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ARTICLE INFO ABSTRACT 

 

 

This manuscript presents a novel approach for enhancing the effectiveness of objective 
penalty functions involving inequality constraints. The introduction of a penalty 
function that lacks smoothness is addressed by applying a novel smoothing technique 
to ensure its smoothness. The paper analyses the error estimates for both the original 
and smoothed problems. To verify practicality of the proposed approach, some 
numerical cases are solved. 

 
INTRODUCTION 

 
The classical optimization problem with inequality constraints can be expressed mathematically as: 
 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒⁡ 𝑓(𝑥)
(𝑃)

 such that 𝑔𝑖(𝑥) ≤ 0 where 𝑖 = 1,2, …𝑚

(𝑃)

 

 
In the given problem (𝑃), 𝑓(𝑥) is our objective function with the inequality constraints written as 𝑔𝑖(𝑥). All 
these functions, namely 𝑓, 𝑔𝑖 are real-valued, and 𝑥 ∈ 𝑅𝑛. Let 𝐻0 = {𝑥 ∈ 𝑅𝑛 s.t. 𝑔𝑖(𝑥) ≤ 0} 
In contrast to various other general methods, the penalty function approach serves as an alternative technique 
for obtaining the solution of equation (P). This problem can be solved by converting it into a series of 
unconstrained optimization problems, thereby significantly easing the solving process. This methodology 
establishes a precedent by effectively breaking down the original problem into manageable components. A 
common penalty function to deal with (𝑃) is: 
 

𝜓⬚(𝑥, 𝛿) = 𝑓(𝑥) + 𝜎∑𝑚𝑎𝑥{𝑔𝑖(𝑥),0}
2

𝑚

𝑖=1

(1)

 

 
By incorporating the aforementioned penalty function, the original optimization problem (𝑃) is reduced as: 
 

𝑀𝑖𝑛⁡ 𝜓⬚(𝑥, 𝛿) s.t. 𝑥 ∈ 𝑅𝑛

(2)
 

The penalty function described in equation (1) possesses smoothness but lacks exactness. By "exactness," we 

refer to the property where for some 𝜔⬚ is optimal solution for both (2) and (𝑃) when 𝜔 ≥ 𝜔⬚. 
 

HISTORICAL BACKGROUND 
 
The initial groundwork in the formulation of the penalty function concept was established by Zangwill [1], who 
introduced the classical penalty function in following form: 
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𝜓𝜎(𝑥) = 𝑓(𝑥) + 𝜎∑𝑚𝑎𝑥{𝑔𝑖(𝑥),0}

𝑚

𝑖=1

(3)

 

 
And the optimization problem for equation (3) reduces to: 
 

𝑀𝑖𝑛⁡ 𝜓(𝑥, 𝛿) s.t. 𝑥 ∈ 𝑅𝑛 
 
The penalty function presented in (3) has the potential to be exact, but only under specific conditions. An exact 
penalty function was developed by Hans and Mangasarian (1979) [2] and introduced the concept of exact 
penalty functions. Furthermore, using precise penalty functions as inspiration, Rosenberg(1981) [3] suggested 
a globally convergent approach for convex programming. 
During the exploration of algorithms for solving penalty problems, it was observed that gradually increasing 
the penalty parameter led to non-differentiability of penalty functions [1,3,4,5]. Consequently, smoothing 
becomes essential for penalty functions to facilitate the application of Newton methods or gradient-based 
methods. A smoothed exact penalty function was introduced by Pinar and Zenios (1995) [5] for use in the 
solution of convex constrained optimization problems that require both convex objective and constraint 
functions. 
Smoothing nonlinear penalty functions for limited optimization problems was the subject of an article written 
by Yang et al. (2003) [6], which was published in a journal with a similar focus. In addition, Meng et al. (2004) 
[7] presented a technique for smoothing exact penalty functions within the framework of inequality 
constrained optimization issues. 
The presence of smooth penalty functions is typically preferred in optimization problem solving due to the 
inherent lack of smoothness in exact penalty functions. Consequently, various innovative strategies have 
emerged in the field of exact penalty functions as discussed in [7,8,9,10,11]. The SPFM technique has been 
widely studied and introduced by Fiaccio and McCormick [8] as a general approach. 
Building upon the concept of SPFM, Meng et al. [12] proposed and extensively investigated an objective 
function penalty method. Their research focused on utilizing penalty functions associated with the objective 
function to effectively tackle constrained optimization problems. Their approach offers a promising alternative 
to traditional penalty methods and presents potential advancements in the field of optimization. The formula 
for the penalty function represented by [12] is: 
 

𝑄(𝑥, 𝐿) = (𝑓(𝑥) − 𝐿)𝑐 +∑𝑚𝑎𝑥{𝑔𝑖(𝑥),0}

𝑚

𝑖=1

 

 
In a previous study [12], it is prove that the penalty function exhibits favorable characteristics of smoothness. 
Additionally, the accuracy of the objective penalty function was mathematically established, affirming its 
effectiveness in optimization problems. 
 
Moreover, researchers have explored various other forms penalty function that are constructed through a 
union of the objective function and constraint penalty. This amalgamation allows for the formulation of penalty 
functions that is helpful in providing a comprehensive approach to problem solving. 
 
In the present article, the focus will be on discussing the process of smoothing the objective penalty function. 
By employing smoothing techniques, the objective penalty function can be transformed into a continuous and 
differentiable function, thereby enhancing its applicability in optimization algorithms. The article aims to 
explore various methods and approaches for achieving this smoothing effect. 
 

A SECOND ORDERED SMOOTH PENALTY FUNCTION 
 
Let us consider 𝑝: 𝑅 → 𝑅 given as: 

𝑝(𝑡) = {
0 𝑡 ≤ 0

𝑡
2
3 𝑡 ≥ 0

(4)

 

The function 𝑝(𝑡) is exact but not smooth. So to make it smooth write the optimization problem for it as: 
 

𝜓𝜎(𝑥) = 𝑓(𝑥) + 𝜎∑𝑝(𝑔𝑖(𝑥))

𝑚

𝑖=1

(5)
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the associated smooth penalty optimization problem reduces as: 
 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒⁡ 𝜓𝜎(𝑥) s.t. 𝑥 ∈ 𝑅𝑛

(6)
 

 
From the definition in (4), clearly, the function 𝑝(𝑡) on 𝑅1 does not fall into the class of continuous functions. 
We propose the introduction of a new function that possesses the ideal characteristics of continuity and 
differentiability in order to avoid this limitation. Specifically, to find a function that possesses a continuous 
first-order derivative is our main objective. To fulfill these criteria, we define the smoothing function as follows: 
 

𝑝𝜀(𝑡) =

{
 
 

 
 

0,  if 𝑡 ≤ 0

𝑡4 3⁄

2𝜀2 3⁄
,  if 𝑡 > 0 and 𝑡 ≤ 𝜀

𝑡2 3⁄ −
𝜀2 3⁄

2
,  if 𝑡 > 𝜀

(7)

 

 
We prove that above 𝑝𝜀(𝑡) is continuously differentiable and its derivative is given by: 
 

𝑝𝜀
′(𝑡) =

{
 
 

 
 

0 𝑡 ≤ 0

2𝑡1 3⁄

3𝜀2 3⁄
0 ≤ 𝑡 ≤ 𝜀

1

3𝑡1 3⁄
𝑡 ≥ 𝜀

(8)

 

 

 
FIGURE 1. The behaviour of 𝒑𝜺(𝒕) at 𝜺 = 𝟎. 𝟏 and 𝒑(𝒕) 

 
The smoothing function introduced earlier exhibits remarkable properties of continuity and differentiability, 
as elucidated in the theorem presented below. 
Proposition 1. For any 𝜀 > 0 we prove that: 
1. 𝑝𝜀(𝑡) belongs to 𝐶1 on 𝑅 
2. ∀𝑡 ∈ 𝑅, 𝑝(𝑡) ≥ 𝑝𝜀(𝑡) 
3. 𝑙𝑖𝑚

𝜀→0
𝑝𝜀(𝑡) = 𝑝(𝑡) 

 
Proof. 1. The first part of the above theorem can be verified by showing the function to be continuous and 
differentiability at 0 and 𝜀. 
 
Continuity at 0 
 
𝐿𝐻𝐿 = 𝐿𝑡𝑡→0−𝑝𝜀(𝑡)=𝐿𝑡𝑡→0−0=0𝑅𝐻𝐿 = 𝐿𝑡

𝑡→0

+𝑝𝜀(𝑡)=𝐿𝑡

𝑡→0
+
𝑡4 3⁄

2𝜀2 3⁄
=𝐿𝑡ℎ→0

1
2
(0+ℎ)4 3⁄

𝜀2 3⁄
=0

Thus 𝐿𝐻𝐿 = 𝑅𝐻𝐿 

 
Also 𝑝𝜀(0) = 0 
Hence the function is continuous at 0 
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Continuity at 𝜀 : 
𝐿𝐻𝐿 = 𝐿𝑡𝑡→𝜀−𝑝𝜀(𝑡)=𝐿𝑡

𝑡→𝜀−
𝑡4 3⁄

2𝜀2 3⁄
=𝐿𝑡ℎ→0

1
2
(𝜀−ℎ)4 3⁄

𝜀2 3⁄
=
1
2𝜀
2 3⁄
𝑅𝐻𝐿 =

𝐿𝑡

𝑡→𝜀

+𝑝𝜀(𝑡)=𝐿𝑡

𝑡→𝜀
+𝑡2 3⁄ −

𝜀2 3⁄

2 =𝐿𝑡ℎ→0(𝜀+ℎ)
2 3⁄ −

1
2𝜀
2 3⁄ =𝜀2 3⁄ −

1
2𝜀
2 3⁄ =

1
2𝜀
2 3⁄

Thus LHL  RHL, Also 𝑝𝜀(𝜀) =
1

2
𝜀2 3⁄  

 
Now the continuous first-order differentiability of the function 𝑝𝜀(𝑡) will be demonstrated. 
Now from equation (11) we have 

𝑝𝜀
′(𝑡) =

{
 
 

 
 

0 𝑡 ≤ 0

2𝑡1 3⁄

3𝜀2 3⁄
0 ≤ 𝑡 ≤ 𝜀

2

3𝑡1 3⁄
𝑡 ≥ 𝜀

 

Continuity at 0 
𝐿𝐻𝐿 = 𝐿𝑡𝑡→0−𝑝𝜀′(𝑡)=0𝑅𝐻𝐿 = 𝐿𝑡

𝑡→0
+𝑝𝜀

′ (𝑡)=𝐿𝑡ℎ→0
2
3
(0+ℎ)1 3⁄

𝜀2 3⁄
=0

Hence 𝐿𝐻𝐿 = RHL, Also 𝑝𝜀
′(0) = 0 

Hence the function is continuous at 0 
Continuity at 𝜀 
𝐿𝐻𝐿 = 𝐿𝑡𝑡→𝜀−𝑝𝜀′(𝑡)=𝐿𝑡

𝑡→𝜀−
2𝑡1 3⁄

3𝜀2 3⁄
=𝐿𝑡ℎ→0

2
(
3

(𝜀−ℎ)1 3⁄

𝜀2 3⁄
=
2
3𝜀
−1 3⁄

𝑅𝐻𝐿 = 𝐿𝑡

𝑡→𝜀

+𝑝𝜀⬚
′(𝑡)=𝐿𝑡

𝑡→𝜀
+

2

3𝑡1 3⁄
=𝐿𝑡ℎ→0

2
3(𝜀+ℎ)

−1 3⁄ =
2
3𝜀
−1 3⁄

Thus LHL 

RHL. 

Also 𝑝𝜀
′(𝜀) =

2

3
𝜀−1 3⁄  

Hence the function 𝑝𝜀
′(𝑡) is continuous at 0 and 𝜀. 

 
Hence the function is first order differentiable. 
 
2. Now consider 

𝑝(𝑡) − 𝑝𝜀(𝑡) =

{
 
 

 
 

0,  if 𝑡 ≤ 0

𝑡2 3⁄ −
𝑡4 3⁄

2𝜀2 3⁄
,  if 0 ≤ 𝑡 ≤ 𝜀

𝜀2 3⁄

2
,  if 𝑡 ≥ 𝜀

 

 
Now when 0 ≤ 𝑡 ≤ 𝜀 

Define 𝑈(𝑡) = 𝑡2 3⁄ −
𝑡4 3⁄

2𝜀2 3⁄  then 

𝑈′(𝑡) =
2

3𝑡1 3⁄ −
2𝑡1 3⁄

3𝜀2 3⁄ Thus 𝑈′(𝑡) > 0. 

Also 𝑈(0) = 0 and 𝑈(𝜀) = 𝜀2 3⁄ −
𝜀4 3⁄

2𝜀2 3⁄ = 𝜀2 3⁄ −
1

2
𝜀2 3⁄ =

1

2
𝜀2 3⁄  

Hence 0 ≤ 𝑝(𝑡) − 𝑝𝜀(𝑡) ≤
1

2
𝜀2 3⁄ . 

3. From the proof of second part, it is quite obvious. 

Let 𝜓𝜎,𝜀(𝑥) = 𝑓(𝑥) + 𝜎∑⬚𝑖=1

𝑚
𝑝𝜀(𝑔𝑖(𝑥)) 

 
This smooth penalty optimization problem is written as: 

𝑚𝑖𝑛𝜓𝜎,𝜀(𝑥) so that 𝑥 ∈ 𝑅𝑛

(9)
 

 
Subsequent theorem reveals the connection between (9) and (6) objective functions. 
 
Proposition 2. Let 𝑥 ∈ 𝐻0, and 𝜀 > 0, in this case we prove that 

0 ≤ 𝜓𝜎(𝑥) − 𝜓𝜎,𝜀(𝑥) ≤
1

2
𝑚𝜎𝜀

2
3 

Proof. From Proposition 1, we have 

0 ≤ 𝑝(𝑔𝑖(𝑥)) − 𝑝𝜀(𝑔𝑖(𝑥)) ≤
1

2
𝜀2 3⁄  

Thus we see that 

0 ≤ 𝜓𝜎(𝑥) − 𝜓𝜎,𝜀(𝑥) ≤
1

2
𝑚𝜎𝜀

2
3 
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Proposition 3. Consider the sequence positive numbers ⟨𝜀𝑗⟩ such that it converges to zero as 𝑗 tends to infinity. 

Also suppose that for minimization problem 𝑚𝑖𝑛𝑥∈𝐻0𝜓𝜎,𝑘(𝑥). Then 𝑚𝑖𝑛𝑥∈𝐻0𝜓𝜎(𝑥) has the optimal solution 𝑥́, 

where 𝑥́ is the limit point of sequence ⟨𝑥𝑗⟩. 

Proof. From given hypothesis, we observe that 

𝜓𝜎,𝜀𝑗(𝑥) ≥ 𝜓𝜎,𝜀𝑗(𝑥𝑗), ∀𝑥 ∈ 𝐻0 

And Proposition 2 implies 
𝜓(𝑥) ≤ 𝜓𝜎(𝑥) 

and 

𝜓𝜎(𝑥) ≤ 𝜓𝜎,𝜀𝑗(𝑥) +
1

2
𝑚𝜎𝜀

𝑗

2
3 

It follows that 

𝜓𝜎(𝑥𝑗) ≤ 𝜓𝜎,𝜀𝑗(𝑥𝑗) +
1

2
𝑚𝜎𝜀

𝑗

2
3 ≤ 𝜓𝜎,𝜀𝑗(𝑥) +

1

2
𝑚𝜎𝜀

𝑗

2
3 ≤ 𝜓𝜎(𝑥) +

1

2
𝑚𝜎𝜀

𝑗

2
3 

 
Let 𝑗 → ∞, we observe that 

𝜓𝜎(𝑥́) ≤ 𝜓𝜎(𝑥) 
 
This concludes the argument. 

Proposition 4. Let 𝑥𝜎
⬚ ∈ 𝐻0 and 𝑥́𝜎,𝜀 ∈ 𝐻0 in (6) and (9) respectively be the optimal solutions of problem with 

𝜎 > 0 and 𝜀 > 0. Then 𝜓𝜎(𝑥𝜎
⬚) − 𝜓𝜎,𝜀(𝑥́𝜎,𝜀) is bounded above by 

1

2
𝑚𝜎𝜀

2

3 

When an error is sufficiently minor, the two theorems above imply that a solution to (9) is likewise a solution 
to (6). 
After analyzing the previous discussion, it becomes evident that a solution that is approximately optimal for 
the problem (9) can also be considered approximately optimal for the problem (6), given that the solution for 
SP meets the feasibility criterion of 𝜀. 
 
ALGORITHM FOR SMOOTH PENALTY FUNCTION 
The following algorithm is proposed as a solution for the given problem. 
Step 1 Choose an initial point labeled as 𝑥0. Set a stopping tolerance represented by 𝜀 > 0 which is a small 
positive value indicating the desired level of accuracy for the solution. Assign positive values for 𝜀0 and 𝜎0. 
Select two additional values: 𝜆, which should be a decimal between 0 and 1 , and N which should be greater 
than 1 . Start the iteration with initial value 𝑗 = 0 and follow the next step. 
Step 2 Utilize the current point 𝑥𝑗 (obtained from the previous step) as starting solution. Solve 𝑚𝑖𝑛𝑥∈𝑅⬚𝜓𝜎𝑗,𝜀𝑗(𝑥) 

to get the next solution 𝑥𝑗
⬚. The algorithm's subsequent steps or iterations can be performed after 𝑥𝑗

⬚ has been 

achieved. 

Step 3 If we get the desired 𝜀-feasible solution as 𝑥𝑗
⬚, in that case, the solution is close to optimal. Otherwise, 

write 𝑥𝑗+1 = 𝑥𝑗
⬚ with 𝜀𝑗+1 = 𝜆𝜀𝑗 and 𝜎𝑗+1 = 𝑁𝜎𝑗, then follow the second step with 𝑗 = 𝑗 + 1. 

 
NUMERICAL EXAMPLES 
Now we solve a numerical example with the help of suggested algorithm using Mathematica software. 
Example 1. The Rosen-Suzen problem in [12] is 
 

𝑚𝑖𝑛𝑓(𝑥) = 𝑥1
2 + 𝑥2

2 + 2𝑥3
2 + 𝑥4

2 − 5𝑥1 − 5𝑥2 − 21𝑥3 + 7𝑥4 
s.t. 𝑔1(𝑥) = 2𝑥1

2 + 𝑥2
2 + 𝑥3

2 + 2𝑥1 + 𝑥4 − 5 ≤ 0 

𝑔2(𝑥) = 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

+𝑥1−𝑥2+𝑥3−𝑥4−8≤0 

𝑔3(𝑥) = 𝑥1
2 + 2𝑥2

2 + 𝑥3
2 + 2𝑥4

2 − 𝑥1 − 𝑥4 − 10 ≤ 0 
 
We solve this equation using Mathematica. Let 𝑥0 = (0,0,0,0) We take initial value of penalty parameter 𝜎0 =
3, 𝜀0 = 0.2, 𝜆 = 0.1 and 𝑁 = 3 
The values against distinct values of penalty parameters are presented in the table (I). From the table, we 
observe that above the proposed algorithm results in better value of objective function in comparison to 𝑙1 and 
𝑙2 penalty function algorithm. In the fourth iteration of the proposed algorithm, the value of 𝑓(𝑥) was better 
than the value obtained in twenty-fifth iteration of the algorithm proposed in [13] 
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TABLE I. Numerical results using Mathematica 

k 𝑥𝑘+1 𝜎𝑘 𝜀𝑘 𝑓(𝑥𝑘+1) 

0 (0.169255,0.834042,2.012210,−0.972317) 3 0.2 -44.2534 

1 (0.169480,0.835149,2.00954, −0.966767) 9 0.02 -44.2339 

2 (0.169559,0.835532,2.00863, −0.964877) 27 0.002 -44.2338 

 
Example 2. Consider the problem given in [13] is 

𝑚𝑖𝑛𝑓(𝑥) = 1000 − 𝑥1
2 − 2𝑥2

2 − 𝑥3
2 − 𝑥1𝑥2 − 𝑥1𝑥3 

s.t. 𝑔1(𝑥) = 𝑥1
2 + 𝑥2

2 + 𝑥3
2 − 25 = 0 

𝑔2(𝑥) = (𝑥1 − 5)
2 + (𝑥2 − 5)

2 + (𝑥3 − 5)
2 − 25 ≤ 0 

 
The algorithm begins with the value 𝑥0 = (0,0,0), gradually the value of penalty parameter is increased 10 times 
and tolerance value is decreased by multiplier 0.01 at each iteration step of the algorithm. The results using 
Mathematica are calculated below: 
 

TABLE II. Numerical results using Mathematica 

k 𝑥𝑘+1 𝜌𝑘 𝜀𝑘 𝑓(𝑥𝑘+1) 

0 (2.51017,4.22738,0.967762) 10 0.1 944.097939 

1 (2.50102,4.22196,0.964757) 100 0.001 944.203874 

2 (2.5001,4.22138,0.964624) 1000 0.00001 944.214474 

3 (2.50001,4.22132,0.964611) 10000 0.0000001 944.215534 

 
CONCLUSION 

 
The article at hand introduces a smoothing objective penalty function that effectively assesses errors related to 
its usage. The article also presents supporting evidence and proofs regarding the error assessment. 
Additionally, the article for the constrained optimization problem presents an algorithmic design sequence 
that relies on the objective penalty function so as to obtain a solution. In addition, the essay provides further 
proofs that the algorithm converges globally. 
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