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ARTICLE INFO ABSTRACT 
 We proved the gracefulness of graphs formed by connecting different graphs. 

And found the result (1) The graph G is obtained by connecting a quadrilateral 
and a quadrilateral with one chord through a path of arbitrary length is 
graceful. (2) The graph G obtained through joined a quadrilateral with one 
chord and a barycentric subdivision of Cn (n ≡ 0,2 (mod 4)) by a path of 
arbitrary length is graceful. (3)The graph G obtained through joined a 
quadrilateral with one chord G1and a quadrilateral snake G2 by a path of 
arbitrary length is graceful. 
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1 Introduction 
 

The concept of graceful labels was proposed by Rosa [8] in 1967, and the numbers in the figure are defined by 
S.W. Golomb [4]. Many researchers have studied the gracefulness of graphs, please refer to Gallian’s survey 
[3]. A large number of papers were found to have various applied in coding theory, radar communication, 
cryptography, etc. For in-depth details on graph labeling applications, see Bloom and Golomb [2]. We accept 
all the symbols and terms proposed by Harary [5]. We recall some of the definitions used in this article. 
If f : V → {0,1,...,q} is injective, and the induce function f∗ : E → {1,...,q} is defined as f∗(e) = |f(u) − f(v)|. For 
each edge e = (u,v) ∈ E(G) is bijective. Graph G is called graceful graphics (if it allows graceful labels). 
A graph is connected if every pair of points are joined by a path. [5] 
A chord of a cycle is an edge joining two non-adjacent vertices of cycle Cn. [9] 
The quadrilateral snake Qn is obtained from the path Pn by replacing every edge of a path by cycle C4.[1] 
Let G = (V, E) be a graph. If each edge of a graph G is subdivided, the resulting graph is called the barycentric 
subdivision of graph G. In other words, the barycentric subdivision is a graph obtained by inserting 2 degree 
vertices. Enter each edge of the original graphic. The subdivision of the barycentric of any graph G is 
represented by the S(G). Very easily observe |V S(G)| = |V (G)| + |E(G)| and |ES(G)| = 2|E(G)|. [10] 
In this paper, the gracefulness of the graph formed by connecting different graphs is discussed. And found the 
following result 
1. The graph G is obtained by connecting a quadrilateral and a quadrilateral with one chord through a path of 
arbitrary length is graceful. 
2. The graph G obtained through joined a quadrilateral with one chord and a barycentric subdivision of Cn (n 

≡ 0,2 (mod 4)) by a path of arbitrary length is graceful. 
3. The graph G obtained through joined a quadrilateral with one chord G1 and a quadrilateral snake G2 by a 

path of arbitrary length is graceful. 
For a detailed investigation of graph labeling, we refer to Gallian[3]. 
 

2 Main Results: 
 

2.1 Theorem 
The graph G is obtained by connecting a quadrilateral and a quadrilateral with one chord through a path of 
arbitrary length is graceful. 
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Proof : 
Let G = (V, E) be a graph obtained by connecting a chord quadrilateral and a quadrilateral with a path Pk of 
length k-1. Let {u1,u2,u3,u4} be vertices of a quadrilateral G1, {w1,w2,w3,w4} be vertices of a quadrilateral with 
one chord G2 and {v1,v2,.....,vk} are the vertices of the path Pk, where v1 = u4 and vk = w1. We consider the 
following two cases. 
 
Case-1: Length of Pk is odd. 
Define f : v → {0,1,....q}, where q (number of edges of graph 
G) = 9 + k. 

f(u1) = 9 + k f(w1) = f(v2n) 

f(u2) = 0 
f(w2) = f(v2n−1) + 1 

f(u3) = f(u1) - 1 f(w3) = f(w1) - 2 

f(u4) = 2 f(w4) = f(w2) + 1 

f(v1) = f(u4) f(v2) = f(u3) - 1 

f(v3) = f(v1) + 1 f(v4) = f(v2) - 1 

f(v5) = f(v3) + 1 f(v6) = f(v4) - 1 

f(v7) = f(v5) + 1 f(v8) = f(v6) - 1 

. . 

. . 

 
 
2.2Illustration 
The graceful labeling of the diagram J acquired by interfacing a quadrilateral and a quadrilateral with one 
chord through the way P6 displayed in FIG.1. 
 

 
Figure 1: An graceful labeling of a diagram J, which is framed by interfacing a quadrilateral 
and a quadrilateral with one chord of way P6, where p = 12 (the quantity of vertices for chart 

G) and q = 14 (the quantity of edges for diagram G). 
 
Case-2: Length of Pk is even. 
Define f : v → {0,1,....q}, where q (number of edges of graph 
G) = 9 + k. 

f(u1) = 9 + k f(w1) = f(v2n−1)+1 

f(u2) = 0 f(w2) = f(v2n) - 1 

f(u3) = f(u1) - 1 f(w3) = f(w1) + 2 
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f(u4) = 2 f(w4) = f(w2) - 1 

f(v1) = f(u4) f(v2) = f(u3) - 1 
f(v3) = f(v1)+1 f(v4) = f(v2) - 1 

f(v5) = f(v3)+1 f(v6) = f(v4) - 1 

f(v7) = f(v5)+1 f(v8) = f(v6) - 1 

. . 

. . 

f(v2n+1) = f(v2n−1) + 1 f(v2n+2) = f(v2n) - 1. 
(∀ n = 1,2,....,∀ k = 1,2,....). (n = graphic position, k-1 = path length Pk) 

 
In both cases, we can verify that f is a graceful label of graph G. 
 
2.3 Theorem 
The graph G obtained through joined a quadrilateral with one chord and a barycentric subdivision of cycle Cn 

(n ≡ 0,2 (mod 4)) by a path of arbitrary length is graceful. 
 
Proof : 
Case-1: First, for Cn, we take n = 4, that is C4 
Let G = (V, E ) be the graph obtained through joined two graphs, a quadrilateral with one chord and a 
barycentric subdivision of cycle Cn (n ≡ 0,2 (mod 4)) by a path Pk of length k-1. Let {u1,u2,u3,u4} be vertices of 
a quadrilateral with one chord G1, {w1,w2,w3,w4} be vertices of C4 and {x1,x2,x3,x4} are inserted vertices due to 
barycentric subdivision , i.e. {w1,x1,w2,x2,w3,x3,w4,x4} be vertices of a barycentric subdivision of cycle G2 and 
{v1,v2,.....,vk} be vertices of the path Pk with v1 = u4 and vk = w1. We consider the following cases. 
 
(A): Length of Pk is odd. 
Define f : v → {0,1,....q}, where q (number of edges of graph G) = 13 + k. 
 

 

 
 
2.4Illustration 
The graceful labeling of the graph G obtained by connecting a quadrilateral with one chord and a barycentric 
subdivision of cycle C4 through the path P4 shown in FIG. 2. 
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Figure 2: Graceful labeling of a graph G, which is formed by connecting a quadrilateral with 

one chord and a barycentric subdivision of cycle C4 through the path P4, where p = 14 (the 
number of vertices for graph G) and q = 16 (the number of edges for graph G). 

 
(B): Length of Pk is even. 
Define f : v → {0,1,....q}, where q (number of edges of graph G) = 13 + k. 
 

 
(n = graphic position, k-1 = path length Pk) 
In both cases, we can verify that f is a graceful label of graph G. 
 
Case-2: Now we take n = 6 for Cn, that is C6 
Let G = (V, E ) be the graph obtained through joined two graphs, a quadrilateral with one chord and a 
barycentric subdivision of cycle C6 by the path Pk of length k-1. Let {u1,u2,u3,u4} be vertices of quadrilateral with 
one chord G1, {w1,w2,w3,w4,w5,w6} be vertices of C6 and {x1,x2,x3,x4,x5,x6} are inserted vertices due to 
barycentric subdivision, i.e. {w1,x1,w2,x2,w3,x3,w4,x4,w5,x5,w6,x6} be vertices of a barycentric subdivision of 
cycle G2 and {v1,v2,.....,vk} be vertices of the path Pk with v1 = u4 and vk = w1. We consider the following cases. 
 
(A): Length of Pk is odd. 
Define f : v → {0,1,....q}, where q (number of edges of graph G) = 17 + k. 
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2.5Illustration 
The graceful labeling of the graph G obtained by connecting a quadrilateral with one chord and a barycentric 
subdivision of C6 through the path P4 shown in FIG. 3 
 

 
Figure 3: Graceful labeling of the graph G, which is formed by connecting a quadrilateral with 
one chord and a barycentric subdivision of C6 of path P4, where p = 18 (number of vertices for 

graph G) and q = 20 (number of edges for graph G). 
 
(B): Length of Pk is even. 
Define f : v → {0,1,....q}, where q (number of edges of graph G) = 17 + k. 
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Case-3: In General for Cn 
Let G = (V, E) be the graph obtained through joined two graphs, a quadrilateral with one chord and a 
barycentric subdivision of cycle Cn (n ≡ 0,2 (mod 4)) by a path Pk of length k-1. Let {u1,u2,u3,u4} be vertices of 
a quadrilateral with one chord G1, {w1,w2,w3,...,w2i+2} be vertices of cycle C2i+2 and {x1,x2,x3,...,x2i+2} are inserted 
vertices due to barycentric subdivision i.e. {w1,x1,w2,x2,w3,x3,...,w2i+2,x2i+2} be vertices of a barycentric 
subdivision of cycle G2 and {v1,v2,.....,vk} be the vertices of the path Pk with v1 = u4 and vk = w1. We consider the 
following cases. 
 
(A): Length of Pk is odd. 
Define f : v → {0,1,....q}, where q (number of edges of graph G) = (4j + 9) + k. 
 

 
 

 (n = graphic position, k-1 = path length Pk, j = labeling according to Cn (n ≡ 0,2 (mod 4)) 
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(B): Length of Pk is even. 
Define f : v → {0,1,....q}, where q (number of edges of graph G) = (4j + 9) + k. 
 

 

 
(∀ n = 1,2,....,∀ k = 1,2,...,∀ j = 1,2,...)  
(n = graphic position, k-1 = path length Pk, j = labeling according to Cn (n ≡ 0,2 (mod 4)) 
 
In both cases, we can verify that f is a graceful label of graph G. 
 
2.6 Theorem 
The graph G obtained through joined a quadrilateral with one chord G1and a quadrilateral snake G2 by a path 
of arbitrary length is graceful. 
 
Proof : 
Let G = (V, E ) be the graph obtained through joined two graphs, a quadrilateral with one chord G1 and a 
quadrilateral snake G2 by a path Pk of length k-1. Let {u1,u2,u3,u4} be vertices of a quadrilateral with one chord 
G1, {w1,w2,w3,...,wk} be vertices of a quadrilateral snake G2 and {v1,v2,.....,vk} be vertices of the path Pk with v1 

= u4 and vk = w1. We consider the following cases. 
 
Case-1: Length of Pk is odd 
Define f : v → {0,1,....q}, where 
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2.7 Illustration 
The graceful labeling of the graph G obtained by connecting a quadrilateral with one chord and a quadrilateral 
snake through the path P4 shown in FIG. 4 

 
Figure 4: Graceful labeling of the graph G, which is formed by connecting a quadrilateral with 
one chord and a quadrilateral snake of path P4, where p = 16(no. of vertices for graph G) and 

q = 20(no. of edges for graph G). 
 
Case-2: Length of Pk is even. Define f : v → {0,1,....q}, where 
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In both cases, we can verify that f is a graceful label of graph G. 
 
2.8 Concluding Remark 
The current work has contributed some new results. We discussed the gracefulness of the graph obtained by 
connecting (1) a quadrilateral with one chord and a quadrilateral (2) a quadrilateral with one chord and a 
barycentric subdivision of cycle Cn (3) a quadrilateral with one chord and a quadrilateral snake, through a path 
of arbitrary length. The mark pattern is displayed through illustrations to better understand the derived results. 
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