Educational Administration: Theory and Practice

2023, 29(4), 3103-3112 ISSN: 2148-2403 https://kuey.net/

Research Article

Graceful Labels Of Some Graphs Joined By An Arbitrary Path

J.C. Kanani^{1*}, P.Z. Akbari², V. J. Kaneria³

Citation: J.C. Kanani, et.al (2023), Graceful Labels Of Some Graphs Joined By An Arbitrary Path, Educational Administration: Theory and Practice, 29(4), 3103-3112
Doi: 10.53555/kuey.v29i4.7797

ARTICLE INFO	ABSTRACT
	We proved the gracefulness of graphs formed by connecting different graphs. And found the result (1) The graph G is obtained by connecting a quadrilateral and a quadrilateral with one chord through a path of arbitrary length is graceful. (2) The graph G obtained through joined a quadrilateral with one chord and a barycentric subdivision of C_n ($n \equiv 0.2 \pmod{4}$) by a path of arbitrary length is graceful. (3)The graph G obtained through joined a quadrilateral with one chord G_1 and a quadrilateral snake G_2 by a path of arbitrary length is graceful.
	Keywords: Graceful labeling, barycentric subdivision of cycle C_n , quadrilateral with one chord, quadrilateral snake QS_n . Ams classification no: 05C78

1 Introduction

The concept of graceful labels was proposed by Rosa [8] in 1967, and the numbers in the figure are defined by S.W. Golomb [4]. Many researchers have studied the gracefulness of graphs, please refer to Gallian's survey [3]. A large number of papers were found to have various applied in coding theory, radar communication, cryptography, etc. For in-depth details on graph labeling applications, see Bloom and Golomb [2]. We accept all the symbols and terms proposed by Harary [5]. We recall some of the definitions used in this article.

If $f: V \to \{0,1,...,q\}$ is injective, and the induce function $f^*: E \to \{1,...,q\}$ is defined as $f^*(e) = |f(u) - f(v)|$. For each edge $e = (u,v) \in E(G)$ is bijective. Graph G is called graceful graphics (if it allows graceful labels).

A graph is connected if every pair of points are joined by a path. [5]

A chord of a cycle is an edge joining two non-adjacent vertices of cycle C_n . [9]

The quadrilateral snake Q_n is obtained from the path P_n by replacing every edge of a path by cycle C_4 .[1]

Let G = (V, E) be a graph. If each edge of a graph G is subdivided, the resulting graph is called the barycentric subdivision of graph G. In other words, the barycentric subdivision is a graph obtained by inserting 2 degree vertices. Enter each edge of the original graphic. The subdivision of the barycentric of any graph G is represented by the S(G). Very easily observe |VS(G)| = |V(G)| + |E(G)| and |ES(G)| = 2|E(G)|. [10]

In this paper, the gracefulness of the graph formed by connecting different graphs is discussed. And found the following result

- 1. The graph G is obtained by connecting a quadrilateral and a quadrilateral with one chord through a path of arbitrary length is graceful.
- 2. The graph G obtained through joined a quadrilateral with one chord and a barycentric subdivision of C_n ($n \equiv 0.2 \pmod{4}$) by a path of arbitrary length is graceful.
- 3. The graph G obtained through joined a quadrilateral with one chord G_1 and a quadrilateral snake G_2 by a path of arbitrary length is graceful.

For a detailed investigation of graph labeling, we refer to Gallian[3].

2 Main Results:

2.1 Theorem

The graph G is obtained by connecting a quadrilateral and a quadrilateral with one chord through a path of arbitrary length is graceful.

^{1*,3}Government Polytechnic Rajkot-360003. Email: kananijagrutic@gmail.com

²Department of Mathematics, Saurashtra University, Rajkot-360005, Email: payalakbari111@gmail.com

Proof:

Let G = (V, E) be a graph obtained by connecting a chord quadrilateral and a quadrilateral with a path P_k of length k-1. Let $\{u_1, u_2, u_3, u_4\}$ be vertices of a quadrilateral G_1 , $\{w_1, w_2, w_3, w_4\}$ be vertices of a quadrilateral with one chord G_2 and $\{v_1, v_2, \dots, v_k\}$ are the vertices of the path P_k , where $v_1 = u_4$ and $v_k = w_1$. We consider the following two cases.

Case-1: Length of P_k is odd.

Define $f: v \to \{0,1,...q\}$, where q (number of edges of graph

G) = 9 + k.

$$f(u_1) = 9 + k$$

$$f(w_1) = f(v_{2n})$$

$$f(u_2) = 0$$

$$f(w_2) = f(v_{2n-1}) + 1$$

$$f(u_3) = f(u_1) - 1$$

$$f(w_3) = f(w_1) - 2$$

$$f(u_4) = 2$$

$$f(w_4) = f(w_2) + 1$$

$$f(v_1) = f(u_4) \qquad \qquad f(v_2) = f(u_3) - 1$$

$$f(v_3) = f(v_1) + 1 \qquad \qquad f(v_4) = f(v_2) - 1$$

$$f(v_5) = f(v_3) + 1 \qquad \qquad f(v_6) = f(v_4) - 1$$

$$f(v_7) = f(v_5) + 1 \qquad \qquad f(v_8) = f(v_6) - 1$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$t(v_{2n+1}) = t(v_{2n-1}) + 1 \qquad t(v_{2n+2}) = t(v_{2n}) - 1.$$

$$(\forall n = 1, 2, ...) \qquad (n = \text{graphic position, k-1} = \text{path length } P_k)$$

2.2Illustration

The graceful labeling of the diagram J acquired by interfacing a quadrilateral and a quadrilateral with one chord through the way P_6 displayed in FIG.1.

Figure 1: An graceful labeling of a diagram J, which is framed by interfacing a quadrilateral and a quadrilateral with one chord of way P_6 , where p=12 (the quantity of vertices for chart G) and q=14 (the quantity of edges for diagram G).

Case-2: Length of P_k is even.

Define $f: v \to \{0,1,...q\}$, where q (number of edges of graph

$$G) = 9 + k$$
.

$$f(u_1) = 9 + k$$
 $f(w_1) = f(v_{2n-1}) + 1$
 $f(u_2) = 0$ $f(w_2) = f(v_{2n}) - 1$
 $f(u_3) = f(u_1) - 1$ $f(w_3) = f(w_1) + 2$

 $f(w_4) = f(w_2) - 1$

$$f(v_1) = f(u_4) \qquad \qquad f(v_2) = f(u_3) - 1$$

$$f(v_3) = f(v_1) + 1 \qquad \qquad f(v_4) = f(v_2) - 1$$

$$f(v_5) = f(v_3) + 1 \qquad \qquad f(v_6) = f(v_4) - 1$$

$$f(v_7) = f(v_5) + 1 \qquad \qquad f(v_8) = f(v_6) - 1$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$f(v_2n+1) = f(v_2n-1) + 1 \qquad \qquad f(v_2n+2) = f(v_2n) - 1.$$

$$(\forall n = 1, 2,, \forall k = 1, 2,). (n = graphic position, k-1 = path length P_k)$$

In both cases, we can verify that f is a graceful label of graph G.

 $f(u_4) = 2$

2.3 Theorem

The graph G obtained through joined a quadrilateral with one chord and a barycentric subdivision of cycle C_n ($n \equiv 0,2 \pmod{4}$) by a path of arbitrary length is graceful.

Proof:

Case-1: First, for C_n , we take n = 4, that is C_4

Let G = (V, E) be the graph obtained through joined two graphs, a quadrilateral with one chord and a barycentric subdivision of cycle C_n ($n \equiv 0.2 \pmod{4}$) by a path P_k of length k-1. Let $\{u_1, u_2, u_3, u_4\}$ be vertices of a quadrilateral with one chord G_1 , $\{w_1, w_2, w_3, w_4\}$ be vertices of C_4 and $\{x_1, x_2, x_3, x_4\}$ are inserted vertices due to barycentric subdivision , i.e. $\{w_1, x_1, w_2, x_2, w_3, x_3, w_4, x_4\}$ be vertices of a barycentric subdivision of cycle G_2 and $\{v_1, v_2, \dots, v_k\}$ be vertices of the path P_k with $v_1 = u_4$ and $v_k = w_1$. We consider the following cases.

(A): Length of P_k is odd.

Define $f: v \to \{0,1,...,q\}$, where q (number of edges of graph G) = 13 + k.

$$f(u_1) = 13 + k \qquad f(w_1) = f(v_{2n})$$

$$f(u_2) = 0 \qquad f(w_2) = f(w_1) - 1$$

$$f(u_3) = f(u_1) - 2 \qquad f(w_3) = f(w_2) - 1$$

$$f(u_4) = 1 \qquad f(w_4) = f(w_3) - 1$$

$$f(v_1) = f(u_4) \qquad f(v_2) = f(u_3) - 1$$

$$f(v_3) = f(v_1) + 1 \qquad f(v_4) = f(v_2) - 1$$

$$f(v_5) = f(v_3) + 1 \qquad f(v_6) = f(v_4) - 1$$

$$f(v_7) = f(v_5) + 1 \qquad f(v_8) = f(v_6) - 1$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$f(v_{2n+1}) = f(v_{2n-1}) + 1 \qquad f(v_{2n+2}) = f(v_{2n}) - 1$$

$$f(x_1) = f(v_{2n-1}) + 1 \qquad f(x_2) = f(x_1) + 1$$

$$f(x_3) = f(x_2) + 2 \qquad f(x_4) = f(x_3) + 1$$

$$(\forall n = 1, 2,, \forall k = 1, 2, ...).$$

$$(n = \text{graphic position, k-1} = \text{path length } P_k)$$

2.4Illustration

The graceful labeling of the graph G obtained by connecting a quadrilateral with one chord and a barycentric subdivision of cycle C_4 through the path P_4 shown in FIG. 2.

Figure 2: Graceful labeling of a graph G, which is formed by connecting a quadrilateral with one chord and a barycentric subdivision of cycle C_4 through the path P_4 , where p=14 (the number of vertices for graph G) and q=16 (the number of edges for graph G).

(B): Length of P_k is even.

Define $f: v \to \{0,1,...q\}$, where q (number of edges of graph G) = 13 + k.

$$f(u_1) = 13 + k \qquad f(w_1) = f(v_{2n-1}) + 1$$

$$f(u_2) = 0 \qquad f(w_2) = f(w_1) + 1$$

$$f(u_3) = f(u_1) - 2 \qquad f(w_3) = f(w_2 + 1)$$

$$f(u_4) = 1 \qquad f(w_4) = f(w_3) + 1$$

$$f(v_1) = f(u_4) \qquad f(v_2) = f(u_3) - 1$$

$$f(v_3) = f(v_1) + 1 \qquad f(v_4) = f(v_2) - 1$$

$$f(v_5) = f(v_3) + 1 \qquad f(v_6) = f(v_4) - 1$$

$$f(v_7) = f(v_5) + 1 \qquad f(v_8) = f(v_6) - 1$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$f(v_{2n+1}) = f(v_{2n-1}) + 1 \qquad f(v_{2n+2}) = f(v_{2n}) - 1$$

$$f(x_1) = f(v_2) - 1 \qquad f(x_2) = f(x_1) - 1$$

$$f(x_3) = f(x_2) - 2 \qquad f(x_4) = f(x_3) - 1$$

$$(\forall n = 1, 2,, \forall k = 1, 2, ...)$$

(n = graphic position, k-1 = path length P_k)

In both cases, we can verify that f is a graceful label of graph G.

Case-2: Now we take n = 6 for C_n , that is C_6

Let G = (V, E) be the graph obtained through joined two graphs, a quadrilateral with one chord and a barycentric subdivision of cycle C_6 by the path P_k of length k-1. Let $\{u_1,u_2,u_3,u_4\}$ be vertices of quadrilateral with one chord G_1 , $\{w_1,w_2,w_3,w_4,w_5,w_6\}$ be vertices of C_6 and $\{x_1,x_2,x_3,x_4,x_5,x_6\}$ are inserted vertices due to barycentric subdivision, i.e. $\{w_1,x_1,w_2,x_2,w_3,x_3,w_4,x_4,w_5,x_5,w_6,x_6\}$ be vertices of a barycentric subdivision of cycle G_2 and $\{v_1,v_2,....,v_k\}$ be vertices of the path P_k with $v_1 = u_4$ and $v_k = w_1$. We consider the following cases.

(A): Length of P_k is odd.

Define $f: v \rightarrow \{0,1,...q\}$, where q (number of edges of graph G) = 17 + k.

$$f(u_1) = 17 + k \qquad f(u_2) = 0$$

$$f(u_3) = f(u_1) - 2 \qquad f(u_4) = 1$$

$$f(w_1) = f(v_{2n}) \qquad f(x_1) = f(v_{2n-1}) + 1$$

$$f(w_2) = f(w_1) - 1 \qquad f(x_2) = f(x_1) + 1$$

$$f(w_3) = f(w_2) - 1 \qquad f(x_3) = f(x_2) + 1$$

$$f(w_4) = f(w_3) - 1 \qquad f(x_4) = f(x_3) + 2$$

$$f(w_5) = f(w_4) - 1 \qquad f(x_5) = f(x_4) + 1$$

$$f(w_6) = f(w_5) - 1 \qquad f(x_6) = f(x_5) + 1$$

$$f(v_1) = f(u_4) \qquad f(v_2) = f(u_3) - 1$$

$$f(v_3) = f(v_1) + 1 \qquad f(v_4) = f(v_2) - 1$$

$$f(v_5) = f(v_3) + 1 \qquad f(v_6) = f(v_4) - 1$$

$$f(v_7) = f(v_5) + 1 \qquad f(v_8) = f(v_6) - 1$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$f(v_{2n+1}) = f(v_{2n-1}) + 1 \qquad f(v_{2n+2}) = f(v_{2n}) - 1$$

$$(\forall n = 1, 2,, \forall k = 1, 2, ...).$$

$$(n = \text{graphic position, k-1} = \text{path length } P_k)$$

2.5Illustration

The graceful labeling of the graph G obtained by connecting a quadrilateral with one chord and a barycentric subdivision of C_6 through the path P_4 shown in FIG. 3

Figure 3: Graceful labeling of the graph G, which is formed by connecting a quadrilateral with one chord and a barycentric subdivision of C_6 of path P_4 , where p=18 (number of vertices for graph G) and q=20 (number of edges for graph G).

(B): Length of P_k is even.

Define $f: v \to \{0,1,...,q\}$, where q (number of edges of graph G) = 17 + k.

$$f(u_1) = 17 + k \qquad f(u_2) = 0$$

$$f(u_3) = f(u_1) - 2 \qquad f(u_4) = 1$$

$$f(w_1) = f(v_{2n-1}) + 1 \qquad f(x_1) = f(v_{2n}) - 1$$

$$f(w_2) = f(w_1) + 1 \qquad f(x_2) = f(x_1) - 1$$

$$f(w_3) = f(w_2) + 1 \qquad f(x_3) = f(x_2) - 1$$

$$f(w_4) = f(w_3) + 1 \qquad f(x_4) = f(x_3) - 2$$

$$f(w_5) = f(w_4) + 1 \qquad f(x_5) = f(x_4) - 1$$

$$f(w_6) = f(w_5) + 1 \qquad f(x_6) = f(x_5) - 1$$

$$f(v_1) = f(u_4) \qquad f(v_2) = f(u_3) - 1$$

$$f(v_3) = f(v_1) + 1 \qquad f(v_4) = f(v_2) - 1$$

$$f(v_5) = f(v_3) + 1 \qquad f(v_6) = f(v_4) - 1$$

$$f(v_7) = f(v_5) + 1 \qquad f(v_8) = f(v_6) - 1$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$f(v_{2n+1}) = f(v_{2n-1}) + 1$$

$$f(v_{2n+2}) = f(v_{2n}) - 1$$

$$(\forall n = 1, 2, ..., \forall k = 1, 2, ...)$$

$$(n = \text{graphic position, k-1} = \text{path length } P_k)$$

Case-3: In General for C_n

Let G = (V, E) be the graph obtained through joined two graphs, a quadrilateral with one chord and a barycentric subdivision of cycle C_n ($n \equiv 0.2 \pmod{4}$) by a path P_k of length k-1. Let $\{u_1, u_2, u_3, u_4\}$ be vertices of a quadrilateral with one chord G_1 , $\{w_1, w_2, w_3, ..., w_{2i+2}\}$ be vertices of cycle C_{2i+2} and $\{x_1, x_2, x_3, ..., x_{2i+2}\}$ are inserted vertices due to barycentric subdivision i.e. $\{w_1, x_1, w_2, x_2, w_3, x_3, ..., w_{2i+2}, x_{2i+2}\}$ be vertices of a barycentric subdivision of cycle G_2 and $\{v_1, v_2,, v_k\}$ be the vertices of the path P_k with $v_1 = u_4$ and $v_k = w_1$. We consider the following cases.

(A): Length of P_k is odd.

Define $f: v \to \{0,1,...q\}$, where q (number of edges of graph G) = (4j + 9) + k.

$$\begin{split} &\mathbf{f}(u_1) = (4\mathbf{j} + 9) + \mathbf{k}. & \mathbf{f}(u_2) = 0 \\ &\mathbf{f}(u_3) = \mathbf{f}(u_1) - 2 & \mathbf{f}(u_4) = 1 \end{split}$$

$$\begin{aligned} &\mathbf{f}(w_1) = \mathbf{f}(v_{2n}) & \mathbf{f}(x_1) = \mathbf{f}(v_{2n-1}) + 1 \\ &\mathbf{f}(w_2) = \mathbf{f}(w_1) - 1 & \mathbf{f}(x_2) = \mathbf{f}(x_1) + 1 \\ &\mathbf{f}(w_3) = \mathbf{f}(w_2) - 1 & \mathbf{f}(x_3) = \mathbf{f}(x_2) + 1 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ &$$

(n = graphic position, k-1 = path length P_k , j = labeling according to C_n ($n \equiv 0.2 \pmod{4}$)

(B): Length of P_k is even.

Define $f: v \to \{0,1,...q\}$, where q (number of edges of graph G) = (4j + 9) + k.

 $(\forall n = 1,2,...,\forall k = 1,2,...,\forall j = 1,2,...)$ (n = graphic position, k-1 = path length P_k , j = labeling according to C_n ($n \equiv 0,2 \pmod{4}$)

In both cases, we can verify that f is a graceful label of graph G.

2.6 Theorem

The graph G obtained through joined a quadrilateral with one chord G_1 and a quadrilateral snake G_2 by a path of arbitrary length is graceful.

Proof:

Let G = (V, E) be the graph obtained through joined two graphs, a quadrilateral with one chord G_1 and a quadrilateral snake G_2 by a path P_k of length k-1. Let $\{u_1, u_2, u_3, u_4\}$ be vertices of a quadrilateral with one chord G_1 , $\{w_1, w_2, w_3, ..., w_k\}$ be vertices of a quadrilateral snake G_2 and $\{v_1, v_2, ..., v_k\}$ be vertices of the path P_k with $v_1 = u_4$ and $v_k = w_1$. We consider the following cases.

Case-1: Length of P_k is odd Define $f: v \rightarrow \{0,1,...,q\}$, where

 $q = 4n + \left\{2j + 4, for \ k = 2j - 1\right\}$

$$(\forall n = 1, 2,, \forall j = 1, 2, ..., \forall k = 1, 2, ...)$$
 (j = labeling in the graph, k-1 = path length P_k , q = number of edges of a graph G, n = no. of snakes in graph G)
$$f(u_1) = q \qquad f(u_2) = 0$$

$$f(u_3) = f(u_1) - 2 \qquad f(u_4) = 1$$

$$f(v_1) = f(u_4) \qquad f(v_2) = f(u_3) - 1$$

$$f(v_3) = f(v_1) + 1 \qquad f(v_4) = f(v_2) - 1$$

$$... \qquad ...$$

$$f(v_{2j+1}) = f(v_{2j-1}) + 1 \qquad f(v_{2j+2}) = f(v_{2j}) - 1$$

$$... \qquad ...$$

$$f(w_1) = f(v_{2j}) \qquad \text{for } k = 2j - 1$$

$$... \qquad ...$$

$$f(w_{6j}) = f(w_{6j-3}) + 1 \qquad f(w_{6j-2}) + 2$$

$$f(w_{6j-1}) = f(w_{6j-3}) - 1$$

$$f(w_{6j}) = f(w_{6j-1}) - 1$$

$$f(w_{6j+1}) = f(w_{6j}) + 1$$

2.7 Illustration

The graceful labeling of the graph G obtained by connecting a quadrilateral with one chord and a quadrilateral snake through the path P_4 shown in FIG. 4

Figure 4: Graceful labeling of the graph G, which is formed by connecting a quadrilateral with one chord and a quadrilateral snake of path P_4 , where p = 16(no. of vertices for graph G) and q = 20(no. of edges for graph G).

Case-2: Length of P_k is even. Define $f: v \to \{0,1,...,q\}$, where

$$(\forall \ n=1,2,....,\forall \ j=1,2,...,\forall \ k=1,2,...)$$
 (j = labeling in the graph, k-1 = path length P_k , q = number of edges of a graph G, n = no. of snakes in graph G)
$$f(u_1) = q \qquad f(u_2) = 0$$
 $f(u_3) = f(u_1) - 2 \qquad f(u_4) = 1$
$$f(v_1) = f(u_4) \qquad f(v_2) = f(u_3) - 1$$
 $f(v_3) = f(v_1) + 1 \qquad f(v_4) = f(v_2) - 1$. . .
$$f(v_{2j+1}) = f(v_{2j-1}) + 1 \qquad f(v_{2j+2}) = f(v_{2j}) - 1$$
 . . .
$$f(w_1) = f(v_{2j+1}) \qquad \text{for } k = 2j$$

$$f(w_2) = f(v_{2j}) - 1 \qquad \text{for } k = 2j$$

$$f(w_{6j-3}) = f(w_{6j-5}) + 2$$

$$f(w_{6j-2}) = f(w_{6j-4}) - 1$$

$$f(w_{6j}) = f(w_{6j-2}) - 2$$

$$f(w_{6j+1}) = f(w_{6j-1}) + 1$$

$$f(w_{6j+1}) = f(w_{6j-1}) + 1$$

$$f(w_{6j+2}) = f(w_{6j}) - 1$$

 $q = 4n + \left\{2j + 5, for \ k = 2j\right\}$

In both cases, we can verify that f is a graceful label of graph G.

2.8 Concluding Remark

The current work has contributed some new results. We discussed the gracefulness of the graph obtained by connecting (1) a quadrilateral with one chord and a quadrilateral (2) a quadrilateral with one chord and a barycentric subdivision of cycle C_n (3) a quadrilateral with one chord and a quadrilateral snake, through a path of arbitrary length. The mark pattern is displayed through illustrations to better understand the derived results.

2.9 Acknowledgement

Thanks to Professor D. J. Marsonia for drawing 2D graphics with the help of AutoCAD.

References

- [1] D. G. Adalja, G. V. Ghodasara, Sum Divisor Cordial Labeling of Snakes Related Graphs, *Journal of Computer and Mathematical Sciences*, 9(7), (2018) 754-768.
- [2] G. S. Bloom and S. W. Golomb, Application of numbered undirected graphs, *IEEE*, 65(4), (1977) 562-570.
- [3] J. A. Gallian, A Dynamic survey of graph labeling, *The Electronics Journal of Combinatorics*, 23, (2020) 1-553.
- [4] S. W. Golomb, How to number a graph, Graph Theory and Computing (R. C. Read. Ed.) Academic Press, New York (1972) 23–37.
- [5] F. Harary, Graph theory, Wesley Publishing Company, Inc., (1969).
- [6] V. J. Kaneria, H. M. Makadia, Meera Meghapara, Some graceful graphs, *International Journal of Mathematics and Soft Computing*, 4(2), (2014) 165 172.
- [7] V. J. Kaneria, H. P. Chudasama, Absolute mean graceful labeling in various graphs, *International journal of mathematics and its applications*, 5(4), (2017) 723-726.

- [8] A. Rosa, On Certain Valuation of Graph Theory of Graphs (*Rome July 1966*), *Goden and Breach, N. Y. and Paris*,(1967) 349-355.
- [9] S. K. Vaidya, K. K. Kanani, Strongly MultiplicativeLabeling for Some Cycle Related Graphs, *Modern Applied Science*, Vo 4(7), (2010) 82-88.
- [10] S. K. Vaidya, K. K. Kanani, P. L. Vihol, N. A. Dani, Some Cordial Graphs in the Context of Barycentric Subdivision, *Int. J. Contemp. Math. Sciences*, 4, (2009) 1479 1492.
- [11] S. K. Vaidya, N. H. Shah, Cordial labeling of snakes, *International journal of mathematics and its applications*, 2(3), (2014) 17-27.