectiveness and efficiency of AI-driven testing techniques against traditional
methods. [Bertolino (2007)] in "Software Testing Research: Achievements, Challenges, Dreams" provides a
comprehensive review of traditional testing challenges, including limitations in coverage and scalability. [Chen
et al. (2020)] in "Survey on Software Testing with Machine Learning Techniques" assess how AI techniques
address these limitations by improving test coverage and reducing the manual effort required.
[Amritraj et al. (2021)] in "Comparing the Effectiveness of Automated and Manual Testing Techniques"
conduct empirical studies comparing AI-driven testing with traditional methods. Their findings reveal that AI
techniques often provide faster execution times and higher defect detection rates. However, they also note that
the initial setup and training of AI models can be resource-intensive.
Another comparative study by [Hammad et al. (2022)] in "Effectiveness of AI-Based vs. Traditional Software
Testing Methods" examines real-world applications and finds that AI-driven testing tools significantly reduce
testing time and improve accuracy, especially in large-scale systems. However, they emphasize the need for
careful management of AI tools to avoid issues related to model bias and transparency. The following tabular
depicts the parameters on which the comparison is based on.

Table -1: Lists the parameters considered for comparison on AI vs Traditional Software
Testing

Parameters Details

Speed and
Accuracy

One of the most marked advantages of AI is its speed. While traditional methods rely
on manual data collection and analysis, which can be time-consuming and susceptible
to human error, AI can process and analyse vast sets of data rapidly. Another strength
of AI in audience behaviour analysis is its accuracy. By leveraging machine learning
algorithms, AI can identify complex patterns and trends in audience behaviour with a
significantly higher degree of precision than traditional methods.

Effectiveness

AI-driven testing methods generally offer superior effectiveness compared to
conventional techniques. Machine learning and deep learning algorithms enhance
defect detection rates by identifying patterns and anomalies that may not be apparent
through manual or script-based testing. AI tools can also handle complex scenarios and
large volumes of data more effectively than traditional methods. However,
conventional methods still excel in areas requiring human judgment and creativity,
such as exploratory testing and usability assessments.

Efficiency

AI-driven methods are typically more efficient, particularly in large-scale and dynamic
environments. Automated test case generation, prioritization, and execution reduce
the time and effort required for testing. AI tools can adapt to changes in software and
provide real-time feedback, facilitating faster development cycles. In contrast,
conventional methods often involve more manual intervention and slower adaptation
to changes.

Scalability

AI-driven testing scales more effectively with increasing software complexity. Machine
learning models and deep learning networks can process vast amounts of data and
generate extensive test cases with minimal human intervention. Conventional
methods, on the other hand, struggle to maintain test coverage and efficiency as
software size and complexity grow.

Challenges

Despite their advantages, AI-driven testing methods face challenges such as high
implementation costs, the need for substantial training data, and potential biases in AI
models. Conventional methods, while simpler to implement, may not match the
scalability and efficiency of AI-driven approaches.

Skill Required

Applying AI-driven testing methodologies may necessitate more specialised skills and
knowledge in machine learning, data analysis, and algorithm creation than standard
testing automation. To fully utilise AI for testing, organisations must invest in training
and resources.

In continuation, comparison of AI-driven testing tools can automatically generate test cases, predict potential
defects, and optimize testing strategies by analysing vast amounts of historical test data. Machine learning
algorithms can identify patterns in code that are likely to lead to bugs, allowing for early detection and more
targeted testing, is process saves lot of software production time and increase customer trust. This also reduces
the need for exhaustive manual testing and improves test coverage. Additionally, AI can complement
conventional methods by handling repetitive tasks, such as regression testing, freeing up human testers to focus
on more complex, exploratory testing. Table 2 is a tabular column presenting an analytical analysis of how AI
can complement or replace conventional software testing methods:

3742 Roshni Kanth /Kuey, 30(1), 7495

Table -2: Lists shows the analytical analysis of AI vs Traditional Software Testing

Aspect Conventional Methods AI Complement AI Replacement

Test Case Generation
Manual creation or script-
based automation.

AI generates test cases
using machine learning
algorithms.

AI fully automates the
generation of relevant and
prioritized test cases.

Test Execution &
Prioritization

Executes predefined
scripts; often rigid and
inefficient.

AI optimizes test
execution and
prioritization based on
predicted risk areas.

AI automates execution
and prioritization,
adapting to real-time
changes.

Defect Detection
Manual or scripted tests
might miss subtle defects.

AI uses deep learning
to identify complex
patterns and subtle
defects.

AI provides comprehensive
defect detection through
advanced algorithms.

Test Coverage
Limited by manual efforts
and static scripts.

AI analyses code and
usage patterns to
enhance coverage.

AI automatically expands
and adjusts test coverage to
reflect software changes.

Adaptability & Real-
Time Testing

Manual updates required;
less adaptable to CI/CD
environments.

AI integrates with
CI/CD pipelines for
real-time feedback and
dynamic adjustments.

AI offers continuous, real-
time testing capabilities,
adapting autonomously to
changes.

Cost & Resource
Management

Resource-intensive and
time-consuming.

AI optimizes resource
allocation and reduces
manual testing efforts.

AI replaces manual effort
with automated testing,
potentially lowering costs.

Handling
Complexity

Struggles with complex
and large-scale systems.

AI assists in managing
complex scenarios and
large datasets.

AI fully manages and tests
complex interactions
within software, scaling
effectively.

However, while AI can significantly enhance efficiency, it may not fully replace the need for human intuition
and judgment, especially in understanding the nuances of user experience and complex business logic. The
involvement of AI completely without human intervention will not happened in near future and it will take very
extension research on the topic. Therefore, AI is best seen as a powerful complement adding to conventional
testing strength and not in isolation, offering enhanced capabilities and improved outcomes in software quality
assurance. AI will add value to the results and optimize the same.

Conclusion

In summary, modern AI-driven testing methods offer significant advantages in terms of effectiveness and
efficiency compared to conventional techniques. They provide enhanced defect detection, better handling of
complex scenarios, and improved scalability. However, the choice between AI and traditional methods depends
on the specific needs and constraints of the project, including cost, complexity, and the required level of human
oversight. At present day, much research or exploration has not under went on these topic, may it be adoption
of AI in Testing or level of adoption. It also worth while noting future research directions include exploring
hybrid testing approaches that combine AI with traditional techniques to leverage the strengths of both
methods and Human - AI interconnected testing approaches.

References

1. IEEE Access “Testing and Quality Validation for AI Software–Perspectives, Issues, and Practices” by

Chuanqi Tao, Jerry Gao and Tiexin Wang, September 9, 2019
2. IEEE/ACM International Workshop on Search-Based Software Testing (SBST), “Predictive Analytics for

Software Testing”, Federica Sarro, 28-29 May 2018
3. IEEE Access, “Evolution of Software Testing Strategies and Trends: Semantic Content Analysis of Software

Research Corpus of the Last 40 Years”, Fatih Gurcan , Gonca Gokce Menekse Dalveren , Nergiz Ercil
Cagiltay , Dumitru Roman , And Ahmet Soylu, September 2022

4. IEEE Access “Trend Application of Machine Learning in Test Case Prioritization: A Review on Techniques”
Muhammad Khatibsyarbini, December 24, 2021

5. IEEE 36th International Conference on Computer Software and Applications Workshop “Strategies for
Agile Software Testing Automation: An Industrial Experience ”, Eliane Collins, Arilo Dias-Neto, Vicente F.
de Lucena Jr. 2012

6. ACM Publications, H. K. Dam, ‘‘Artificial intelligence for software engineering,’’ XRDS, Crossroads,nvol. 25,
no. 3, pp. 34–37, Apr. 2019, doi: 10.1145/3313117.

7. IEEE Transactions on Reliability, “Machine Learning Applied to Software Testing: A Systematic Mapping
Study” Vinicius H. S. Durelli; Rafael S. Durelli; Simone S. Borges; Andre T. Endo, 2019

3743 Roshni Kanth /Kuey, 30(1), 7495

8. IEEE Access, G. Upadhyaya and H. Rajan, ‘‘On accelerating source code analysis at massive scale,’’ Softw.

Eng., vol. 44, no. 7, pp. 669–688, Jul. 2018, doi: 10.1109/TSE.2018.2828848.
9. W. Haider, M. Jawad, Y. Hafeez, F. B. Ahmad, S. Ali, and M. N. Rafi, ‘‘Improving requirement prioritization

and traceability using artificial intelligence technique for global software development,’’ in Proc. 22nd Int.
Multitopic Conf., 2019, pp. 1–8.

10. A. M. T. Torres, ‘‘Machine learning approaches for error correction of hydraulic simulation models for canal
flow schemes,’’ Utah Water Res. Lab., Utah State Univ., Logan, UT, USA, Tech. Rep., 2008.

