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ARTICLE INFO ABSTRACT 

 We introduce the notion of a generalized semi-ideal in a ternary semiring. Various 
examples to establish a relationship between ideals, bi-ideals, quasi-ideals and 
generalized semi-ideals are furnished. A criterion for a commutative ternary semiring 
without any divisors of zero to a ternary division semiring is given. 
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1. Introduction 
 
Ternary rings and their structures were investigated by Lister [4] in 1971. In fact, Lister characterized those 
additive subgroups of rings which are closed under the triple product. In 2003, T. K. Dutta and S. Kar [3] 
introduced the notion of a ternary semiring as a generalization of a ternary ring. A ternary semiring arises 

naturally as follows. Consider the subset Z− of all negative integers of Z. Then Z−is an additive semigroup 

which is closed under the triple product. Z− is a ternary semiring. Note that Z− does not form a semiring. In 
[3] T. K. Dutta and S. Kar introduced the notions of left/right/lateral ideals of ternary semirings and also 
characterized regular ternary semirings. In 2005, S. Kar [1] introduced the notions of quasi-ideals and bi-ideals 
in a ternary semiring. The notion of a generalized semi-ideal in a ring has been introduced and studied by T. K. 
Dutta in [2]. In this paper we introduce the notion of a generalized semi- ideal in a ternary semiring and study 
them. Also, we establish a relationship between generalized semi-ideals, ideals, bi-ideals, etc. in a ternary 
semiring to study some properties of a generalized semi-ideals in ternary semirings. 
 

2. Preliminaries 
 
For preliminaries we refer to [1] and [3]. 
Definition 2.1. An additive commutative semigroup S, together with a ternary multiplication denoted by [ ] 
is said to be a ternary semiring if  [abc]de] = [a[bcd]e] = [ab[cde]], 
i) [(a + b)cd] = [acd] + [bcd], 
ii) [a(b + c)d] = [abd] + [acd], 
iii) [ab(c + d)] = [abc] + [abd] for all a, b, c, d, e ∈ S. 
Throughout, S will denote a ternary semiring unless otherwise stated. 
Definition 2.2.  If there exists an element 0  S  such that 0 + x  =  x and  [0xy] = [xy0] = [x0y] = 0 for all x, 
y S, then 0 is called the zero element of 
S. In this case we say that S is a ternary semiring with zero. 
Definition 2.3. S is called a commutative ternary semiring if [abc] = [bac] = [bca], for  
all a, b, c ∈ S. 
Definition 2.4. An additive subsemigroup T of S is called a ternary subsemir- ing of S if [t1t2t3] ∈ T for all t1, 
t2, t3 ∈ T . 
Definition 2.5. An element a in S is called regular if there exists an element 
x ∈ S such that [axa] = a. S is called regular if all of its elements are regular. 
Definition 2.6. S is said to be zero-divisor free (ZDF) if for a, b, c S, [abc] = 0 implies that a = 0 or b = 0 or c 
= 0. 
Definition 2.7. S  with |S|  ≥  2 is called a ternary division semiring if for  any non-zero element a of S , 
there exists a non-zero element b ∈ S such that [abx] = [bax] = [xab] = [xba] = x, for all x ∈ S. 
Definition 2.8. A left (right/lateral) ideal I of S is an additive subsemigroup of S  such that [s1s2i]     I  
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([is1s2]     I/[s1is2]     I) for all i     I, for all s1, s2     S.   If I is a left, a right and a lateral ideal of S, then I is 
called an ideal of S. 
Definition 2.9. An additive subsemigroup Q of S is called a quasi-ideal of S 
if [QSS] ([SQS] + [SSQSS]) [SSQ] ⊆ Q. 
Definition 2.10. A ternary subsemiring B of S is called a bi-ideal of S if [BSBSB] ⊆ B. 
 

3. Generalized semi-ideals in ternary semirings 
 
Generalized semi-ideals in semirings are introduced and studied by T .K. Dutta in [1]. As a generalization, we 
define generalized semi-ideals in ternary semirings. 
Definition 3.1. A non-empty subset A of S satisfying the condition a + b ∈ A, for all a, b ∈ A is called 
i) generalized left semi-ideal of S if [[xxx]xa] ∈ A for all a ∈ A for all x ∈ S, 
ii) generalized right semi-ideal of S if [axx]xx] ∈ A for all a ∈ A , for all x ∈ S, 
iii) generalized lateral semi-ideal of S if [xxa]xx] ∈ A for all a ∈ A , for all x ∈ S, 
iv) generalized semi-ideal of S if it is a generalized left semi-ideal, a generalized right semi-ideal and a 

generalized lateral semi-ideal of S. 
Example 3.2. Consider a ternary semiring Z of all integers. The subset A of Z containing all non-negative 
integers and the set B of all non-positive integers are generalized semi-ideals of Z. 
Remark 3.3. The concepts of generalized semi-ideal and ternary subsemiring are independent in S. This 
means that is every ternary subsemiring of S need not be a generalized semi-ideal of S and every generalized 
semi-ideal of S need not be a ternary subsemiring of S. For this, consider the following examples. 
Example 3.4.  Let S = M2 (Z−0 ) be the ternary semiring of the set of all 2 × 2 square matrices over Z0 , the set 
of all non-positive integers. 

Let T = { 
a   0  

/a ∈ Z−}. T is a ternary subsemiring of S, but it is not 
0 0 0 
a generalized semi-ideal of S. 
Example 3.5. Let S = . . . , 2i, i, 0, i, 2i, . . .  be a ternary semiring with respect to addition and complex triple 
multiplication. Let A = 0, i, 2i, A 
is a generalized semi-ideal of S, but not a ternary subsemiring of S. 
Every ideal of S is a generalized semi-ideal of S but the converse need not be true. 
Example 3.6. Every quasi-ideal need not be a generalized semi-ideal and every generalized semi-ideal need 
not be a quasi-ideal of S. In Example 3.4), T is a quasi-ideal of S, but it is not a generalized semi-ideal of S. In 
Example 3.5, A is a generalized semi-ideal of S, but not a quasi-ideal of S. 
Every quasi-ideal is a bi-ideal in S [2]. Hence, the bi-ideals and generalized semi-ideals in S are independent 
concepts. 
The flow-chart of the relationship between the ideals, bi-ideals, quasi-ideals, ternary subsemiring and 
generalized semi-ideals in a ternary semiring is given below. 
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